Compare commits

..

123 Commits

Author SHA1 Message Date
Phil Wang
41fabf2922 fix a dtype conversion issue for the diffusion timesteps in the diffusion prior, thanks to @JiaHeng-DLUT 2022-10-19 09:26:06 -07:00
Heng Jia
5975e8222b Fix assert message (#253) 2022-10-18 08:50:59 -07:00
Phil Wang
c18c080128 fix for use with larger openai clip models by extracting dimension of last layernorm in clip 2022-09-29 09:09:47 -07:00
Phil Wang
b39653cf96 fix readme dataloader example 2022-09-20 08:39:52 -07:00
Phil Wang
39f8b6cf16 show example of using SOTA open sourced open clip 2022-09-19 10:45:20 -07:00
Phil Wang
d0c11b30b0 handle open clip adapter image size being a tuple 2022-09-19 10:27:14 -07:00
zion
86e2d5ba84 Minor Decoder Train Script Fixes (#242)
* ensure tokenized text is on proper device
* fix lpips mage distribution
2022-09-15 17:21:48 -07:00
Phil Wang
0d82dff9c5 in ddim, noise should be predicted after x0 is maybe clipped, thanks to @lukovnikov for pointing this out in another repository 2022-09-01 09:40:47 -07:00
Phil Wang
8bbc956ff1 fix bug with misnamed variable in diffusion prior network 2022-08-31 17:19:05 -07:00
Phil Wang
22019fddeb todo 2022-08-31 13:36:05 -07:00
Phil Wang
6fb7e91343 fix ddim to use alpha_cumprod 2022-08-31 07:40:46 -07:00
Phil Wang
ba58ae0bf2 add two asserts to diffusion prior to ensure matching image embedding dimensions for clip, diffusion prior network, and what was set on diffusion prior 2022-08-28 10:11:37 -07:00
Phil Wang
1cc5d0afa7 upgrade to best downsample 2022-08-25 10:37:02 -07:00
Phil Wang
59fa101c4d fix classifier free guidance for diffusion prior, thanks to @jaykim9870 for spotting the issue 2022-08-23 08:29:01 -07:00
Aidan Dempster
916ece164c Merge pull request #234 from Veldrovive/deepspeed_fp16
Fixed issues with clip and deepspeed fp16
2022-08-20 19:01:43 -04:00
Aidan
cbaadb6931 Fixed issues with clip and deepspeed fp16
Also more more general compatibility fixes
2022-08-20 17:58:32 +00:00
Phil Wang
083508ff8e cast attention matrix back to original dtype pre-softmax in attention 2022-08-20 10:56:01 -07:00
Phil Wang
7762edd0ff make it work for @ethancohen123 2022-08-19 11:28:58 -07:00
Phil Wang
de5e628773 cite einops 2022-08-17 08:58:41 -07:00
Phil Wang
1b4046b039 gratitude 2022-08-17 08:57:33 -07:00
Phil Wang
27f19ba7fa make sure diffusion prior trainer can operate with no warmup 2022-08-15 14:27:40 -07:00
Phil Wang
8f38339c2b give diffusion prior trainer cosine annealing lr too 2022-08-15 07:38:01 -07:00
Phil Wang
6b9b4b9e5e add cosine annealing lr schedule 2022-08-15 07:29:56 -07:00
Phil Wang
44e09d5a4d add weight standardization behind feature flag, which may potentially work well with group norm 2022-08-14 11:34:45 -07:00
Phil Wang
34806663e3 make it so diffusion prior p_sample_loop returns unnormalized image embeddings 2022-08-13 10:03:40 -07:00
Phil Wang
dc816b1b6e dry up some code around handling unet outputs with learned variance 2022-08-12 15:25:03 -07:00
Phil Wang
05192ffac4 fix self conditioning shape in diffusion prior 2022-08-12 12:30:03 -07:00
Phil Wang
9440411954 make self conditioning technique work with diffusion prior 2022-08-12 12:20:51 -07:00
Phil Wang
981d407792 comment 2022-08-12 11:41:23 -07:00
Phil Wang
7c5477b26d bet on the new self-conditioning technique out of geoffrey hintons group 2022-08-12 11:36:08 -07:00
Phil Wang
be3bb868bf add gradient checkpointing for all resnet blocks 2022-08-02 19:21:44 -07:00
Phil Wang
451de34871 enforce clip anytorch version 2022-07-30 10:07:55 -07:00
Phil Wang
f22e8c8741 make open clip available for use with dalle2 pytorch 2022-07-30 09:02:31 -07:00
Phil Wang
87432e93ad quick fix for linear attention 2022-07-29 13:17:12 -07:00
Phil Wang
d167378401 add cosine sim for self attention as well, as a setting 2022-07-29 12:48:20 -07:00
Phil Wang
2d67d5821e change up epsilon in layernorm the case of using fp16, thanks to @Veldrovive for figuring out this stabilizes training 2022-07-29 12:41:02 -07:00
Phil Wang
748c7fe7af allow for cosine sim cross attention, modify linear attention in attempt to resolve issue on fp16 2022-07-29 11:12:18 -07:00
Phil Wang
80046334ad make sure entire readme runs without errors 2022-07-28 10:17:43 -07:00
Phil Wang
36fb46a95e fix readme and a small bug in DALLE2 class 2022-07-28 08:33:51 -07:00
Phil Wang
07abfcf45b rescale values in linear attention to mitigate overflows in fp16 setting 2022-07-27 12:27:38 -07:00
Phil Wang
2e35a9967d product management 2022-07-26 11:10:16 -07:00
Phil Wang
406e75043f add upsample combiner feature for the unets 2022-07-26 10:46:04 -07:00
Phil Wang
9646dfc0e6 fix path_or_state bug 2022-07-26 09:47:54 -07:00
Phil Wang
62043acb2f fix repaint 2022-07-24 15:29:06 -07:00
Phil Wang
417ff808e6 1.0.3 2022-07-22 13:16:57 -07:00
Aidan Dempster
f3d7e226ba Changed types to be generic instead of functions (#215)
This allows pylance to do proper type hinting and makes developing
extensions to the package much easier
2022-07-22 13:16:29 -07:00
Phil Wang
48a1302428 1.0.2 2022-07-20 23:01:51 -07:00
Aidan Dempster
ccaa46b81b Re-introduced change that was accidentally rolled back (#212) 2022-07-20 23:01:19 -07:00
Phil Wang
76d08498cc diffusion prior training updates from @nousr 2022-07-20 18:05:27 -07:00
zion
f9423d308b Prior updates (#211)
* update configs for prior

add prior warmup to config

update example prior config

* update prior trainer & script

add deepspeed amp & warmup

adopt full accelerator support

reload at sample point

finish epoch resume code

* update tracker save method for prior

* helper functions for prior_loader
2022-07-20 18:04:26 -07:00
Phil Wang
06c65b60d2 1.0.0 2022-07-19 19:08:17 -07:00
Aidan Dempster
4145474bab Improved upsampler training (#181)
Sampling is now possible without the first decoder unet

Non-training unets are deleted in the decoder trainer since they are never used and it is harder merge the models is they have keys in this state dict

Fixed a mistake where clip was not re-added after saving
2022-07-19 19:07:50 -07:00
Phil Wang
4b912a38c6 0.26.2 2022-07-19 17:50:36 -07:00
Aidan Dempster
f97e55ec6b Quality of life improvements for tracker savers (#210)
The default save location is now none so if keys are not specified the
corresponding checkpoint type is not saved.

Models and checkpoints are now both saved with version number and the
config used to create them in order to simplify loading.

Documentation was fixed to be in line with current usage.
2022-07-19 17:50:18 -07:00
Phil Wang
291377bb9c @jacobwjs reports dynamic thresholding works very well and 0.95 is a better value 2022-07-19 11:31:56 -07:00
Phil Wang
7f120a8b56 cleanup, CLI no longer necessary since Zion + Aidan have https://github.com/LAION-AI/dalle2-laion and colab notebook going 2022-07-19 09:47:44 -07:00
Phil Wang
8c003ab1e1 readme and citation 2022-07-19 09:36:45 -07:00
Phil Wang
723bf0abba complete inpainting ability using inpaint_image and inpaint_mask passed into sample function for decoder 2022-07-19 09:26:55 -07:00
Phil Wang
d88c7ba56c fix a bug with ddim and predict x0 objective 2022-07-18 19:04:26 -07:00
Phil Wang
3676a8ce78 comments 2022-07-18 15:02:04 -07:00
Phil Wang
da8e99ada0 fix sample bug 2022-07-18 13:50:22 -07:00
Phil Wang
6afb886cf4 complete imagen-like noise level conditioning 2022-07-18 13:43:57 -07:00
Phil Wang
c7fe4f2f44 project management 2022-07-17 17:27:44 -07:00
Phil Wang
a2ee3fa3cc offer way to turn off initial cross embed convolutional module, for debugging upsampler artifacts 2022-07-15 17:29:10 -07:00
Phil Wang
a58a370d75 takes care of a grad strides error at https://github.com/lucidrains/DALLE2-pytorch/issues/196 thanks to @YUHANG-Ma 2022-07-14 15:28:34 -07:00
Phil Wang
1662bbf226 protect against random cropping for base unet 2022-07-14 12:49:43 -07:00
Phil Wang
5be1f57448 update 2022-07-14 12:03:42 -07:00
Phil Wang
c52ce58e10 update 2022-07-14 10:54:51 -07:00
Phil Wang
a34f60962a let the neural network peek at the low resolution conditioning one last time before making prediction, for upsamplers 2022-07-14 10:27:04 -07:00
Phil Wang
0b40cbaa54 just always use nearest neighbor interpolation when resizing for low resolution conditioning, for https://github.com/lucidrains/DALLE2-pytorch/pull/181 2022-07-13 20:59:43 -07:00
Phil Wang
f141144a6d allow for using classifier free guidance for some unets but not others, by passing in a tuple of cond_scale during sampling for decoder, just in case it is causing issues for upsamplers 2022-07-13 13:12:30 -07:00
Phil Wang
f988207718 hack around some inplace error, also make sure for openai clip text encoding, only tokens after eos_id is masked out 2022-07-13 12:56:02 -07:00
Phil Wang
b2073219f0 foolproof sampling for decoder to always use eval mode (and restore training state afterwards) 2022-07-13 10:21:00 -07:00
Phil Wang
cc0f7a935c fix non pixel shuffle upsample 2022-07-13 10:16:02 -07:00
Phil Wang
95a512cb65 fix a potential bug with conditioning with blurred low resolution image, blur should be applied only 50% of the time 2022-07-13 10:11:49 -07:00
Phil Wang
972ee973bc fix issue with ddim and normalization of lowres conditioning image 2022-07-13 09:48:40 -07:00
Phil Wang
79e2a3bc77 only use the stable layernorm for final output norm in transformer 2022-07-13 07:56:30 -07:00
Aidan Dempster
544cdd0b29 Reverted to using basic dataloaders (#205)
Accelerate removes the ability to collate strings. Likely since it
cannot gather strings.
2022-07-12 18:22:27 -07:00
Phil Wang
349aaca56f add yet another transformer stability measure 2022-07-12 17:49:16 -07:00
Phil Wang
3ee3c56d2a add learned padding tokens, same strategy as dalle1, for diffusion prior, and get rid of masking in causal transformer 2022-07-12 17:33:14 -07:00
Phil Wang
cd26c6b17d 0.22.3 2022-07-12 17:08:31 -07:00
Phil Wang
775abc4df6 add setting to attend to all text encodings regardless of padding, for diffusion prior 2022-07-12 17:08:12 -07:00
Phil Wang
11b1d533a0 make sure text encodings being passed in has the correct batch dimension 2022-07-12 16:00:19 -07:00
Phil Wang
e76e89f9eb remove text masking altogether in favor of deriving from text encodings (padded text encodings must be pad value of 0.) 2022-07-12 15:40:31 -07:00
Phil Wang
bb3ff0ac67 protect against bad text mask being passed into decoder 2022-07-12 15:33:13 -07:00
Phil Wang
1ec4dbe64f one more fix for text mask, if the length of the text encoding exceeds max_text_len, add an assert for better error msg 2022-07-12 15:01:46 -07:00
Phil Wang
e0835acca9 generate text mask within the unet and diffusion prior itself from the text encodings, if not given 2022-07-12 12:54:59 -07:00
Phil Wang
e055793e5d shoutout for @MalumaDev 2022-07-11 16:12:35 -07:00
Phil Wang
1d9ef99288 add PixelShuffleUpsample thanks to @MalumaDev and @marunine for running the experiment and verifyng absence of checkboard artifacts 2022-07-11 16:07:23 -07:00
Phil Wang
bdd62c24b3 zero init final projection in unet, since openai and @crowsonkb are both doing it 2022-07-11 13:22:06 -07:00
Phil Wang
1f1557c614 make it so even if text mask is omitted, it will be derived based on whether text encodings are all 0s or not, simplify dataloading 2022-07-11 10:56:19 -07:00
Aidan Dempster
1a217e99e3 Unet parameter count is now shown (#202) 2022-07-10 16:45:59 -07:00
Phil Wang
7ea314e2f0 allow for final l2norm clamping of the sampled image embed 2022-07-10 09:44:38 -07:00
Phil Wang
4173e88121 more accurate readme 2022-07-09 20:57:26 -07:00
Phil Wang
3dae43fa0e fix misnamed variable, thanks to @nousr 2022-07-09 19:01:37 -07:00
Phil Wang
a598820012 do not noise for the last step in ddim 2022-07-09 18:38:40 -07:00
Phil Wang
4878762627 fix for small validation bug for sampling steps 2022-07-09 17:31:54 -07:00
Phil Wang
47ae17b36e more informative error for something that tripped me up 2022-07-09 17:28:14 -07:00
Phil Wang
b7e22f7da0 complete ddim integration of diffusion prior as well as decoder for each unet, feature complete for https://github.com/lucidrains/DALLE2-pytorch/issues/157 2022-07-09 17:25:34 -07:00
Romain Beaumont
68de937aac Fix decoder test by fixing the resizing output size (#197) 2022-07-09 07:48:07 -07:00
Phil Wang
097afda606 0.18.0 2022-07-08 18:18:38 -07:00
Aidan Dempster
5c520db825 Added deepspeed support (#195) 2022-07-08 18:18:08 -07:00
Phil Wang
3070610231 just force it so researcher can never pass in an image that is less than the size that is required for CLIP or CoCa 2022-07-08 18:17:29 -07:00
Aidan Dempster
870aeeca62 Fixed issue where evaluation would error when large image was loaded (#194) 2022-07-08 17:11:34 -07:00
Romain Beaumont
f28dc6dc01 setup simple ci (#193) 2022-07-08 16:51:56 -07:00
Phil Wang
081d8d3484 0.17.0 2022-07-08 13:36:26 -07:00
Aidan Dempster
a71f693a26 Add the ability to auto restart the last run when started after a crash (#191)
* Added autoresume after crash functionality to the trackers

* Updated documentation

* Clarified what goes in the autorestart object

* Fixed style issues

Unraveled conditional block

Chnaged to using helper function to get step count
2022-07-08 13:35:40 -07:00
Phil Wang
d7bc5fbedd expose num_steps_taken helper method on trainer to retrieve number of training steps of each unet 2022-07-08 13:00:56 -07:00
Phil Wang
8c823affff allow for control over use of nearest interp method of downsampling low res conditioning, in addition to being able to turn it off 2022-07-08 11:44:43 -07:00
Phil Wang
ec7cab01d9 extra insurance that diffusion prior is on the correct device, when using trainer with accelerator or device was given 2022-07-07 10:08:33 -07:00
Phil Wang
46be8c32d3 fix a potential issue in the low resolution conditioner, when downsampling and then upsampling using resize right, thanks to @marunine 2022-07-07 09:41:49 -07:00
Phil Wang
900f086a6d fix condition_on_text_encodings in dalle2 orchestrator class, fix readme 2022-07-07 07:43:41 -07:00
zion
b3e646fd3b add readme for prior (#159)
* add readme for prior

* offload prior info in main readme

* typos
2022-07-06 20:50:52 -07:00
Phil Wang
6a59c7093d more shots in the dark regarding fp16 with learned variance for deepspeed issue 2022-07-06 19:05:50 -07:00
Phil Wang
a6cdbe0b9c relax learning rate constraint, as @rom1504 wants to try a higher one 2022-07-06 18:09:11 -07:00
Phil Wang
e928ae5c34 default the device to the device that the diffusion prior parameters are on, if the trainer was never given the accelerator nor device 2022-07-06 12:47:48 -07:00
Phil Wang
1bd8a7835a attempting to fix issue with deepspeed fp16 seeing overflowing gradient 2022-07-06 08:27:34 -07:00
Phil Wang
f33453df9f debugging with Aidan 2022-07-05 18:22:43 -07:00
Phil Wang
1e4bb2bafb cast long as float before deriving sinusoidal pos emb 2022-07-05 18:01:22 -07:00
Phil Wang
ee75515c7d remove forcing of softmax in f32, in case it is interfering with deepspeed 2022-07-05 16:53:58 -07:00
Phil Wang
ec68243479 set ability to do warmup steps for each unet during training 2022-07-05 16:24:16 -07:00
Phil Wang
3afdcdfe86 need to keep track of training steps separately for each unet in decoder trainer 2022-07-05 15:17:59 -07:00
Phil Wang
b9a908ff75 bring in two tricks from the cogview paper for reducing the chances of overflow, for attention and layernorm 2022-07-05 14:27:04 -07:00
30 changed files with 2787 additions and 790 deletions

2
.github/FUNDING.yml vendored
View File

@@ -1 +1 @@
github: [lucidrains]
github: [nousr, Veldrovive, lucidrains]

33
.github/workflows/ci.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Continuous integration
on:
push:
branches:
- main
pull_request:
branches:
- main
jobs:
tests:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.8]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install
run: |
python3 -m venv .env
source .env/bin/activate
make install
- name: Tests
run: |
source .env/bin/activate
make test

2
.gitignore vendored
View File

@@ -136,3 +136,5 @@ dmypy.json
# Pyre type checker
.pyre/
.tracker_data
*.pth

6
Makefile Normal file
View File

@@ -0,0 +1,6 @@
install:
pip install -U pip
pip install -e .
test:
CUDA_VISIBLE_DEVICES= python train_decoder.py --config_file configs/train_decoder_config.test.json

232
README.md
View File

@@ -44,9 +44,12 @@ This library would not have gotten to this working state without the help of
- <a href="https://github.com/krish240574">Kumar</a> for working on the initial diffusion training script
- <a href="https://github.com/rom1504">Romain</a> for the pull request reviews and project management
- <a href="https://github.com/Ciaohe">He Cao</a> and <a href="https://github.com/xiankgx">xiankgx</a> for the Q&A and for identifying of critical bugs
- <a href="https://github.com/marunine">Marunine</a> for identifying issues with resizing of the low resolution conditioner, when training the upsampler, in addition to various other bug fixes
- <a href="https://github.com/malumadev">MalumaDev</a> for proposing the use of pixel shuffle upsampler for fixing checkboard artifacts
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
- <a href="https://huggingface.co">🤗 Huggingface</a> and in particular <a href="https://github.com/sgugger">Sylvain</a> for the <a href="https://github.com/huggingface/accelerate">Accelerate</a> library
- <a href="https://github.com/arogozhnikov">Alex</a> for <a href="https://github.com/arogozhnikov/einops">einops</a>, indispensable tool for tensor manipulation
... and many others. Thank you! 🙏
@@ -354,7 +357,8 @@ prior_network = DiffusionPriorNetwork(
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip,
timesteps = 100,
timesteps = 1000,
sample_timesteps = 64,
cond_drop_prob = 0.2
).cuda()
@@ -368,6 +372,7 @@ loss.backward()
unet1 = Unet(
dim = 128,
image_embed_dim = 512,
text_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8),
@@ -392,7 +397,7 @@ decoder = Decoder(
).cuda()
for unet_number in (1, 2):
loss = decoder(images, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss = decoder(images, text = text, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss.backward()
# do above for many steps
@@ -418,7 +423,7 @@ For the layperson, no worries, training will all be automated into a CLI tool, a
## Training on Preprocessed CLIP Embeddings
It is likely, when scaling up, that you would first preprocess your images and text into corresponding embeddings before training the prior network. You can do so easily by simply passing in `image_embed`, `text_embed`, and optionally `text_encodings` and `text_mask`
It is likely, when scaling up, that you would first preprocess your images and text into corresponding embeddings before training the prior network. You can do so easily by simply passing in `image_embed`, `text_embed`, and optionally `text_encodings`
Working example below
@@ -581,7 +586,9 @@ unet1 = Unet(
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
dim_mults=(1, 2, 4, 8),
text_embed_dim = 512,
cond_on_text_encodings = True # set to True for any unets that need to be conditioned on text encodings (ex. first unet in cascade)
).cuda()
unet2 = Unet(
@@ -596,14 +603,14 @@ decoder = Decoder(
unet = (unet1, unet2),
image_sizes = (128, 256),
clip = clip,
timesteps = 100,
timesteps = 1000,
sample_timesteps = (250, 27),
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5,
condition_on_text_encodings = False # set this to True if you wish to condition on text during training and sampling
text_cond_drop_prob = 0.5
).cuda()
for unet_number in (1, 2):
loss = decoder(images, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss = decoder(images, text = text, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss.backward()
# do above for many steps
@@ -621,8 +628,98 @@ images = dalle2(
# save your image (in this example, of size 256x256)
```
Alternatively, you can also use <a href="https://github.com/mlfoundations/open_clip">Open Clip</a>
```bash
$ pip install open-clip-torch
```
Ex. using the <a href="https://laion.ai/blog/large-openclip/">SOTA Open Clip</a> model trained by <a href="https://github.com/rom1504">Romain</a>
```python
from dalle2_pytorch import OpenClipAdapter
clip = OpenClipAdapter('ViT-H/14')
```
Now you'll just have to worry about training the Prior and the Decoder!
## Inpainting
Inpainting is also built into the `Decoder`. You simply have to pass in the `inpaint_image` and `inpaint_mask` (boolean tensor where `True` indicates which regions of the inpaint image to keep)
This repository uses the formulation put forth by <a href="https://arxiv.org/abs/2201.09865">Lugmayr et al. in Repaint</a>
```python
import torch
from dalle2_pytorch import Unet, Decoder, CLIP
# trained clip from step 1
clip = CLIP(
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 6,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 6,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8
).cuda()
# 2 unets for the decoder (a la cascading DDPM)
unet = Unet(
dim = 16,
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults = (1, 1, 1, 1)
).cuda()
# decoder, which contains the unet(s) and clip
decoder = Decoder(
clip = clip,
unet = (unet,), # insert both unets in order of low resolution to highest resolution (you can have as many stages as you want here)
image_sizes = (256,), # resolutions, 256 for first unet, 512 for second. these must be unique and in ascending order (matches with the unets passed in)
timesteps = 1000,
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5
).cuda()
# mock images (get a lot of this)
images = torch.randn(4, 3, 256, 256).cuda()
# feed images into decoder, specifying which unet you want to train
# each unet can be trained separately, which is one of the benefits of the cascading DDPM scheme
loss = decoder(images, unet_number = 1)
loss.backward()
# do the above for many steps for both unets
mock_image_embed = torch.randn(1, 512).cuda()
# then to do inpainting
inpaint_image = torch.randn(1, 3, 256, 256).cuda() # (batch, channels, height, width)
inpaint_mask = torch.ones(1, 256, 256).bool().cuda() # (batch, height, width)
inpainted_images = decoder.sample(
image_embed = mock_image_embed,
inpaint_image = inpaint_image, # just pass in the inpaint image
inpaint_mask = inpaint_mask # and the mask
)
inpainted_images.shape # (1, 3, 256, 256)
```
## Experimental
### DALL-E2 with Latent Diffusion
@@ -779,25 +876,23 @@ unet1 = Unet(
text_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
dim_mults=(1, 2, 4, 8),
cond_on_text_encodings = True,
).cuda()
unet2 = Unet(
dim = 16,
image_embed_dim = 512,
text_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults = (1, 2, 4, 8, 16),
cond_on_text_encodings = True
).cuda()
decoder = Decoder(
unet = (unet1, unet2),
image_sizes = (128, 256),
clip = clip,
timesteps = 1000,
condition_on_text_encodings = True
timesteps = 1000
).cuda()
decoder_trainer = DecoderTrainer(
@@ -822,8 +917,8 @@ for unet_number in (1, 2):
# after much training
# you can sample from the exponentially moving averaged unets as so
mock_image_embed = torch.randn(4, 512).cuda()
images = decoder_trainer.sample(mock_image_embed, text = text) # (4, 3, 256, 256)
mock_image_embed = torch.randn(32, 512).cuda()
images = decoder_trainer.sample(image_embed = mock_image_embed, text = text) # (4, 3, 256, 256)
```
### Diffusion Prior Training
@@ -973,7 +1068,7 @@ dataloader = create_image_embedding_dataloader(
)
for img, emb in dataloader:
print(img.shape) # torch.Size([32, 3, 256, 256])
print(emb.shape) # torch.Size([32, 512])
print(emb["img"].shape) # torch.Size([32, 512])
# Train decoder only as shown above
# Or create a dataset without a loader so you can configure it manually
@@ -986,52 +1081,11 @@ dataset = ImageEmbeddingDataset(
)
```
### Scripts (wip)
### Scripts
#### `train_diffusion_prior.py`
This script allows training the DiffusionPrior on pre-computed text and image embeddings. The working example below elucidates this process.
Please note that the script internally passes text_embed and image_embed to the DiffusionPrior, unlike the example below.
#### Usage
```bash
$ python train_diffusion_prior.py
```
The most significant parameters for the script are as follows:
- `image-embed-url`, default = `"https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/img_emb/"`
- `text-embed-url`, default = `"https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/text_emb/"`
- `image-embed-dim`, default = `768` - 768 corresponds to the ViT iL/14 embedding size,change it to what your chosen ViT generates
- `learning-rate`, default = `1.1e-4`
- `weight-decay`, default = `6.02e-2`
- `max-grad-norm`, default = `0.5`
- `batch-size`, default = `10 ** 4`
- `num-epochs`, default = `5`
- `clip`, default = `None` # Signals the prior to use pre-computed embeddings
## CLI (wip)
```bash
$ dream 'sharing a sunset at the summit of mount everest with my dog'
```
Once built, images will be saved to the same directory the command is invoked
<a href="https://github.com/lucidrains/big-sleep">template</a>
## Training CLI (wip)
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
For detailed information on training the diffusion prior, please refer to the [dedicated readme](prior.md)
## Todo
@@ -1070,11 +1124,12 @@ Once built, images will be saved to the same directory the command is invoked
- [x] bring in skip-layer excitations (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training (doesnt work well)
- [x] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697 (keeping, seems to be fine)
- [x] allow for unet to be able to condition non-cross attention style as well
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
- [ ] speed up inference, read up on papers (ddim or diffusion-gan, etc)
- [ ] figure out if possible to augment with external memory, as described in https://arxiv.org/abs/2204.11824
- [x] speed up inference, read up on papers (ddim)
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
- [x] add the final combination of upsample feature maps, used in unet squared, seems to have an effect in local experiments
- [ ] consider elucidated dalle2 https://arxiv.org/abs/2206.00364
- [ ] add simple outpainting, text-guided 2x size the image for starters
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
- [ ] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
## Citations
@@ -1192,4 +1247,55 @@ Once built, images will be saved to the same directory the command is invoked
}
```
```bibtex
@article{Lugmayr2022RePaintIU,
title = {RePaint: Inpainting using Denoising Diffusion Probabilistic Models},
author = {Andreas Lugmayr and Martin Danelljan and Andr{\'e}s Romero and Fisher Yu and Radu Timofte and Luc Van Gool},
journal = {ArXiv},
year = {2022},
volume = {abs/2201.09865}
}
```
```bibtex
@misc{chen2022analog,
title = {Analog Bits: Generating Discrete Data using Diffusion Models with Self-Conditioning},
author = {Ting Chen and Ruixiang Zhang and Geoffrey Hinton},
year = {2022},
eprint = {2208.04202},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@article{Qiao2019WeightS,
title = {Weight Standardization},
author = {Siyuan Qiao and Huiyu Wang and Chenxi Liu and Wei Shen and Alan Loddon Yuille},
journal = {ArXiv},
year = {2019},
volume = {abs/1903.10520}
}
```
```bibtex
@inproceedings{rogozhnikov2022einops,
title = {Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation},
author = {Alex Rogozhnikov},
booktitle = {International Conference on Learning Representations},
year = {2022},
url = {https://openreview.net/forum?id=oapKSVM2bcj}
}
```
```bibtex
@article{Sunkara2022NoMS,
title = {No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects},
author = {Raja Sunkara and Tie Luo},
journal = {ArXiv},
year = {2022},
volume = {abs/2208.03641}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -30,6 +30,7 @@ Defines the configuration options for the decoder model. The unets defined above
| `loss_type` | No | `l2` | The loss function. Options are `l1`, `huber`, or `l2`. |
| `beta_schedule` | No | `cosine` | The noising schedule. Options are `cosine`, `linear`, `quadratic`, `jsd`, or `sigmoid`. |
| `learned_variance` | No | `True` | Whether to learn the variance. |
| `clip` | No | `None` | The clip model to use if embeddings are being generated on the fly. Takes keys `make` and `model` with defaults `openai` and `ViT-L/14`. |
Any parameter from the `Decoder` constructor can also be given here.
@@ -39,7 +40,8 @@ Settings for creation of the dataloaders.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `webdataset_base_url` | Yes | N/A | The url of a shard in the webdataset with the shard replaced with `{}`[^1]. |
| `embeddings_url` | No | N/A | The url of the folder containing embeddings shards. Not required if embeddings are in webdataset. |
| `img_embeddings_url` | No | `None` | The url of the folder containing image embeddings shards. Not required if embeddings are in webdataset or clip is being used. |
| `text_embeddings_url` | No | `None` | The url of the folder containing text embeddings shards. Not required if embeddings are in webdataset or clip is being used. |
| `num_workers` | No | `4` | The number of workers used in the dataloader. |
| `batch_size` | No | `64` | The batch size. |
| `start_shard` | No | `0` | Defines the start of the shard range the dataset will recall. |
@@ -67,14 +69,12 @@ Settings for controlling the training hyperparameters.
| `wd` | No | `0.01` | The weight decay. |
| `max_grad_norm`| No | `0.5` | The grad norm clipping. |
| `save_every_n_samples` | No | `100000` | Samples will be generated and a checkpoint will be saved every `save_every_n_samples` samples. |
| `cond_scale` | No | `1.0` | Conditioning scale to use for sampling. Can also be an array of values, one for each unet. |
| `device` | No | `cuda:0` | The device to train on. |
| `epoch_samples` | No | `None` | Limits the number of samples iterated through in each epoch. This must be set if resampling. None means no limit. |
| `validation_samples` | No | `None` | The number of samples to use for validation. None mean the entire validation set. |
| `use_ema` | No | `True` | Whether to use exponential moving average models for sampling. |
| `ema_beta` | No | `0.99` | The ema coefficient. |
| `save_all` | No | `False` | If True, preserves a checkpoint for every epoch. |
| `save_latest` | No | `True` | If True, overwrites the `latest.pth` every time the model is saved. |
| `save_best` | No | `True` | If True, overwrites the `best.pth` every time the model has a lower validation loss than all previous models. |
| `unet_training_mask` | No | `None` | A boolean array of the same length as the number of unets. If false, the unet is frozen. A value of `None` trains all unets. |
**<ins>Evaluate</ins>:**
@@ -106,6 +106,13 @@ Tracking is split up into three sections:
**Logging:**
All loggers have the following keys:
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `log_type` | Yes | N/A | The type of logger class to use. |
| `resume` | No | `False` | For loggers that have the option to resume an old run, resume it using maually input parameters. |
| `auto_resume` | No | `False` | If true, the logger will attempt to resume an old run using parameters from that previous run. |
If using `console` there is no further configuration than setting `log_type` to `console`.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
@@ -119,10 +126,15 @@ If using `wandb`
| `wandb_project` | Yes | N/A | The wandb project save the run to. |
| `wandb_run_name` | No | `None` | The wandb run name. |
| `wandb_run_id` | No | `None` | The wandb run id. Used if resuming an old run. |
| `wandb_resume` | No | `False` | Whether to resume an old run. |
**Loading:**
All loaders have the following keys:
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `load_from` | Yes | N/A | The type of loader class to use. |
| `only_auto_resume` | No | `False` | If true, the loader will only load the model if the run is being auto resumed. |
If using `local`
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
@@ -149,9 +161,10 @@ All save locations have these configuration options
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `save_to` | Yes | N/A | Must be `local`, `huggingface`, or `wandb`. |
| `save_latest_to` | No | `latest.pth` | Sets the relative path to save the latest model to. |
| `save_best_to` | No | `best.pth` | Sets the relative path to save the best model to every time the model has a lower validation loss than all previous models. |
| `save_type` | No | `'checkpoint'` | The type of save. `'checkpoint'` saves a checkpoint, `'model'` saves a model without any fluff (Saves with ema if ema is enabled). |
| `save_latest_to` | No | `None` | Sets the relative path to save the latest model to. |
| `save_best_to` | No | `None` | Sets the relative path to save the best model to every time the model has a lower validation loss than all previous models. |
| `save_meta_to` | No | `None` | The path to save metadata files in. This includes the config files used to start the training. |
| `save_type` | No | `checkpoint` | The type of save. `checkpoint` saves a checkpoint, `model` saves a model without any fluff (Saves with ema if ema is enabled). |
If using `local`
| Option | Required | Default | Description |
@@ -163,7 +176,6 @@ If using `huggingface`
| ------ | -------- | ------- | ----------- |
| `save_to` | Yes | N/A | Must be `huggingface`. |
| `huggingface_repo` | Yes | N/A | The huggingface repository to save to. |
| `huggingface_base_path` | Yes | N/A | The base path that checkpoints will be saved under. |
| `token_path` | No | `None` | If logging in with the huggingface cli is not possible, point to a token file instead. |
If using `wandb`

View File

@@ -20,7 +20,7 @@
},
"data": {
"webdataset_base_url": "pipe:s3cmd get s3://bucket/path/{}.tar -",
"embeddings_url": "s3://bucket/embeddings/path/",
"img_embeddings_url": "s3://bucket/img_embeddings/path/",
"num_workers": 4,
"batch_size": 64,
"start_shard": 0,
@@ -56,9 +56,6 @@
"use_ema": true,
"ema_beta": 0.99,
"amp": false,
"save_all": false,
"save_latest": true,
"save_best": true,
"unet_training_mask": [true]
},
"evaluate": {
@@ -96,14 +93,15 @@
},
"save": [{
"save_to": "wandb"
"save_to": "wandb",
"save_latest_to": "latest.pth"
}, {
"save_to": "huggingface",
"huggingface_repo": "Veldrovive/test_model",
"save_all": true,
"save_latest": true,
"save_best": true,
"save_latest_to": "path/to/model_dir/latest.pth",
"save_best_to": "path/to/model_dir/best.pth",
"save_meta_to": "path/to/directory/for/assorted/files",
"save_type": "model"
}]

View File

@@ -0,0 +1,100 @@
{
"decoder": {
"unets": [
{
"dim": 16,
"image_embed_dim": 768,
"cond_dim": 16,
"channels": 3,
"dim_mults": [1, 2, 4, 8],
"attn_dim_head": 16,
"attn_heads": 4,
"self_attn": [false, true, true, true]
}
],
"clip": {
"make": "openai",
"model": "ViT-L/14"
},
"timesteps": 10,
"image_sizes": [64],
"channels": 3,
"loss_type": "l2",
"beta_schedule": ["cosine"],
"learned_variance": true
},
"data": {
"webdataset_base_url": "test_data/{}.tar",
"num_workers": 4,
"batch_size": 4,
"start_shard": 0,
"end_shard": 9,
"shard_width": 1,
"index_width": 1,
"splits": {
"train": 0.75,
"val": 0.15,
"test": 0.1
},
"shuffle_train": false,
"resample_train": true,
"preprocessing": {
"RandomResizedCrop": {
"size": [224, 224],
"scale": [0.75, 1.0],
"ratio": [1.0, 1.0]
},
"ToTensor": true
}
},
"train": {
"epochs": 1,
"lr": 1e-16,
"wd": 0.01,
"max_grad_norm": 0.5,
"save_every_n_samples": 100,
"n_sample_images": 1,
"device": "cpu",
"epoch_samples": 50,
"validation_samples": 5,
"use_ema": true,
"ema_beta": 0.99,
"amp": false,
"unet_training_mask": [true]
},
"evaluate": {
"n_evaluation_samples": 2,
"FID": {
"feature": 64
},
"IS": {
"feature": 64,
"splits": 10
},
"KID": {
"feature": 64,
"subset_size": 2
},
"LPIPS": {
"net_type": "vgg",
"reduction": "mean"
}
},
"tracker": {
"overwrite_data_path": true,
"log": {
"log_type": "console"
},
"load": {
"load_from": null
},
"save": [{
"save_to": "local",
"save_latest_to": "latest.pth"
}]
}
}

View File

@@ -1,18 +1,14 @@
{
"prior": {
"clip": {
"make": "x-clip",
"model": "ViT-L/14",
"base_model_kwargs": {
"dim_text": 768,
"dim_image": 768,
"dim_latent": 768
}
"make": "openai",
"model": "ViT-L/14"
},
"net": {
"dim": 768,
"depth": 12,
"num_timesteps": 1000,
"max_text_len": 77,
"num_time_embeds": 1,
"num_image_embeds": 1,
"num_text_embeds": 1,
@@ -20,8 +16,8 @@
"heads": 12,
"ff_mult": 4,
"norm_out": true,
"attn_dropout": 0.0,
"ff_dropout": 0.0,
"attn_dropout": 0.05,
"ff_dropout": 0.05,
"final_proj": true,
"normformer": true,
"rotary_emb": true
@@ -30,6 +26,7 @@
"image_size": 224,
"image_channels": 3,
"timesteps": 1000,
"sample_timesteps": 64,
"cond_drop_prob": 0.1,
"loss_type": "l2",
"predict_x_start": true,
@@ -37,34 +34,48 @@
"condition_on_text_encodings": true
},
"data": {
"image_url": "https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/img_emb/",
"text_url": "https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/text_emb/",
"meta_url": "https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/laion2B-en-metadata/",
"batch_size": 256,
"batch_size": 128,
"num_data_points": 100000,
"eval_every_seconds": 1600,
"image_url": "<path to your images>",
"meta_url": "<path to your metadata>",
"splits": {
"train": 0.9,
"val": 1e-7,
"test": 0.0999999
"train": 0.8,
"val": 0.1,
"test": 0.1
}
},
"train": {
"epochs": 1,
"epochs": 5,
"lr": 1.1e-4,
"wd": 6.02e-2,
"max_grad_norm": 0.5,
"use_ema": true,
"ema_beta": 0.9999,
"ema_update_after_step": 50,
"warmup_steps": 50,
"amp": false,
"save_every": 10000
},
"load": {
"source": null,
"resume": false
"save_every_seconds": 3600,
"eval_timesteps": [64, 1000],
"random_seed": 84513
},
"tracker": {
"tracker_type": "wandb",
"data_path": "./prior_checkpoints",
"wandb_entity": "laion",
"wandb_project": "diffusion-prior",
"verbose": true
"data_path": ".prior",
"overwrite_data_path": true,
"log": {
"log_type": "wandb",
"wandb_entity": "<your wandb username>",
"wandb_project": "prior_debugging",
"wandb_resume": false,
"verbose": true
},
"save": [
{
"save_to": "local",
"save_type": "checkpoint",
"save_latest_to": ".prior/latest_checkpoint.pth",
"save_best_to": ".prior/best_checkpoint.pth"
}
]
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,7 @@
import os
import webdataset as wds
import torch
from torch.utils.data import DataLoader
import numpy as np
import fsspec
import shutil
@@ -255,7 +256,7 @@ def create_image_embedding_dataloader(
)
if shuffle_num is not None and shuffle_num > 0:
ds.shuffle(1000)
return wds.WebLoader(
return DataLoader(
ds,
num_workers=num_workers,
batch_size=batch_size,

View File

@@ -67,6 +67,15 @@ class PriorEmbeddingDataset(IterableDataset):
def __str__(self):
return f"<PriorEmbeddingDataset: start: {self.start}, stop: {self.stop}, len: {self.__len__()}>"
def set_start(self, start):
"""
Adjust the starting point within the reader, useful for resuming an epoch
"""
self.start = start
def get_start(self):
return self.start
def get_sample(self):
"""
pre-proocess data from either reader into a common format

View File

@@ -1,15 +1,18 @@
import urllib.request
import os
import json
from pathlib import Path
import shutil
from itertools import zip_longest
from typing import Optional, List, Union
from typing import Any, Optional, List, Union
from pydantic import BaseModel
import torch
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
from dalle2_pytorch.utils import import_or_print_error
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
from dalle2_pytorch.version import __version__
from packaging import version
# constants
@@ -20,16 +23,6 @@ DEFAULT_DATA_PATH = './.tracker-data'
def exists(val):
return val is not None
# load file functions
def load_wandb_file(run_path, file_path, **kwargs):
wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb recall function')
file_reference = wandb.restore(file_path, run_path=run_path)
return file_reference.name
def load_local_file(file_path, **kwargs):
return file_path
class BaseLogger:
"""
An abstract class representing an object that can log data.
@@ -37,14 +30,17 @@ class BaseLogger:
data_path (str): A file path for storing temporary data.
verbose (bool): Whether of not to always print logs to the console.
"""
def __init__(self, data_path: str, verbose: bool = False, **kwargs):
def __init__(self, data_path: str, resume: bool = False, auto_resume: bool = False, verbose: bool = False, **kwargs):
self.data_path = Path(data_path)
self.resume = resume
self.auto_resume = auto_resume
self.verbose = verbose
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
"""
Initializes the logger.
Errors if the logger is invalid.
full_config is the config file dict while extra_config is anything else from the script that is not defined the config file.
"""
raise NotImplementedError
@@ -60,6 +56,14 @@ class BaseLogger:
def log_error(self, error_string, **kwargs) -> None:
raise NotImplementedError
def get_resume_data(self, **kwargs) -> dict:
"""
Sets tracker attributes that along with { "resume": True } will be used to resume training.
It is assumed that after init is called this data will be complete.
If the logger does not have any resume functionality, it should return an empty dict.
"""
raise NotImplementedError
class ConsoleLogger(BaseLogger):
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
print("Logging to console")
@@ -76,6 +80,9 @@ class ConsoleLogger(BaseLogger):
def log_error(self, error_string, **kwargs) -> None:
print(error_string)
def get_resume_data(self, **kwargs) -> dict:
return {}
class WandbLogger(BaseLogger):
"""
Logs to a wandb run.
@@ -85,7 +92,6 @@ class WandbLogger(BaseLogger):
wandb_project (str): The wandb project to log to.
wandb_run_id (str): The wandb run id to resume.
wandb_run_name (str): The wandb run name to use.
wandb_resume (bool): Whether to resume a wandb run.
"""
def __init__(self,
data_path: str,
@@ -93,7 +99,6 @@ class WandbLogger(BaseLogger):
wandb_project: str,
wandb_run_id: Optional[str] = None,
wandb_run_name: Optional[str] = None,
wandb_resume: bool = False,
**kwargs
):
super().__init__(data_path, **kwargs)
@@ -101,7 +106,6 @@ class WandbLogger(BaseLogger):
self.project = wandb_project
self.run_id = wandb_run_id
self.run_name = wandb_run_name
self.resume = wandb_resume
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
assert self.entity is not None, "wandb_entity must be specified for wandb logger"
@@ -149,6 +153,14 @@ class WandbLogger(BaseLogger):
print(error_string)
self.wandb.log({"error": error_string, **kwargs}, step=step)
def get_resume_data(self, **kwargs) -> dict:
# In order to resume, we need wandb_entity, wandb_project, and wandb_run_id
return {
"entity": self.entity,
"project": self.project,
"run_id": self.wandb.run.id
}
logger_type_map = {
'console': ConsoleLogger,
'wandb': WandbLogger,
@@ -168,8 +180,9 @@ class BaseLoader:
Parameters:
data_path (str): A file path for storing temporary data.
"""
def __init__(self, data_path: str, **kwargs):
def __init__(self, data_path: str, only_auto_resume: bool = False, **kwargs):
self.data_path = Path(data_path)
self.only_auto_resume = only_auto_resume
def init(self, logger: BaseLogger, **kwargs) -> None:
raise NotImplementedError
@@ -213,7 +226,7 @@ class LocalLoader(BaseLoader):
def init(self, logger: BaseLogger, **kwargs) -> None:
# Makes sure the file exists to be loaded
if not self.file_path.exists():
if not self.file_path.exists() and not self.only_auto_resume:
raise FileNotFoundError(f'Model not found at {self.file_path}')
def recall(self) -> dict:
@@ -262,9 +275,9 @@ def create_loader(loader_type: str, data_path: str, **kwargs) -> BaseLoader:
class BaseSaver:
def __init__(self,
data_path: str,
save_latest_to: Optional[Union[str, bool]] = 'latest.pth',
save_best_to: Optional[Union[str, bool]] = 'best.pth',
save_meta_to: str = './',
save_latest_to: Optional[Union[str, bool]] = None,
save_best_to: Optional[Union[str, bool]] = None,
save_meta_to: Optional[str] = None,
save_type: str = 'checkpoint',
**kwargs
):
@@ -274,10 +287,10 @@ class BaseSaver:
self.save_best_to = save_best_to
self.saving_best = save_best_to is not None and save_best_to is not False
self.save_meta_to = save_meta_to
self.saving_meta = save_meta_to is not None
self.save_type = save_type
assert save_type in ['checkpoint', 'model'], '`save_type` must be one of `checkpoint` or `model`'
assert self.save_meta_to is not None, '`save_meta_to` must be provided'
assert self.saving_latest or self.saving_best, '`save_latest_to` or `save_best_to` must be provided'
assert self.saving_latest or self.saving_best or self.saving_meta, 'At least one saving option must be specified'
def init(self, logger: BaseLogger, **kwargs) -> None:
raise NotImplementedError
@@ -304,6 +317,10 @@ class LocalSaver(BaseSaver):
def save_file(self, local_path: str, save_path: str, **kwargs) -> None:
# Copy the file to save_path
save_path_file_name = Path(save_path).name
# Make sure parent directory exists
save_path_parent = Path(save_path).parent
if not save_path_parent.exists():
save_path_parent.mkdir(parents=True)
print(f"Saving {save_path_file_name} {self.save_type} to local path {save_path}")
shutil.copy(local_path, save_path)
@@ -385,11 +402,7 @@ class Tracker:
def __init__(self, data_path: Optional[str] = DEFAULT_DATA_PATH, overwrite_data_path: bool = False, dummy_mode: bool = False):
self.data_path = Path(data_path)
if not dummy_mode:
if overwrite_data_path:
if self.data_path.exists():
shutil.rmtree(self.data_path)
self.data_path.mkdir(parents=True)
else:
if not overwrite_data_path:
assert not self.data_path.exists(), f'Data path {self.data_path} already exists. Set overwrite_data_path to True to overwrite.'
if not self.data_path.exists():
self.data_path.mkdir(parents=True)
@@ -398,7 +411,51 @@ class Tracker:
self.savers: List[BaseSaver]= []
self.dummy_mode = dummy_mode
def _load_auto_resume(self) -> bool:
# If the file does not exist, we return False. If autoresume is enabled we print a warning so that the user can know that this is the first run.
if not self.auto_resume_path.exists():
if self.logger.auto_resume:
print("Auto_resume is enabled but no auto_resume.json file exists. Assuming this is the first run.")
return False
# Now we know that the autoresume file exists, but if we are not auto resuming we should remove it so that we don't accidentally load it next time
if not self.logger.auto_resume:
print(f'Removing auto_resume.json because auto_resume is not enabled in the config')
self.auto_resume_path.unlink()
return False
# Otherwise we read the json into a dictionary will will override parts of logger.__dict__
with open(self.auto_resume_path, 'r') as f:
auto_resume_dict = json.load(f)
# Check if the logger is of the same type as the autoresume save
if auto_resume_dict["logger_type"] != self.logger.__class__.__name__:
raise Exception(f'The logger type in the auto_resume file is {auto_resume_dict["logger_type"]} but the current logger is {self.logger.__class__.__name__}. Either use the original logger type, set `auto_resume` to `False`, or delete your existing tracker-data folder.')
# Then we are ready to override the logger with the autoresume save
self.logger.__dict__["resume"] = True
print(f"Updating {self.logger.__dict__} with {auto_resume_dict}")
self.logger.__dict__.update(auto_resume_dict)
return True
def _save_auto_resume(self):
# Gets the autoresume dict from the logger and adds "logger_type" to it then saves it to the auto_resume file
auto_resume_dict = self.logger.get_resume_data()
auto_resume_dict['logger_type'] = self.logger.__class__.__name__
with open(self.auto_resume_path, 'w') as f:
json.dump(auto_resume_dict, f)
def init(self, full_config: BaseModel, extra_config: dict):
self.auto_resume_path = self.data_path / 'auto_resume.json'
# Check for resuming the run
self.did_auto_resume = self._load_auto_resume()
if self.did_auto_resume:
print(f'\n\nWARNING: RUN HAS BEEN AUTO-RESUMED WITH THE LOGGER TYPE {self.logger.__class__.__name__}.\nIf this was not your intention, stop this run and set `auto_resume` to `False` in the config.\n\n')
print(f"New logger config: {self.logger.__dict__}")
self.save_metadata = dict(
version = version.parse(__version__)
) # Data that will be saved alongside the checkpoint or model
self.blacklisted_checkpoint_metadata_keys = ['scaler', 'optimizer', 'model', 'version', 'step', 'steps'] # These keys would cause us to error if we try to save them as metadata
assert self.logger is not None, '`logger` must be set before `init` is called'
if self.dummy_mode:
# The only thing we need is a loader
@@ -406,12 +463,17 @@ class Tracker:
self.loader.init(self.logger)
return
assert len(self.savers) > 0, '`savers` must be set before `init` is called'
self.logger.init(full_config, extra_config)
if self.loader is not None:
self.loader.init(self.logger)
for saver in self.savers:
saver.init(self.logger)
if self.logger.auto_resume:
# Then we need to save the autoresume file. It is assumed after logger.init is called that the logger is ready to be saved.
self._save_auto_resume()
def add_logger(self, logger: BaseLogger):
self.logger = logger
@@ -442,8 +504,15 @@ class Tracker:
# Save the config under config_name in the root folder of data_path
shutil.copy(current_config_path, self.data_path / config_name)
for saver in self.savers:
remote_path = Path(saver.save_meta_to) / config_name
saver.save_file(current_config_path, str(remote_path))
if saver.saving_meta:
remote_path = Path(saver.save_meta_to) / config_name
saver.save_file(current_config_path, str(remote_path))
def add_save_metadata(self, state_dict_key: str, metadata: Any):
"""
Adds a new piece of metadata that will be saved along with the model or decoder.
"""
self.save_metadata[state_dict_key] = metadata
def _save_state_dict(self, trainer: Union[DiffusionPriorTrainer, DecoderTrainer], save_type: str, file_path: str, **kwargs) -> Path:
"""
@@ -453,24 +522,38 @@ class Tracker:
"""
assert save_type in ['checkpoint', 'model']
if save_type == 'checkpoint':
trainer.save(file_path, overwrite=True, **kwargs)
# Create a metadata dict without the blacklisted keys so we do not error when we create the state dict
metadata = {k: v for k, v in self.save_metadata.items() if k not in self.blacklisted_checkpoint_metadata_keys}
trainer.save(file_path, overwrite=True, **kwargs, **metadata)
elif save_type == 'model':
if isinstance(trainer, DiffusionPriorTrainer):
prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior
state_dict = trainer.unwrap_model(prior).state_dict()
torch.save(state_dict, file_path)
prior: DiffusionPrior = trainer.accelerator.unwrap_model(prior)
# Remove CLIP if it is part of the model
original_clip = prior.clip
prior.clip = None
model_state_dict = prior.state_dict()
prior.clip = original_clip
elif isinstance(trainer, DecoderTrainer):
decoder = trainer.accelerator.unwrap_model(trainer.decoder)
decoder: Decoder = trainer.accelerator.unwrap_model(trainer.decoder)
# Remove CLIP if it is part of the model
original_clip = decoder.clip
decoder.clip = None
if trainer.use_ema:
trainable_unets = decoder.unets
decoder.unets = trainer.unets # Swap EMA unets in
state_dict = decoder.state_dict()
model_state_dict = decoder.state_dict()
decoder.unets = trainable_unets # Swap back
else:
state_dict = decoder.state_dict()
torch.save(state_dict, file_path)
model_state_dict = decoder.state_dict()
decoder.clip = original_clip
else:
raise NotImplementedError('Saving this type of model with EMA mode enabled is not yet implemented. Actually, how did you get here?')
state_dict = {
**self.save_metadata,
'model': model_state_dict
}
torch.save(state_dict, file_path)
return Path(file_path)
def save(self, trainer, is_best: bool, is_latest: bool, **kwargs):
@@ -503,11 +586,16 @@ class Tracker:
self.logger.log_error(f'Error saving checkpoint: {e}', **kwargs)
print(f'Error saving checkpoint: {e}')
@property
def can_recall(self):
# Defines whether a recall can be performed.
return self.loader is not None and (not self.loader.only_auto_resume or self.did_auto_resume)
def recall(self):
if self.loader is not None:
if self.can_recall:
return self.loader.recall()
else:
raise ValueError('No loader specified')
raise ValueError('Tried to recall, but no loader was set or auto-resume was not performed.')

View File

@@ -1,7 +1,7 @@
import json
from torchvision import transforms as T
from pydantic import BaseModel, validator, root_validator
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
from typing import List, Optional, Union, Tuple, Dict, Any, TypeVar
from x_clip import CLIP as XCLIP
from coca_pytorch import CoCa
@@ -25,11 +25,9 @@ def exists(val):
def default(val, d):
return val if exists(val) else d
def ListOrTuple(inner_type):
return Union[List[inner_type], Tuple[inner_type]]
def SingularOrIterable(inner_type):
return Union[inner_type, ListOrTuple(inner_type)]
InnerType = TypeVar('InnerType')
ListOrTuple = Union[List[InnerType], Tuple[InnerType]]
SingularOrIterable = Union[InnerType, ListOrTuple[InnerType]]
# general pydantic classes
@@ -47,6 +45,8 @@ class TrainSplitConfig(BaseModel):
class TrackerLogConfig(BaseModel):
log_type: str = 'console'
resume: bool = False # For logs that are saved to unique locations, resume a previous run
auto_resume: bool = False # If the process crashes and restarts, resume from the run that crashed
verbose: bool = False
class Config:
@@ -59,6 +59,7 @@ class TrackerLogConfig(BaseModel):
class TrackerLoadConfig(BaseModel):
load_from: Optional[str] = None
only_auto_resume: bool = False # Only attempt to load if the logger is auto-resuming
class Config:
extra = "allow"
@@ -126,6 +127,7 @@ class AdapterConfig(BaseModel):
class DiffusionPriorNetworkConfig(BaseModel):
dim: int
depth: int
max_text_len: int = None
num_timesteps: int = None
num_time_embeds: int = 1
num_image_embeds: int = 1
@@ -133,6 +135,7 @@ class DiffusionPriorNetworkConfig(BaseModel):
dim_head: int = 64
heads: int = 8
ff_mult: int = 4
norm_in: bool = False
norm_out: bool = True
attn_dropout: float = 0.
ff_dropout: float = 0.
@@ -140,6 +143,9 @@ class DiffusionPriorNetworkConfig(BaseModel):
normformer: bool = False
rotary_emb: bool = True
class Config:
extra = "allow"
def create(self):
kwargs = self.dict()
return DiffusionPriorNetwork(**kwargs)
@@ -151,6 +157,7 @@ class DiffusionPriorConfig(BaseModel):
image_size: int
image_channels: int = 3
timesteps: int = 1000
sample_timesteps: Optional[int] = None
cond_drop_prob: float = 0.
loss_type: str = 'l2'
predict_x_start: bool = True
@@ -181,23 +188,26 @@ class DiffusionPriorTrainConfig(BaseModel):
use_ema: bool = True
ema_beta: float = 0.99
amp: bool = False
save_every: int = 10000 # what steps to save on
warmup_steps: int = None # number of warmup steps
save_every_seconds: int = 3600 # how often to save
eval_timesteps: List[int] = [64] # which sampling timesteps to evaluate with
best_validation_loss: float = 1e9 # the current best valudation loss observed
current_epoch: int = 0 # the current epoch
num_samples_seen: int = 0 # the current number of samples seen
random_seed: int = 0 # manual seed for torch
class DiffusionPriorDataConfig(BaseModel):
image_url: str # path to embeddings folder
meta_url: str # path to metadata (captions) for images
splits: TrainSplitConfig
batch_size: int = 64
class DiffusionPriorLoadConfig(BaseModel):
source: str = None
resume: bool = False
image_url: str # path to embeddings folder
meta_url: str # path to metadata (captions) for images
splits: TrainSplitConfig # define train, validation, test splits for your dataset
batch_size: int # per-gpu batch size used to train the model
num_data_points: int = 25e7 # total number of datapoints to train on
eval_every_seconds: int = 3600 # validation statistics will be performed this often
class TrainDiffusionPriorConfig(BaseModel):
prior: DiffusionPriorConfig
data: DiffusionPriorDataConfig
train: DiffusionPriorTrainConfig
load: DiffusionPriorLoadConfig
tracker: TrackerConfig
@classmethod
@@ -210,29 +220,31 @@ class TrainDiffusionPriorConfig(BaseModel):
class UnetConfig(BaseModel):
dim: int
dim_mults: ListOrTuple(int)
dim_mults: ListOrTuple[int]
image_embed_dim: int = None
text_embed_dim: int = None
cond_on_text_encodings: bool = None
cond_dim: int = None
channels: int = 3
self_attn: ListOrTuple(int)
self_attn: ListOrTuple[int]
attn_dim_head: int = 32
attn_heads: int = 16
init_cross_embed: bool = True
class Config:
extra = "allow"
class DecoderConfig(BaseModel):
unets: ListOrTuple(UnetConfig)
unets: ListOrTuple[UnetConfig]
image_size: int = None
image_sizes: ListOrTuple(int) = None
image_sizes: ListOrTuple[int] = None
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
channels: int = 3
timesteps: int = 1000
sample_timesteps: Optional[SingularOrIterable[Optional[int]]] = None
loss_type: str = 'l2'
beta_schedule: ListOrTuple(str) = 'cosine'
learned_variance: bool = True
beta_schedule: ListOrTuple[str] = None # None means all cosine
learned_variance: SingularOrIterable[bool] = True
image_cond_drop_prob: float = 0.1
text_cond_drop_prob: float = 0.5
@@ -291,19 +303,22 @@ class DecoderDataConfig(BaseModel):
class DecoderTrainConfig(BaseModel):
epochs: int = 20
lr: SingularOrIterable(float) = 1e-4
wd: SingularOrIterable(float) = 0.01
lr: SingularOrIterable[float] = 1e-4
wd: SingularOrIterable[float] = 0.01
warmup_steps: Optional[SingularOrIterable[int]] = None
find_unused_parameters: bool = True
max_grad_norm: SingularOrIterable(float) = 0.5
max_grad_norm: SingularOrIterable[float] = 0.5
save_every_n_samples: int = 100000
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
cond_scale: Union[float, List[float]] = 1.0
device: str = 'cuda:0'
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
validation_samples: int = None # Same as above but for validation.
save_immediately: bool = False
use_ema: bool = True
ema_beta: float = 0.999
amp: bool = False
unet_training_mask: ListOrTuple(bool) = None # If None, use all unets
unet_training_mask: ListOrTuple[bool] = None # If None, use all unets
class DecoderEvaluateConfig(BaseModel):
n_evaluation_samples: int = 1000
@@ -312,12 +327,6 @@ class DecoderEvaluateConfig(BaseModel):
KID: Dict[str, Any] = None
LPIPS: Dict[str, Any] = None
class DecoderLoadConfig(BaseModel):
source: str = None # Supports file and wandb
run_path: str = '' # Used only if source is wandb
file_path: str = '' # The local filepath if source is file. If source is wandb, the relative path to the model file in wandb.
resume: bool = False # If using wandb, whether to resume the run
class TrainDecoderConfig(BaseModel):
decoder: DecoderConfig
data: DecoderDataConfig

View File

@@ -3,10 +3,13 @@ import copy
from pathlib import Path
from math import ceil
from functools import partial, wraps
from contextlib import nullcontext
from collections.abc import Iterable
import torch
import torch.nn.functional as F
from torch import nn
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR
from torch.cuda.amp import autocast, GradScaler
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
@@ -14,9 +17,11 @@ from dalle2_pytorch.optimizer import get_optimizer
from dalle2_pytorch.version import __version__
from packaging import version
import pytorch_warmup as warmup
from ema_pytorch import EMA
from accelerate import Accelerator
from accelerate import Accelerator, DistributedType
import numpy as np
@@ -71,6 +76,7 @@ def cast_torch_tensor(fn):
def inner(model, *args, **kwargs):
device = kwargs.pop('_device', next(model.parameters()).device)
cast_device = kwargs.pop('_cast_device', True)
cast_deepspeed_precision = kwargs.pop('_cast_deepspeed_precision', True)
kwargs_keys = kwargs.keys()
all_args = (*args, *kwargs.values())
@@ -80,6 +86,21 @@ def cast_torch_tensor(fn):
if cast_device:
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
if cast_deepspeed_precision:
try:
accelerator = model.accelerator
if accelerator is not None and accelerator.distributed_type == DistributedType.DEEPSPEED:
cast_type_map = {
"fp16": torch.half,
"bf16": torch.bfloat16,
"no": torch.float
}
precision_type = cast_type_map[accelerator.mixed_precision]
all_args = tuple(map(lambda t: t.to(precision_type) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
except AttributeError:
# Then this model doesn't have an accelerator
pass
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
@@ -153,37 +174,58 @@ class DiffusionPriorTrainer(nn.Module):
def __init__(
self,
diffusion_prior,
accelerator = None,
use_ema = True,
lr = 3e-4,
wd = 1e-2,
eps = 1e-6,
max_grad_norm = None,
amp = False,
group_wd_params = True,
device = None,
accelerator = None,
warmup_steps = None,
cosine_decay_max_steps = None,
**kwargs
):
super().__init__()
assert isinstance(diffusion_prior, DiffusionPrior)
assert not exists(accelerator) or isinstance(accelerator, Accelerator)
assert exists(accelerator) or exists(device), "You must supply some method of obtaining a device."
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
accelerator_kwargs, kwargs = groupby_prefix_and_trim('accelerator_', kwargs)
if not exists(accelerator):
accelerator = Accelerator(**accelerator_kwargs)
# assign some helpful member vars
self.accelerator = accelerator
self.device = accelerator.device if exists(accelerator) else device
self.text_conditioned = diffusion_prior.condition_on_text_encodings
# setting the device
self.device = accelerator.device
diffusion_prior.to(self.device)
# save model
self.diffusion_prior = diffusion_prior
# optimizer and mixed precision stuff
# mixed precision checks
self.amp = amp
if (
exists(self.accelerator)
and self.accelerator.distributed_type == DistributedType.DEEPSPEED
and self.diffusion_prior.clip is not None
):
# Then we need to make sure clip is using the correct precision or else deepspeed will error
cast_type_map = {
"fp16": torch.half,
"bf16": torch.bfloat16,
"no": torch.float
}
precision_type = cast_type_map[accelerator.mixed_precision]
assert precision_type == torch.float, "DeepSpeed currently only supports float32 precision when using on the fly embedding generation from clip"
self.diffusion_prior.clip.to(precision_type)
self.scaler = GradScaler(enabled = amp)
# optimizer stuff
self.optim_kwargs = dict(lr=lr, wd=wd, eps=eps, group_wd_params=group_wd_params)
@@ -193,16 +235,23 @@ class DiffusionPriorTrainer(nn.Module):
**kwargs
)
if exists(cosine_decay_max_steps):
self.scheduler = CosineAnnealingLR(optimizer, T_max = cosine_decay_max_steps)
else:
self.scheduler = LambdaLR(self.optimizer, lr_lambda = lambda _: 1.0)
self.warmup_scheduler = warmup.LinearWarmup(self.optimizer, warmup_period = warmup_steps) if exists(warmup_steps) else None
# distribute the model if using HFA
if exists(self.accelerator):
self.diffusion_prior, self.optimizer = self.accelerator.prepare(self.diffusion_prior, self.optimizer)
self.diffusion_prior, self.optimizer, self.scheduler = self.accelerator.prepare(self.diffusion_prior, self.optimizer, self.scheduler)
# exponential moving average stuff
self.use_ema = use_ema
if self.use_ema:
self.ema_diffusion_prior = EMA(self.unwrap_model(self.diffusion_prior), **ema_kwargs)
self.ema_diffusion_prior = EMA(self.accelerator.unwrap_model(self.diffusion_prior), **ema_kwargs)
# gradient clipping if needed
@@ -210,66 +259,27 @@ class DiffusionPriorTrainer(nn.Module):
# track steps internally
self.register_buffer('step', torch.tensor([0]))
# accelerator wrappers
def print(self, msg):
if exists(self.accelerator):
self.accelerator.print(msg)
else:
print(msg)
def unwrap_model(self, model):
if exists(self.accelerator):
return self.accelerator.unwrap_model(model)
else:
return model
def wait_for_everyone(self):
if exists(self.accelerator):
self.accelerator.wait_for_everyone()
def is_main_process(self):
if exists(self.accelerator):
return self.accelerator.is_main_process
else:
return True
def clip_grad_norm_(self, *args):
if exists(self.accelerator):
return self.accelerator.clip_grad_norm_(*args)
else:
return torch.nn.utils.clip_grad_norm_(*args)
def backprop(self, x):
if exists(self.accelerator):
self.accelerator.backward(x)
else:
try:
x.backward()
except Exception as e:
self.print(f"Caught error in backprop call: {e}")
self.register_buffer('step', torch.tensor([0], device = self.device))
# utility
def save(self, path, overwrite = True, **kwargs):
# ensure we sync gradients before continuing
self.wait_for_everyone()
# only save on the main process
if self.is_main_process():
self.print(f"Saving checkpoint at step: {self.step.item()}")
if self.accelerator.is_main_process:
print(f"Saving checkpoint at step: {self.step.item()}")
path = Path(path)
assert not (path.exists() and not overwrite)
path.parent.mkdir(parents = True, exist_ok = True)
# FIXME: LambdaLR can't be saved due to pickling issues
save_obj = dict(
scaler = self.scaler.state_dict(),
optimizer = self.optimizer.state_dict(),
model = self.unwrap_model(self.diffusion_prior).state_dict(), # unwrap the model from distribution if applicable
scheduler = self.scheduler.state_dict(),
warmup_scheduler = self.warmup_scheduler,
model = self.accelerator.unwrap_model(self.diffusion_prior).state_dict(),
version = version.parse(__version__),
step = self.step.item(),
step = self.step,
**kwargs
)
@@ -282,14 +292,14 @@ class DiffusionPriorTrainer(nn.Module):
torch.save(save_obj, str(path))
def load(self, path, overwrite_lr = True, strict = True):
def load(self, path_or_state, overwrite_lr = True, strict = True):
"""
Load a checkpoint of a diffusion prior trainer.
Will load the entire trainer, including the optimizer and EMA.
Params:
- path (str): a path to the DiffusionPriorTrainer checkpoint file
- path_or_state (str | torch): a path to the DiffusionPriorTrainer checkpoint file
- overwrite_lr (bool): wether or not to overwrite the stored LR with the LR specified in the new trainer
- strict (bool): kwarg for `torch.nn.Module.load_state_dict`, will force an exact checkpoint match
@@ -298,56 +308,59 @@ class DiffusionPriorTrainer(nn.Module):
"""
# all processes need to load checkpoint. no restriction here
path = Path(path)
assert path.exists()
if isinstance(path_or_state, str):
path = Path(path_or_state)
assert path.exists()
loaded_obj = torch.load(str(path), map_location=self.device)
loaded_obj = torch.load(str(path), map_location=self.device)
elif isinstance(path_or_state, dict):
loaded_obj = path_or_state
if version.parse(__version__) != loaded_obj['version']:
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {__version__}')
# unwrap the model when loading from checkpoint
self.unwrap_model(self.diffusion_prior).load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
self.accelerator.unwrap_model(self.diffusion_prior).load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step, device=self.device) * loaded_obj['step'].to(self.device))
self.scaler.load_state_dict(loaded_obj['scaler'])
self.optimizer.load_state_dict(loaded_obj['optimizer'])
self.scheduler.load_state_dict(loaded_obj['scheduler'])
# set warmupstep
if exists(self.warmup_scheduler):
self.warmup_scheduler.last_step = self.step.item()
# ensure new lr is used if different from old one
if overwrite_lr:
new_lr = self.optim_kwargs["lr"]
self.print(f"Overriding LR to be {new_lr}")
for group in self.optimizer.param_groups:
group["lr"] = new_lr
group["lr"] = new_lr if group["lr"] > 0.0 else 0.0
if self.use_ema:
assert 'ema' in loaded_obj
self.ema_diffusion_prior.load_state_dict(loaded_obj['ema'], strict = strict)
# below not be necessary, but I had a suspicion that this wasn't being loaded correctly
# below might not be necessary, but I had a suspicion that this wasn't being loaded correctly
self.ema_diffusion_prior.ema_model.load_state_dict(loaded_obj["ema_model"])
# sync and inform
self.wait_for_everyone()
self.print(f"Loaded model")
return loaded_obj
# model functionality
def update(self):
# only continue with updates until all ranks finish
self.wait_for_everyone()
if exists(self.max_grad_norm):
self.scaler.unscale_(self.optimizer)
# utilize HFA clipping where applicable
self.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm)
self.scaler.step(self.optimizer)
self.scaler.update()
self.accelerator.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm)
self.optimizer.step()
self.optimizer.zero_grad()
# accelerator will ocassionally skip optimizer steps in a "dynamic loss scaling strategy"
if not self.accelerator.optimizer_step_was_skipped:
sched_context = self.warmup_scheduler.dampening if exists(self.warmup_scheduler) else nullcontext
with sched_context():
self.scheduler.step()
if self.use_ema:
self.ema_diffusion_prior.update()
@@ -376,7 +389,7 @@ class DiffusionPriorTrainer(nn.Module):
@cast_torch_tensor
@prior_sample_in_chunks
def embed_text(self, *args, **kwargs):
return self.unwrap_model(self.diffusion_prior).clip.embed_text(*args, **kwargs)
return self.accelerator.unwrap_model(self.diffusion_prior).clip.embed_text(*args, **kwargs)
@cast_torch_tensor
def forward(
@@ -388,16 +401,14 @@ class DiffusionPriorTrainer(nn.Module):
total_loss = 0.
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
with autocast(enabled = self.amp):
with self.accelerator.autocast():
loss = self.diffusion_prior(*chunked_args, **chunked_kwargs)
loss = loss * chunk_size_frac
total_loss += loss.item()
# backprop with accelerate if applicable
if self.training:
self.backprop(self.scaler.scale(loss))
self.accelerator.backward(loss)
return total_loss
@@ -424,10 +435,13 @@ class DecoderTrainer(nn.Module):
self,
decoder,
accelerator = None,
dataloaders = None,
use_ema = True,
lr = 1e-4,
wd = 1e-2,
eps = 1e-8,
warmup_steps = None,
cosine_decay_max_steps = None,
max_grad_norm = 0.5,
amp = False,
group_wd_params = True,
@@ -449,23 +463,40 @@ class DecoderTrainer(nn.Module):
# be able to finely customize learning rate, weight decay
# per unet
lr, wd, eps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps))
lr, wd, eps, warmup_steps, cosine_decay_max_steps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps, warmup_steps, cosine_decay_max_steps))
assert all([unet_lr < 1e-3 for unet_lr in lr]), 'your learning rate is too high, recommend sticking with 1e-4, at most 5e-4'
assert all([unet_lr <= 1e-2 for unet_lr in lr]), 'your learning rate is too high, recommend sticking with 1e-4, at most 5e-4'
optimizers = []
schedulers = []
warmup_schedulers = []
for unet, unet_lr, unet_wd, unet_eps in zip(decoder.unets, lr, wd, eps):
optimizer = get_optimizer(
unet.parameters(),
lr = unet_lr,
wd = unet_wd,
eps = unet_eps,
group_wd_params = group_wd_params,
**kwargs
)
for unet, unet_lr, unet_wd, unet_eps, unet_warmup_steps, unet_cosine_decay_max_steps in zip(decoder.unets, lr, wd, eps, warmup_steps, cosine_decay_max_steps):
if isinstance(unet, nn.Identity):
optimizers.append(None)
schedulers.append(None)
warmup_schedulers.append(None)
else:
optimizer = get_optimizer(
unet.parameters(),
lr = unet_lr,
wd = unet_wd,
eps = unet_eps,
group_wd_params = group_wd_params,
**kwargs
)
optimizers.append(optimizer)
optimizers.append(optimizer)
if exists(unet_cosine_decay_max_steps):
scheduler = CosineAnnealingLR(optimizer, T_max = unet_cosine_decay_max_steps)
else:
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps) if exists(unet_warmup_steps) else None
warmup_schedulers.append(warmup_scheduler)
schedulers.append(scheduler)
if self.use_ema:
self.ema_unets.append(EMA(unet, **ema_kwargs))
@@ -474,15 +505,58 @@ class DecoderTrainer(nn.Module):
self.max_grad_norm = max_grad_norm
self.register_buffer('step', torch.tensor([0.]))
self.register_buffer('steps', torch.tensor([0] * self.num_unets))
if self.accelerator.distributed_type == DistributedType.DEEPSPEED and decoder.clip is not None:
# Then we need to make sure clip is using the correct precision or else deepspeed will error
cast_type_map = {
"fp16": torch.half,
"bf16": torch.bfloat16,
"no": torch.float
}
precision_type = cast_type_map[accelerator.mixed_precision]
assert precision_type == torch.float, "DeepSpeed currently only supports float32 precision when using on the fly embedding generation from clip"
clip = decoder.clip
clip.to(precision_type)
decoder, *optimizers = list(self.accelerator.prepare(decoder, *optimizers))
self.decoder = decoder
# prepare dataloaders
train_loader = val_loader = None
if exists(dataloaders):
train_loader, val_loader = self.accelerator.prepare(dataloaders["train"], dataloaders["val"])
self.train_loader = train_loader
self.val_loader = val_loader
# store optimizers
for opt_ind, optimizer in zip(range(len(optimizers)), optimizers):
setattr(self, f'optim{opt_ind}', optimizer)
# store schedulers
for sched_ind, scheduler in zip(range(len(schedulers)), schedulers):
setattr(self, f'sched{sched_ind}', scheduler)
# store warmup schedulers
self.warmup_schedulers = warmup_schedulers
def validate_and_return_unet_number(self, unet_number = None):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
assert exists(unet_number) and 1 <= unet_number <= self.num_unets
return unet_number
def num_steps_taken(self, unet_number = None):
unet_number = self.validate_and_return_unet_number(unet_number)
return self.steps[unet_number - 1].item()
def save(self, path, overwrite = True, **kwargs):
path = Path(path)
assert not (path.exists() and not overwrite)
@@ -491,14 +565,21 @@ class DecoderTrainer(nn.Module):
save_obj = dict(
model = self.accelerator.unwrap_model(self.decoder).state_dict(),
version = __version__,
step = self.step.item(),
steps = self.steps.cpu(),
**kwargs
)
for ind in range(0, self.num_unets):
optimizer_key = f'optim{ind}'
scheduler_key = f'sched{ind}'
optimizer = getattr(self, optimizer_key)
save_obj = {**save_obj, optimizer_key: self.accelerator.unwrap_model(optimizer).state_dict()}
scheduler = getattr(self, scheduler_key)
optimizer_state_dict = optimizer.state_dict() if exists(optimizer) else None
scheduler_state_dict = scheduler.state_dict() if exists(scheduler) else None
save_obj = {**save_obj, optimizer_key: optimizer_state_dict, scheduler_key: scheduler_state_dict}
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
@@ -510,16 +591,29 @@ class DecoderTrainer(nn.Module):
self.accelerator.print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {__version__}')
self.accelerator.unwrap_model(self.decoder).load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
self.steps.copy_(loaded_obj['steps'])
if only_model:
return loaded_obj
for ind in range(0, self.num_unets):
for ind, last_step in zip(range(0, self.num_unets), self.steps.tolist()):
optimizer_key = f'optim{ind}'
optimizer = getattr(self, optimizer_key)
self.accelerator.unwrap_model(optimizer).load_state_dict(loaded_obj[optimizer_key])
scheduler_key = f'sched{ind}'
scheduler = getattr(self, scheduler_key)
warmup_scheduler = self.warmup_schedulers[ind]
if exists(optimizer):
optimizer.load_state_dict(loaded_obj[optimizer_key])
if exists(scheduler):
scheduler.load_state_dict(loaded_obj[scheduler_key])
if exists(warmup_scheduler):
warmup_scheduler.last_step = last_step
if self.use_ema:
assert 'ema' in loaded_obj
@@ -539,25 +633,36 @@ class DecoderTrainer(nn.Module):
def unets(self):
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
def update(self, unet_number = None):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
def increment_step(self, unet_number):
assert 1 <= unet_number <= self.num_unets
assert exists(unet_number) and 1 <= unet_number <= self.num_unets
unet_index_tensor = torch.tensor(unet_number - 1, device = self.steps.device)
self.steps += F.one_hot(unet_index_tensor, num_classes = len(self.steps))
def update(self, unet_number = None):
unet_number = self.validate_and_return_unet_number(unet_number)
index = unet_number - 1
optimizer = getattr(self, f'optim{index}')
scheduler = getattr(self, f'sched{index}')
if exists(self.max_grad_norm):
self.accelerator.clip_grad_norm_(self.decoder.parameters(), self.max_grad_norm) # Automatically unscales gradients
optimizer.step()
optimizer.zero_grad()
warmup_scheduler = self.warmup_schedulers[index]
scheduler_context = warmup_scheduler.dampening if exists(warmup_scheduler) else nullcontext
with scheduler_context():
scheduler.step()
if self.use_ema:
ema_unet = self.ema_unets[index]
ema_unet.update()
self.step += 1
self.increment_step(unet_number)
@torch.no_grad()
@cast_torch_tensor
@@ -565,8 +670,14 @@ class DecoderTrainer(nn.Module):
def sample(self, *args, **kwargs):
distributed = self.accelerator.num_processes > 1
base_decoder = self.accelerator.unwrap_model(self.decoder)
was_training = base_decoder.training
base_decoder.eval()
if kwargs.pop('use_non_ema', False) or not self.use_ema:
return base_decoder.sample(*args, **kwargs, distributed = distributed)
out = base_decoder.sample(*args, **kwargs, distributed = distributed)
base_decoder.train(was_training)
return out
trainable_unets = self.accelerator.unwrap_model(self.decoder).unets
base_decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
@@ -579,6 +690,7 @@ class DecoderTrainer(nn.Module):
for ema in self.ema_unets:
ema.restore_ema_model_device()
base_decoder.train(was_training)
return output
@torch.no_grad()
@@ -599,22 +711,32 @@ class DecoderTrainer(nn.Module):
*args,
unet_number = None,
max_batch_size = None,
return_lowres_cond_image=False,
**kwargs
):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
unet_number = self.validate_and_return_unet_number(unet_number)
total_loss = 0.
cond_images = []
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
# with autocast(enabled = self.amp):
with self.accelerator.autocast():
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
loss_obj = self.decoder(*chunked_args, unet_number = unet_number, return_lowres_cond_image=return_lowres_cond_image, **chunked_kwargs)
# loss_obj may be a tuple with loss and cond_image
if return_lowres_cond_image:
loss, cond_image = loss_obj
else:
loss = loss_obj
cond_image = None
loss = loss * chunk_size_frac
if cond_image is not None:
cond_images.append(cond_image)
total_loss += loss.item()
if self.training:
self.accelerator.backward(loss)
return total_loss
if return_lowres_cond_image:
return total_loss, torch.stack(cond_images)
else:
return total_loss

View File

@@ -1 +1 @@
__version__ = '0.16.0'
__version__ = '1.10.8'

183
prior.md Normal file
View File

@@ -0,0 +1,183 @@
# Diffusion Prior
This readme serves as an introduction to the diffusion prior.
## Intro
A properly trained prior will allow you to translate between two embedding spaces. If you know *a priori* that two embeddings are connected some way—then ability the translate between them could extremely helpful.
### Motivation
Before we dive into the model, lets look at a quick example of where the model may be helpful.
For demonstration purposes we will imagine that we wish to generate images from text using CLIP and a Decoder.
> [CLIP](https://openai.com/blog/clip/) is a contrastive model that learns to maximize the cosine similarity between a given image and caption, however, there is no guarantee that these embeddings are in the same space. While the embeddings generated are ***close*** the image and text embeddings occupy two disjoint sets.
```python
# Load Models
clip_model = clip.load("ViT-L/14")
decoder = Decoder(checkpoint="best.pth") # A decoder trained on CLIP Image embeddings
# Retrieve prompt from user and encode with CLIP
prompt = "A corgi wearing sunglasses"
tokenized_text = tokenize(prompt)
text_embedding = clip_model.encode_text(tokenized_text)
# Now, pass the text embedding to the decoder
predicted_image = decoder.sample(text_embedding)
```
> **Question**: *Can you spot the issue here?*
>
> **Answer**: *Were trying to generate an image from a text embedding!*
Unfortunately, we run into the issue previously mentioned--the image embeddings and the text embeddings are not interchangeable! Now let's look at a better solution
```python
# Load Models
prior= Prior(checkpoint="prior.pth") # A decoder trained to go from: text-> clip text emb -> clip img emb
decoder = Decoder(checkpoint="decoder.pth") # A decoder trained on CLIP Image embeddings
# Retrieve prompt from user and encode with a prior
prompt = "A corgi wearing sunglasses"
tokenized_text = tokenize(prompt)
text_embedding = prior.sample(tokenized_text) # <-- now we get an embedding in the same space as images!
# Now, pass the predicted image embedding to the decoder
predicted_image = decoder.sample(text_embedding)
```
With the prior we are able to successfully generate embeddings *within* CLIP's image space! For this reason, the decoder will perform much better as it receives input that is much closer to its training data.
> **You may be asking yourself the following question:**
>
> *"Why don't you just train the decoder on clip text embeddings instead of image embeddings?"*
>
> OpenAI covers this topic in their [DALLE-2 paper](https://arxiv.org/abs/2204.06125). The TL;DR is *"it doesn't work as well as decoders trained on image embeddings"*...also...its just an example :smile:
## Usage
To utilize a pre-trained prior, its quite simple.
### Loading Checkpoints
```python
import torch
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork, OpenAIClipAdapter
from dalle2_pytorch.trainer import DiffusionPriorTrainer
def load_diffusion_model(dprior_path):
prior_network = DiffusionPriorNetwork(
dim=768,
depth=24,
dim_head=64,
heads=32,
normformer=True,
attn_dropout=5e-2,
ff_dropout=5e-2,
num_time_embeds=1,
num_image_embeds=1,
num_text_embeds=1,
num_timesteps=1000,
ff_mult=4
)
diffusion_prior = DiffusionPrior(
net=prior_network,
clip=OpenAIClipAdapter("ViT-L/14"),
image_embed_dim=768,
timesteps=1000,
cond_drop_prob=0.1,
loss_type="l2",
condition_on_text_encodings=True,
)
trainer = DiffusionPriorTrainer(
diffusion_prior=diffusion_prior,
lr=1.1e-4,
wd=6.02e-2,
max_grad_norm=0.5,
amp=False,
group_wd_params=True,
use_ema=True,
device=device,
accelerator=None,
)
trainer.load(dprior_path)
return trainer
```
Here we instantiate a model matches the configuration it was trained with, and then load the weights (*just like any other PyTorch model!*)
### Sampling
Once we have a pre-trained model, generating embeddings is quite simple!
```python
# tokenize the text
tokenized_text = clip.tokenize("<your amazing prompt>")
# predict an embedding
predicted_embedding = prior.sample(tokenized_text, n_samples_per_batch=2, cond_scale=1.0)
```
The resulting tensor returned from `.sample()` is of the same shape as your training data along the non-batch dimension(s). For example, a prior trained on `ViT-L/14` embeddings will predict an embedding of shape (1, 768).
> For CLIP priors, this is quite handy as it means that you can use prior.sample(tokenizer_text) as a drop in replacement for clip.encode_text().
**Some things to note:**
* It is possible to specify the number of embeddings to sample from (the default suggested by OpenAI is `n=2`). Put simply, the idea here is that you avoid getting unlucky with a bad embedding generation by creating two; and selecting the one with the higher cosine similarity with the prompt.
* You may specify a higher conditioning scale than the default (`1.0`). It is unclear whether OpenAI uses a higher value for the prior specifically, or only on the decoder. Local testing has shown poor results with anything higher than `1.0` but *ymmv*.
---
## Training
### Overview
Training the prior is a relatively straightforward process thanks to the Trainer base class. The major step that is required of you is preparing a dataset in the format that EmbeddingReader expects. Having pre-computed embeddings massively increases training efficiency and is generally recommended as you will likely benefit from having them on hand for other tasks as well. Once you have a dataset, you are ready to move onto configuration
## Dataset
To train the prior, it is highly recommended to use precomputed embeddings for the images. To obtain these for a custom dataset, you can leverage [img2datset](https://github.com/rom1504/img2dataset) to pull images from a list of URLs and [clip_retrieval](https://github.com/rom1504/clip-retrieval#clip-inference) for generating the actual embeddings that can be used in the prior's dataloader.
## Configuration
The configuration file allows for you to easily track and reproduce experiments. It is a simple JSON file that will specify the architecture, dataset, and training parameters. For more information and specifics please see the configuration README.
## Distributed Training
If you would like to train in a distributed manner we have opted to leverage huggingface new Accelerate library. HFA makes it extremely simple to distribute work across multiple GPUs and nodes. All that is required of you is to follow the simple CLI configuration tool [more information here](https://huggingface.co/docs/accelerate/accelerator).
## Evaluation
There are a variety of metrics available to you when training the prior. You can read a brief description of each in the table below:
| Metric | Description | Comments |
| ----------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Online Model Validation | The validation loss associated with your online model. | Ideally validation loss will be as low as possible. Using L2 loss, values as low as `0.1` and lower are possible after around 1 Billion samples seen. |
| EMA Validation | This metric measures the validation loss associated with your EMA model. | This will likely lag behind your "online" model's validation loss, but should outperform in the long-term. |
| Baseline Similarity | Baseline similarity refers to the similarity between your dataset's prompts and associated image embeddings. This will serve as a guide for your prior's performance in cosine similarity. | Generally `0.3` is considered a good cosine similarity for caption similarity. |
| Similarity With Original Image | This metric will measure the cosine similarity between your prior's predicted image embedding and the actual image that the caption was associated with. This is useful for determining wether your prior is generating images with the right contents. | Values around `0.75`+ are obtainable. This metric should improve rapidly in the early stages of training and plateau with diminishing increases over time. If it takes hundreds of millions of samples to reach above `0.5`/`0.6` similarity--then you likely are suffering from some kind of training error or inefficiency (i.e. not using EMA) |
| Difference From Baseline Similarity | Sometimes its useful to visualize a metric in another light. This metric will show you how your prior's predicted image embeddings match up with the baseline similarity measured in your dataset. | This value should float around `0.0` with some room for variation. After a billion samples seen, values are within `0.01`+/- of `0.0`. If this climbs to high, (~>`0.02`) then this may be a sign that your model is overfitting somehow. |
| Similarity With Text | This metric is your bread and butter cosine similarity between the predicted image embedding and the original caption given to the prior. Monitoring this metric will be on of your main focuses and is probably the second most important behind your loss. | As mentioned, this value should be close to baseline similarity. We have observed early rapid increase with diminishing returns as the prior learns to generate valid image embeddings. If this value increases too far beyond the baseline similarity--it could be an indication that your model is overfitting. |
| Similarity With Unrelated Caption | This metric will attempt to exposed an overfit prior by feeding it arbitrary prompts (from your dataset) and then measure the similarity of this predicted embedding with some other image. | Early on we found that a poorly trained/modeled prior could effectively fool CLIP into believing that the cosine similarity between two images were high (when in fact the caption and image were completely unrelated). With this in mind--a low value is ideal, anything below `0.1` is probably safe. |
## Launching the script
Now that youve done all the prep its time for the easy part! 🚀
To actually launch the script, you will either use `accelerate launch train_diffusion_prior.py --config_path <path to your config>` to launch with distributed training & huggingface accelerate or `python train_diffusion_prior.py` if you would like to train on your gpu/cpu without huggingface accelerate.
## Checkpointing
Checkpoints will be saved to the directory specified in your configuration file.
Additionally, a final checkpoint is saved before running the test split. This file will be saved to the same directory and titled “latest.pth”. This is to avoid problems where your `save_every` configuration does not overlap with the number of steps required to do a complete pass through the data.
## Things To Keep In Mind
The prior has not been trained for tasks other than the traditional CLIP embedding translation…at least yet.
As we finalize the replication of unCLIP, there will almost assuredly be experiments attempting to apply the prior network to other tasks.
With that in mind, you are more or less a pioneer in embedding-translation if you are reading this and attempting something you dont see documentation for!

View File

@@ -26,7 +26,7 @@ setup(
install_requires=[
'accelerate',
'click',
'clip-anytorch',
'clip-anytorch>=2.4.0',
'coca-pytorch>=0.0.5',
'ema-pytorch>=0.0.7',
'einops>=0.4',
@@ -37,6 +37,7 @@ setup(
'packaging',
'pillow',
'pydantic',
'pytorch-warmup',
'resize-right>=0.0.2',
'rotary-embedding-torch',
'torch>=1.10',

BIN
test_data/0.tar Normal file

Binary file not shown.

BIN
test_data/1.tar Normal file

Binary file not shown.

BIN
test_data/2.tar Normal file

Binary file not shown.

BIN
test_data/3.tar Normal file

Binary file not shown.

BIN
test_data/4.tar Normal file

Binary file not shown.

BIN
test_data/5.tar Normal file

Binary file not shown.

BIN
test_data/6.tar Normal file

Binary file not shown.

BIN
test_data/7.tar Normal file

Binary file not shown.

BIN
test_data/8.tar Normal file

Binary file not shown.

BIN
test_data/9.tar Normal file

Binary file not shown.

View File

@@ -1,5 +1,6 @@
from pathlib import Path
from typing import List
from datetime import timedelta
from dalle2_pytorch.trainer import DecoderTrainer
from dalle2_pytorch.dataloaders import create_image_embedding_dataloader
@@ -11,11 +12,12 @@ from clip import tokenize
import torchvision
import torch
from torch import nn
from torchmetrics.image.fid import FrechetInceptionDistance
from torchmetrics.image.inception import InceptionScore
from torchmetrics.image.kid import KernelInceptionDistance
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate import Accelerator, DistributedDataParallelKwargs, InitProcessGroupKwargs
from accelerate.utils import dataclasses as accelerate_dataclasses
import webdataset as wds
import click
@@ -132,7 +134,7 @@ def get_example_data(dataloader, device, n=5):
break
return list(zip(images[:n], img_embeddings[:n], text_embeddings[:n], captions[:n]))
def generate_samples(trainer, example_data, condition_on_text_encodings=False, text_prepend=""):
def generate_samples(trainer, example_data, clip=None, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend="", match_image_size=True):
"""
Takes example data and generates images from the embeddings
Returns three lists: real images, generated images, and captions
@@ -142,7 +144,9 @@ def generate_samples(trainer, example_data, condition_on_text_encodings=False, t
if img_embeddings[0] is None:
# Generate image embeddings from clip
imgs_tensor = torch.stack(real_images)
img_embeddings, *_ = trainer.embed_image(imgs_tensor)
assert clip is not None, "clip is None, but img_embeddings is None"
imgs_tensor.to(device=device)
img_embeddings, img_encoding = clip.embed_image(imgs_tensor)
sample_params["image_embed"] = img_embeddings
else:
# Then we are using precomputed image embeddings
@@ -151,34 +155,38 @@ def generate_samples(trainer, example_data, condition_on_text_encodings=False, t
if condition_on_text_encodings:
if text_embeddings[0] is None:
# Generate text embeddings from text
tokenized_texts = tokenize(txts, truncate=True)
sample_params["text"] = tokenized_texts
assert clip is not None, "clip is None, but text_embeddings is None"
tokenized_texts = tokenize(txts, truncate=True).to(device=device)
text_embed, text_encodings = clip.embed_text(tokenized_texts)
sample_params["text_encodings"] = text_encodings
else:
# Then we are using precomputed text embeddings
text_embeddings = torch.stack(text_embeddings)
sample_params["text_encodings"] = text_embeddings
samples = trainer.sample(**sample_params)
sample_params["start_at_unet_number"] = start_unet
sample_params["stop_at_unet_number"] = end_unet
if start_unet > 1:
# If we are only training upsamplers
sample_params["image"] = torch.stack(real_images)
if device is not None:
sample_params["_device"] = device
samples = trainer.sample(**sample_params, _cast_deepspeed_precision=False) # At sampling time we don't want to cast to FP16
generated_images = list(samples)
captions = [text_prepend + txt for txt in txts]
if match_image_size:
generated_image_size = generated_images[0].shape[-1]
real_images = [resize_image_to(image, generated_image_size, clamp_range=(0, 1)) for image in real_images]
return real_images, generated_images, captions
def generate_grid_samples(trainer, examples, condition_on_text_encodings=False, text_prepend=""):
def generate_grid_samples(trainer, examples, clip=None, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend=""):
"""
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
"""
real_images, generated_images, captions = generate_samples(trainer, examples, condition_on_text_encodings, text_prepend)
real_image_size = real_images[0].shape[-1]
generated_image_size = generated_images[0].shape[-1]
# training images may be larger than the generated one
if real_image_size > generated_image_size:
real_images = [resize_image_to(image, generated_image_size) for image in real_images]
real_images, generated_images, captions = generate_samples(trainer, examples, clip, start_unet, end_unet, condition_on_text_encodings, cond_scale, device, text_prepend)
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
return grid_images, captions
def evaluate_trainer(trainer, dataloader, device, condition_on_text_encodings=False, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
def evaluate_trainer(trainer, dataloader, device, start_unet, end_unet, clip=None, condition_on_text_encodings=False, cond_scale=1.0, inference_device=None, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
"""
Computes evaluation metrics for the decoder
"""
@@ -188,7 +196,7 @@ def evaluate_trainer(trainer, dataloader, device, condition_on_text_encodings=Fa
if len(examples) == 0:
print("No data to evaluate. Check that your dataloader has shards.")
return metrics
real_images, generated_images, captions = generate_samples(trainer, examples, condition_on_text_encodings)
real_images, generated_images, captions = generate_samples(trainer, examples, clip, start_unet, end_unet, condition_on_text_encodings, cond_scale, inference_device)
real_images = torch.stack(real_images).to(device=device, dtype=torch.float)
generated_images = torch.stack(generated_images).to(device=device, dtype=torch.float)
# Convert from [0, 1] to [0, 255] and from torch.float to torch.uint8
@@ -221,8 +229,8 @@ def evaluate_trainer(trainer, dataloader, device, condition_on_text_encodings=Fa
metrics["KID_std"] = kid_std.item()
if exists(LPIPS):
# Convert from [0, 1] to [-1, 1]
renorm_real_images = real_images.mul(2).sub(1)
renorm_generated_images = generated_images.mul(2).sub(1)
renorm_real_images = real_images.mul(2).sub(1).clamp(-1,1)
renorm_generated_images = generated_images.mul(2).sub(1).clamp(-1,1)
lpips = LearnedPerceptualImagePatchSimilarity(**LPIPS, dist_sync_fn=null_sync)
lpips.to(device=device)
lpips.update(renorm_real_images, renorm_generated_images)
@@ -261,14 +269,17 @@ def train(
accelerator: Accelerator,
tracker: Tracker,
inference_device,
clip=None,
evaluate_config=None,
epoch_samples = None, # If the training dataset is resampling, we have to manually stop an epoch
validation_samples = None,
save_immediately=False,
epochs = 20,
n_sample_images = 5,
save_every_n_samples = 100000,
unet_training_mask=None,
condition_on_text_encodings=False,
cond_scale=1.0,
**kwargs
):
"""
@@ -276,9 +287,25 @@ def train(
"""
is_master = accelerator.process_index == 0
if not exists(unet_training_mask):
# Then the unet mask should be true for all unets in the decoder
unet_training_mask = [True] * len(decoder.unets)
assert len(unet_training_mask) == len(decoder.unets), f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
trainable_unet_numbers = [i+1 for i, trainable in enumerate(unet_training_mask) if trainable]
first_trainable_unet = trainable_unet_numbers[0]
last_trainable_unet = trainable_unet_numbers[-1]
def move_unets(unet_training_mask):
for i in range(len(decoder.unets)):
if not unet_training_mask[i]:
# Replace the unet from the module list with a nn.Identity(). This training script never uses unets that aren't being trained so this is fine.
decoder.unets[i] = nn.Identity().to(inference_device)
# Remove non-trainable unets
move_unets(unet_training_mask)
trainer = DecoderTrainer(
decoder=decoder,
accelerator=accelerator,
dataloaders=dataloaders,
**kwargs
)
@@ -289,9 +316,9 @@ def train(
sample = 0
samples_seen = 0
val_sample = 0
step = lambda: int(trainer.step.item())
step = lambda: int(trainer.num_steps_taken(unet_number=first_trainable_unet))
if tracker.loader is not None:
if tracker.can_recall:
start_epoch, validation_losses, next_task, recalled_sample, samples_seen = recall_trainer(tracker, trainer)
if next_task == 'train':
sample = recalled_sample
@@ -301,11 +328,6 @@ def train(
accelerator.print(f"Starting training from task {next_task} at sample {sample} and validation sample {val_sample}")
trainer.to(device=inference_device)
if not exists(unet_training_mask):
# Then the unet mask should be true for all unets in the decoder
unet_training_mask = [True] * trainer.num_unets
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
accelerator.print(print_ribbon("Generating Example Data", repeat=40))
accelerator.print("This can take a while to load the shard lists...")
if is_master:
@@ -354,15 +376,20 @@ def train(
forward_params['image_embed'] = img_emb
else:
# Forward pass automatically generates embedding
pass
assert clip is not None
img_embed, img_encoding = clip.embed_image(img)
forward_params['image_embed'] = img_embed
if condition_on_text_encodings:
if has_text_embedding:
forward_params['text_encodings'] = text_emb
else:
# Then we need to pass the text instead
tokenized_texts = tokenize(txt, truncate=True)
forward_params['text'] = tokenized_texts
loss = trainer.forward(img, **forward_params, unet_number=unet)
assert clip is not None
tokenized_texts = tokenize(txt, truncate=True).to(inference_device)
assert tokenized_texts.shape[0] == len(img), f"The number of texts ({tokenized_texts.shape[0]}) should be the same as the number of images ({len(img)})"
text_embed, text_encodings = clip.embed_text(tokenized_texts)
forward_params['text_encodings'] = text_encodings
loss = trainer.forward(img, **forward_params, unet_number=unet, _device=inference_device)
trainer.update(unet_number=unet)
unet_losses_tensor[i % TRAIN_CALC_LOSS_EVERY_ITERS, unet-1] = loss
@@ -375,10 +402,10 @@ def train(
unet_all_losses = accelerator.gather(unet_losses_tensor)
mask = unet_all_losses != 0
unet_average_loss = (unet_all_losses * mask).sum(dim=0) / mask.sum(dim=0)
loss_map = { f"Unet {index} Training Loss": loss.item() for index, loss in enumerate(unet_average_loss) if loss != 0 }
loss_map = { f"Unet {index} Training Loss": loss.item() for index, loss in enumerate(unet_average_loss) if unet_training_mask[index] }
# gather decay rate on each UNet
ema_decay_list = {f"Unet {index} EMA Decay": ema_unet.get_current_decay() for index, ema_unet in enumerate(trainer.ema_unets)}
ema_decay_list = {f"Unet {index} EMA Decay": ema_unet.get_current_decay() for index, ema_unet in enumerate(trainer.ema_unets) if unet_training_mask[index]}
log_data = {
"Epoch": epoch,
@@ -393,7 +420,7 @@ def train(
if is_master:
tracker.log(log_data, step=step())
if is_master and last_snapshot + save_every_n_samples < sample: # This will miss by some amount every time, but it's not a big deal... I hope
if is_master and (last_snapshot + save_every_n_samples < sample or (save_immediately and i == 0)): # This will miss by some amount every time, but it's not a big deal... I hope
# It is difficult to gather this kind of info on the accelerator, so we have to do it on the master
print("Saving snapshot")
last_snapshot = sample
@@ -401,7 +428,7 @@ def train(
save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, samples_seen)
if exists(n_sample_images) and n_sample_images > 0:
trainer.eval()
train_images, train_captions = generate_grid_samples(trainer, train_example_data, condition_on_text_encodings, "Train: ")
train_images, train_captions = generate_grid_samples(trainer, train_example_data, clip, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ")
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
if epoch_samples is not None and sample >= epoch_samples:
@@ -419,7 +446,7 @@ def train(
timer = Timer()
accelerator.wait_for_everyone()
i = 0
for i, (img, emb, txt) in enumerate(dataloaders["val"]):
for i, (img, emb, txt) in enumerate(dataloaders['val']): # Use the accelerate prepared loader
val_sample_length_tensor[0] = len(img)
all_samples = accelerator.gather(val_sample_length_tensor)
total_samples = all_samples.sum().item()
@@ -444,15 +471,20 @@ def train(
forward_params['image_embed'] = img_emb.float()
else:
# Forward pass automatically generates embedding
pass
assert clip is not None
img_embed, img_encoding = clip.embed_image(img)
forward_params['image_embed'] = img_embed
if condition_on_text_encodings:
if has_text_embedding:
forward_params['text_encodings'] = text_emb.float()
else:
# Then we need to pass the text instead
tokenized_texts = tokenize(txt, truncate=True)
forward_params['text'] = tokenized_texts
loss = trainer.forward(img.float(), **forward_params, unet_number=unet)
assert clip is not None
tokenized_texts = tokenize(txt, truncate=True).to(device=inference_device)
assert tokenized_texts.shape[0] == len(img), f"The number of texts ({tokenized_texts.shape[0]}) should be the same as the number of images ({len(img)})"
text_embed, text_encodings = clip.embed_text(tokenized_texts)
forward_params['text_encodings'] = text_encodings
loss = trainer.forward(img.float(), **forward_params, unet_number=unet, _device=inference_device)
average_val_loss_tensor[0, unet-1] += loss
if i % VALID_CALC_LOSS_EVERY_ITERS == 0:
@@ -479,7 +511,7 @@ def train(
if next_task == 'eval':
if exists(evaluate_config):
accelerator.print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config.dict(), condition_on_text_encodings=condition_on_text_encodings)
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, first_trainable_unet, last_trainable_unet, clip=clip, inference_device=inference_device, **evaluate_config.dict(), condition_on_text_encodings=condition_on_text_encodings, cond_scale=cond_scale)
if is_master:
tracker.log(evaluation, step=step())
next_task = 'sample'
@@ -490,15 +522,15 @@ def train(
# Generate examples and save the model if we are the master
# Generate sample images
print(print_ribbon(f"Sampling Set {epoch}", repeat=40))
test_images, test_captions = generate_grid_samples(trainer, test_example_data, condition_on_text_encodings, "Test: ")
train_images, train_captions = generate_grid_samples(trainer, train_example_data, condition_on_text_encodings, "Train: ")
test_images, test_captions = generate_grid_samples(trainer, test_example_data, clip, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Test: ")
train_images, train_captions = generate_grid_samples(trainer, train_example_data, clip, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ")
tracker.log_images(test_images, captions=test_captions, image_section="Test Samples", step=step())
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
print(print_ribbon(f"Starting Saving {epoch}", repeat=40))
is_best = False
if all_average_val_losses is not None:
average_loss = all_average_val_losses.mean(dim=0).item()
average_loss = all_average_val_losses.mean(dim=0).sum() / sum(unet_training_mask)
if len(validation_losses) == 0 or average_loss < min(validation_losses):
is_best = True
validation_losses.append(average_loss)
@@ -513,8 +545,10 @@ def create_tracker(accelerator: Accelerator, config: TrainDecoderConfig, config_
"NumProcesses": accelerator.num_processes,
"MixedPrecision": accelerator.mixed_precision
}
accelerator.wait_for_everyone() # If nodes arrive at this point at different times they might try to autoresume the current run which makes no sense and will cause errors
tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy)
tracker.save_config(config_path, config_name='decoder_config.json')
tracker.add_save_metadata(state_dict_key='config', metadata=config.dict())
return tracker
def initialize_training(config: TrainDecoderConfig, config_path):
@@ -523,7 +557,18 @@ def initialize_training(config: TrainDecoderConfig, config_path):
# Set up accelerator for configurable distributed training
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=config.train.find_unused_parameters)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
init_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=60*60))
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs, init_kwargs])
if accelerator.num_processes > 1:
# We are using distributed training and want to immediately ensure all can connect
accelerator.print("Waiting for all processes to connect...")
accelerator.wait_for_everyone()
accelerator.print("All processes online and connected")
# If we are in deepspeed fp16 mode, we must ensure learned variance is off
if accelerator.mixed_precision == "fp16" and accelerator.distributed_type == accelerate_dataclasses.DistributedType.DEEPSPEED and config.decoder.learned_variance:
raise ValueError("DeepSpeed fp16 mode does not support learned variance")
# Set up data
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
@@ -544,9 +589,14 @@ def initialize_training(config: TrainDecoderConfig, config_path):
seed = config.seed,
)
# If clip is in the model, we need to remove it for compatibility with deepspeed
clip = None
if config.decoder.clip is not None:
clip = config.decoder.clip.create() # Of course we keep it to use it during training, just not in the decoder as that causes issues
config.decoder.clip = None
# Create the decoder model and print basic info
decoder = config.decoder.create()
num_parameters = sum(p.numel() for p in decoder.parameters())
get_num_parameters = lambda model, only_training=False: sum(p.numel() for p in model.parameters() if (p.requires_grad or not only_training))
# Create and initialize the tracker if we are the master
tracker = create_tracker(accelerator, config, config_path, dummy = rank!=0)
@@ -555,7 +605,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
has_text_embeddings = config.data.text_embeddings_url is not None
conditioning_on_text = any([unet.cond_on_text_encodings for unet in config.decoder.unets])
has_clip_model = config.decoder.clip is not None
has_clip_model = clip is not None
data_source_string = ""
if has_img_embeddings:
@@ -575,8 +625,12 @@ def initialize_training(config: TrainDecoderConfig, config_path):
accelerator.print(print_ribbon("Loaded Config", repeat=40))
accelerator.print(f"Running training with {accelerator.num_processes} processes and {accelerator.distributed_type} distributed training")
accelerator.print(f"Training using {data_source_string}. {'conditioned on text' if conditioning_on_text else 'not conditioned on text'}")
accelerator.print(f"Number of parameters: {num_parameters}")
accelerator.print(f"Number of parameters: {get_num_parameters(decoder)} total; {get_num_parameters(decoder, only_training=True)} training")
for i, unet in enumerate(decoder.unets):
accelerator.print(f"Unet {i} has {get_num_parameters(unet)} total; {get_num_parameters(unet, only_training=True)} training")
train(dataloaders, decoder, accelerator,
clip=clip,
tracker=tracker,
inference_device=accelerator.device,
evaluate_config=config.evaluate,

View File

@@ -1,31 +1,23 @@
# TODO: add start, num_data_points, eval_every and group to config
# TODO: switch back to repo's wandb
START = 0
NUM_DATA_POINTS = 250e6
EVAL_EVERY = 1000
GROUP = "distributed"
import os
import click
import wandb
import torch
from torch import nn
from torch.utils.data import DataLoader
import numpy as np
from typing import List
from accelerate import Accelerator
from accelerate.utils import set_seed
from torch.utils.data import DataLoader
from embedding_reader import EmbeddingReader
from accelerate.utils import dataclasses as accelerate_dataclasses
from dalle2_pytorch.dataloaders import get_reader, make_splits
from dalle2_pytorch.utils import Timer
from dalle2_pytorch.trackers import Tracker
from dalle2_pytorch import DiffusionPriorTrainer
from dalle2_pytorch.dataloaders import get_reader, make_splits
from dalle2_pytorch.train_configs import (
DiffusionPriorConfig,
DiffusionPriorTrainConfig,
TrainDiffusionPriorConfig,
)
from dalle2_pytorch.trackers import BaseTracker, WandbTracker
from dalle2_pytorch import DiffusionPriorTrainer
# helpers
@@ -38,8 +30,19 @@ def exists(val):
return val is not None
def all_between(values: list, lower_bound, upper_bound):
for value in values:
if value < lower_bound or value > upper_bound:
return False
return True
def make_model(
prior_config, train_config, device: str = None, accelerator: Accelerator = None
prior_config: DiffusionPriorConfig,
train_config: DiffusionPriorTrainConfig,
device: str = None,
accelerator: Accelerator = None,
):
# create model from config
diffusion_prior = prior_config.create()
@@ -54,71 +57,214 @@ def make_model(
use_ema=train_config.use_ema,
device=device,
accelerator=accelerator,
warmup_steps=train_config.warmup_steps,
)
return trainer
def create_tracker(
accelerator: Accelerator,
config: TrainDiffusionPriorConfig,
config_path: str,
dummy: bool = False,
) -> Tracker:
tracker_config = config.tracker
accelerator_config = {
"Distributed": accelerator.distributed_type
!= accelerate_dataclasses.DistributedType.NO,
"DistributedType": accelerator.distributed_type,
"NumProcesses": accelerator.num_processes,
"MixedPrecision": accelerator.mixed_precision,
}
tracker: Tracker = tracker_config.create(
config, accelerator_config, dummy_mode=dummy
)
tracker.save_config(config_path, config_name="prior_config.json")
return tracker
def pad_gather_reduce(trainer: DiffusionPriorTrainer, x, method="mean"):
"""
pad a value or tensor across all processes and gather
params:
- trainer: a trainer that carries an accelerator object
- x: a number or torch tensor to reduce
- method: "mean", "sum", "max", "min"
return:
- the average tensor after maskin out 0's
- None if the gather resulted in an empty tensor
"""
assert method in [
"mean",
"sum",
"max",
"min",
], "This function has limited capabilities [sum, mean, max, min]"
assert type(x) is not None, "Cannot reduce a None type object"
# wait for everyone to arrive here before gathering
if type(x) is not torch.Tensor:
x = torch.tensor([x])
# verify that the tensor is on the proper device
x = x.to(trainer.device)
# pad across processes
padded_x = trainer.accelerator.pad_across_processes(x, dim=0)
# gather across all procesess
gathered_x = trainer.accelerator.gather(padded_x)
# mask out zeros
masked_x = gathered_x[gathered_x != 0]
# if the tensor is empty, warn and return None
if len(masked_x) == 0:
click.secho(
f"The call to this method resulted in an empty tensor after masking out zeros. The gathered tensor was this: {gathered_x} and the original value passed was: {x}.",
fg="red",
)
return None
if method == "mean":
return torch.mean(masked_x)
elif method == "sum":
return torch.sum(masked_x)
elif method == "max":
return torch.max(masked_x)
elif method == "min":
return torch.min(masked_x)
def save_trainer(
tracker: Tracker,
trainer: DiffusionPriorTrainer,
is_latest: bool,
is_best: bool,
epoch: int,
samples_seen: int,
best_validation_loss: float,
):
"""
Logs the model with an appropriate method depending on the tracker
"""
trainer.accelerator.wait_for_everyone()
if trainer.accelerator.is_main_process:
click.secho(
f"RANK:{trainer.accelerator.process_index} | Saving Model | Best={is_best} | Latest={is_latest}",
fg="magenta",
)
tracker.save(
trainer=trainer,
is_best=is_best,
is_latest=is_latest,
epoch=int(epoch),
samples_seen=int(samples_seen),
best_validation_loss=best_validation_loss,
)
def recall_trainer(tracker: Tracker, trainer: DiffusionPriorTrainer):
"""
Loads the model with an appropriate method depending on the tracker
"""
if trainer.accelerator.is_main_process:
click.secho(f"Loading model from {type(tracker.loader).__name__}", fg="yellow")
state_dict = tracker.recall()
trainer.load(state_dict, strict=True)
return (
int(state_dict.get("epoch", 0)),
state_dict.get("best_validation_loss", 0),
int(state_dict.get("samples_seen", 0)),
)
# eval functions
def eval_model(
def report_validation_loss(
trainer: DiffusionPriorTrainer,
dataloader: DataLoader,
text_conditioned: bool,
use_ema: bool,
tracker: Tracker,
split: str,
tracker_folder: str,
loss_type: str,
tracker_context: str,
tracker: BaseTracker = None,
use_ema: bool = True,
):
trainer.eval()
if trainer.is_main_process():
click.secho(f"Measuring performance on {tracker_context}", fg="green", blink=True)
"""
Compute the validation loss on a given subset of data.
"""
with torch.no_grad():
total_loss = 0.0
total_samples = 0.0
if trainer.accelerator.is_main_process:
click.secho(
f"Measuring performance on {use_ema}-{split} split",
fg="green",
blink=True,
)
for image_embeddings, text_data in dataloader:
image_embeddings = image_embeddings.to(trainer.device)
text_data = text_data.to(trainer.device)
total_loss = torch.zeros(1, dtype=torch.float, device=trainer.device)
batches = image_embeddings.shape[0]
for image_embeddings, text_data in dataloader:
image_embeddings = image_embeddings.to(trainer.device)
text_data = text_data.to(trainer.device)
input_args = dict(image_embed=image_embeddings)
input_args = dict(image_embed=image_embeddings)
if text_conditioned:
input_args = dict(**input_args, text=text_data)
else:
input_args = dict(**input_args, text_embed=text_data)
if text_conditioned:
input_args = dict(**input_args, text=text_data)
else:
input_args = dict(**input_args, text_embed=text_data)
if use_ema:
loss = trainer.ema_diffusion_prior(**input_args)
else:
loss = trainer(**input_args)
if use_ema:
loss = trainer.ema_diffusion_prior(**input_args)
else:
loss = trainer(**input_args)
total_loss += loss * batches
total_samples += batches
total_loss += loss
avg_loss = total_loss / total_samples
# compute the average loss across all processes
stats = {f"{tracker_context}-{loss_type}": avg_loss}
trainer.print(stats)
avg_loss = pad_gather_reduce(trainer, total_loss, method="mean")
stats = {f"{tracker_folder}/{loss_type}-loss": avg_loss}
if exists(tracker):
tracker.log(stats, step=trainer.step.item() + 1)
# print and log results on main process
tracker.log(stats, step=trainer.step.item() + 1)
return avg_loss
def report_cosine_sims(
trainer: DiffusionPriorTrainer,
dataloader: DataLoader,
text_conditioned: bool,
tracker: BaseTracker,
tracker_context: str = "validation",
tracker: Tracker,
split: str,
timesteps: int,
tracker_folder: str,
):
trainer.eval()
if trainer.is_main_process():
click.secho("Measuring Cosine-Similarity", fg="green", blink=True)
if trainer.accelerator.is_main_process:
click.secho(
f"Measuring Cosine-Similarity on {split} split with {timesteps} timesteps",
fg="green",
blink=True,
)
for test_image_embeddings, text_data in dataloader:
test_image_embeddings = test_image_embeddings.to(trainer.device)
@@ -126,10 +272,8 @@ def report_cosine_sims(
# we are text conditioned, we produce an embedding from the tokenized text
if text_conditioned:
text_embedding, text_encodings, text_mask = trainer.embed_text(text_data)
text_cond = dict(
text_embed=text_embedding, text_encodings=text_encodings, mask=text_mask
)
text_embedding, text_encodings = trainer.embed_text(text_data)
text_cond = dict(text_embed=text_embedding, text_encodings=text_encodings)
else:
text_embedding = text_data
text_cond = dict(text_embed=text_embedding)
@@ -146,15 +290,11 @@ def report_cosine_sims(
if text_conditioned:
text_encodings_shuffled = text_encodings[rolled_idx]
text_mask_shuffled = text_mask[rolled_idx]
else:
text_encodings_shuffled = None
text_mask_shuffled = None
text_cond_shuffled = dict(
text_embed=text_embed_shuffled,
text_encodings=text_encodings_shuffled,
mask=text_mask_shuffled,
text_embed=text_embed_shuffled, text_encodings=text_encodings_shuffled
)
# prepare the text embedding
@@ -167,7 +307,9 @@ def report_cosine_sims(
# predict on the unshuffled text embeddings
predicted_image_embeddings = trainer.p_sample_loop(
test_image_embeddings.shape, text_cond
test_image_embeddings.shape,
text_cond,
timesteps=timesteps,
)
predicted_image_embeddings = (
@@ -177,7 +319,9 @@ def report_cosine_sims(
# predict on the shuffled embeddings
predicted_unrelated_embeddings = trainer.p_sample_loop(
test_image_embeddings.shape, text_cond_shuffled
test_image_embeddings.shape,
text_cond_shuffled,
timesteps=timesteps,
)
predicted_unrelated_embeddings = (
@@ -186,32 +330,97 @@ def report_cosine_sims(
)
# calculate similarities
original_similarity = cos(text_embed, test_image_embeddings).cpu().numpy()
predicted_similarity = cos(text_embed, predicted_image_embeddings).cpu().numpy()
unrelated_similarity = (
cos(text_embed, predicted_unrelated_embeddings).cpu().numpy()
orig_sim = pad_gather_reduce(
trainer, cos(text_embed, test_image_embeddings), method="mean"
)
predicted_img_similarity = (
cos(test_image_embeddings, predicted_image_embeddings).cpu().numpy()
pred_sim = pad_gather_reduce(
trainer, cos(text_embed, predicted_image_embeddings), method="mean"
)
unrel_sim = pad_gather_reduce(
trainer, cos(text_embed, predicted_unrelated_embeddings), method="mean"
)
pred_img_sim = pad_gather_reduce(
trainer,
cos(test_image_embeddings, predicted_image_embeddings),
method="mean",
)
stats = {
f"{tracker_context}/baseline similarity": np.mean(original_similarity),
f"{tracker_context}/similarity with text": np.mean(predicted_similarity),
f"{tracker_context}/similarity with original image": np.mean(
predicted_img_similarity
),
f"{tracker_context}/similarity with unrelated caption": np.mean(unrelated_similarity),
f"{tracker_context}/difference from baseline similarity": np.mean(
predicted_similarity - original_similarity
),
f"{tracker_folder}/baseline similarity [steps={timesteps}]": orig_sim,
f"{tracker_folder}/similarity with text [steps={timesteps}]": pred_sim,
f"{tracker_folder}/similarity with original image [steps={timesteps}]": pred_img_sim,
f"{tracker_folder}/similarity with unrelated caption [steps={timesteps}]": unrel_sim,
f"{tracker_folder}/difference from baseline similarity [steps={timesteps}]": pred_sim
- orig_sim,
}
for k, v in stats.items():
trainer.print(f"{tracker_context}/{k}: {v}")
tracker.log(stats, step=trainer.step.item() + 1)
if exists(tracker):
tracker.log(stats, step=trainer.step.item() + 1)
def eval_model(
trainer: DiffusionPriorTrainer,
dataloader: DataLoader,
text_conditioned: bool,
split: str,
tracker: Tracker,
use_ema: bool,
report_cosine: bool,
report_loss: bool,
timesteps: List[int],
loss_type: str = None,
):
"""
Run evaluation on a model and track metrics
returns: loss if requested
"""
trainer.eval()
use_ema = "ema" if use_ema else "online"
tracker_folder = f"metrics/{use_ema}-{split}"
# detemine if valid timesteps are passed
min_timesteps = trainer.accelerator.unwrap_model(
trainer.diffusion_prior
).sample_timesteps
max_timesteps = trainer.accelerator.unwrap_model(
trainer.diffusion_prior
).noise_scheduler.num_timesteps
assert all_between(
timesteps, lower_bound=min_timesteps, upper_bound=max_timesteps
), f"all timesteps values must be between {min_timesteps} and {max_timesteps}: got {timesteps}"
# measure cosine metrics across various eta and timesteps
if report_cosine:
for timestep in timesteps:
report_cosine_sims(
trainer,
dataloader=dataloader,
text_conditioned=text_conditioned,
tracker=tracker,
split=split,
timesteps=timestep,
tracker_folder=tracker_folder,
)
# measure loss on a seperate split of data
if report_loss:
loss = report_validation_loss(
trainer=trainer,
dataloader=dataloader,
text_conditioned=text_conditioned,
use_ema=use_ema,
tracker=tracker,
split=split,
tracker_folder=tracker_folder,
loss_type=loss_type,
)
return loss
# training script
@@ -219,182 +428,327 @@ def report_cosine_sims(
def train(
trainer: DiffusionPriorTrainer,
tracker: Tracker,
train_loader: DataLoader,
eval_loader: DataLoader,
test_loader: DataLoader,
config: DiffusionPriorTrainConfig,
):
# distributed tracking with wandb
if trainer.accelerator.num_processes > 1:
os.environ["WANDB_START_METHOD"] = "thread"
# init timers
save_timer = Timer() # when to save
samples_timer = Timer() # samples/sec
validation_profiler = Timer() # how long is validation taking
validation_countdown = Timer() # when to perform evalutation
tracker = wandb.init(
name=f"RANK:{trainer.device}",
entity=config.tracker.wandb_entity,
project=config.tracker.wandb_project,
config=config.dict(),
group=GROUP,
)
# keep track of best validation loss
# sync after tracker init
trainer.wait_for_everyone()
# init a timer
timer = Timer()
best_validation_loss = config.train.best_validation_loss
samples_seen = config.train.num_samples_seen
# do training
for img, txt in train_loader:
trainer.train()
current_step = trainer.step.item() + 1
# place data on device
img = img.to(trainer.device)
txt = txt.to(trainer.device)
start_epoch = config.train.current_epoch
# pass to model
loss = trainer(text=txt, image_embed=img)
for epoch in range(start_epoch, config.train.epochs):
# if we finished out an old epoch, reset the distribution to be a full epoch
tracker.log({"tracking/epoch": epoch}, step=trainer.step.item())
# display & log loss (will only print from main process)
trainer.print(f"Step {current_step}: Loss {loss}")
if train_loader.dataset.get_start() > 0 and epoch == start_epoch+1:
if trainer.accelerator.is_main_process:
click.secho(f"Finished resumed epoch...resetting dataloader.")
train_loader.dataset.set_start(0)
# perform backprop & apply EMA updates
trainer.update()
for img, txt in train_loader:
# setup things every step
# track samples/sec/rank
samples_per_sec = img.shape[0] / timer.elapsed()
trainer.train()
current_step = trainer.step.item()
samples_timer.reset()
# samples seen
samples_seen = (
config.data.batch_size * trainer.accelerator.num_processes * current_step
)
# place data on device
# ema decay
ema_decay = trainer.ema_diffusion_prior.get_current_decay()
img = img.to(trainer.device)
txt = txt.to(trainer.device)
# Log on all processes for debugging
tracker.log(
{
"tracking/samples-sec": samples_per_sec,
"tracking/samples-seen": samples_seen,
"tracking/ema-decay": ema_decay,
"metrics/training-loss": loss,
},
step=current_step,
)
# pass to model
# Metric Tracking & Checkpointing (outside of timer's scope)
if current_step % EVAL_EVERY == 0:
eval_model(
trainer=trainer,
dataloader=eval_loader,
text_conditioned=config.prior.condition_on_text_encodings,
loss_type=config.prior.loss_type,
tracker_context="metrics/online-model-validation",
tracker=tracker,
use_ema=False,
loss = trainer(text=txt, image_embed=img)
# perform backprop & apply EMA updates
trainer.update()
# gather info about training step
all_loss = pad_gather_reduce(trainer, loss, method="mean")
num_samples = pad_gather_reduce(trainer, len(txt), method="sum")
samples_per_sec = num_samples / samples_timer.elapsed()
samples_seen += num_samples
ema_decay = trainer.ema_diffusion_prior.get_current_decay()
# log
tracker.log(
{
"tracking/samples-sec": samples_per_sec,
"tracking/samples-seen": samples_seen,
"tracking/ema-decay": ema_decay,
f"tracking/training-{config.prior.loss_type}": all_loss,
},
step=current_step,
)
eval_model(
trainer=trainer,
dataloader=eval_loader,
text_conditioned=config.prior.condition_on_text_encodings,
loss_type=config.prior.loss_type,
tracker_context="metrics/ema-model-validation",
tracker=tracker,
use_ema=True,
# Metric Tracking @ Timed Intervals
eval_delta = pad_gather_reduce(
trainer, validation_countdown.elapsed(), method="min"
)
report_cosine_sims(
trainer=trainer,
dataloader=eval_loader,
text_conditioned=config.prior.condition_on_text_encodings,
tracker=tracker,
tracker_context="metrics",
)
if eval_delta != None and eval_delta > config.data.eval_every_seconds:
# begin timing how long this takes
if current_step % config.train.save_every == 0:
trainer.save(f"{config.tracker.data_path}/chkpt_step_{current_step}.pth")
validation_profiler.reset()
# reset timer for next round
timer.reset()
# package kwargs for evaluation
eval_kwargs = {
"trainer": trainer,
"tracker": tracker,
"text_conditioned": config.prior.condition_on_text_encodings,
"timesteps": config.train.eval_timesteps,
}
# ONLINE MODEL : COSINE : LOSS : VALIDATION SPLIT
eval_model(
dataloader=eval_loader,
loss_type=config.prior.loss_type,
split="validation",
use_ema=False,
report_cosine=False,
report_loss=True,
**eval_kwargs,
)
# EMA MODEL : COSINE : LOSS : VALIDATION DATA
ema_val_loss = eval_model(
dataloader=eval_loader,
loss_type=config.prior.loss_type,
split="validation",
use_ema=True,
report_cosine=True,
report_loss=True,
**eval_kwargs,
)
tracker.log(
{
"tracking/validation length (minutes)": validation_profiler.elapsed()
/ 60
}
)
# check if the ema validation is the lowest seen yet
if ema_val_loss < best_validation_loss:
best_validation_loss = ema_val_loss
# go save the model as best
save_trainer(
trainer=trainer,
tracker=tracker,
is_best=True,
is_latest=False,
samples_seen=samples_seen,
epoch=epoch,
best_validation_loss=best_validation_loss,
)
# reset timer for validaiton
validation_countdown.reset()
elif eval_delta is None:
click.secho(
f"Error occured reading the eval time on rank: {trainer.device}",
fg="yellow",
)
# save as latest model on schedule
save_delta = pad_gather_reduce(trainer, save_timer.elapsed(), method="min")
if save_delta != None and save_delta >= config.train.save_every_seconds:
save_trainer(
trainer=trainer,
tracker=tracker,
is_best=False,
is_latest=True,
samples_seen=samples_seen,
epoch=epoch,
best_validation_loss=best_validation_loss,
)
save_timer.reset()
elif save_delta is None:
click.secho(
f"Error occured reading the save time on rank: {trainer.device}",
fg="yellow",
)
# evaluate on test data
eval_model(
if trainer.accelerator.is_main_process:
click.secho(f"Starting Test", fg="red")
# save one last time as latest before beginning validation
save_trainer(
tracker=tracker,
trainer=trainer,
is_best=False,
is_latest=True,
samples_seen=samples_seen,
epoch=epoch,
best_validation_loss=best_validation_loss,
)
test_loss = eval_model(
trainer=trainer,
dataloader=test_loader,
text_conditioned=config.prior.condition_on_text_encodings,
loss_type=config.prior.loss_type,
tracker_context="test",
split="test",
tracker=tracker,
use_ema=True,
report_cosine=False,
report_loss=True,
timesteps=config.train.eval_timesteps,
loss_type=config.prior.loss_type,
)
report_cosine_sims(
trainer,
test_loader,
config.prior.condition_on_text_encodings,
tracker,
tracker_context="test",
)
if test_loss < best_validation_loss:
best_validation_loss = test_loss
# go save the model as best
save_trainer(
trainer=trainer,
tracker=tracker,
is_best=True,
is_latest=False,
samples_seen=samples_seen,
epoch=epoch,
best_validation_loss=test_loss,
)
def initialize_training(config, accelerator=None):
def initialize_training(config_file, accelerator):
"""
Parse the configuration file, and prepare everything necessary for training
"""
# load the configuration file
if accelerator.is_main_process:
click.secho(f"Loading configuration from {config_file}", fg="green")
config = TrainDiffusionPriorConfig.from_json_path(config_file)
# seed
set_seed(config.train.random_seed)
# get a device
if accelerator:
device = accelerator.device
click.secho(f"Accelerating on: {device}", fg="yellow")
else:
if torch.cuda.is_available():
click.secho("GPU detected, defaulting to cuda:0", fg="yellow")
device = "cuda:0"
else:
click.secho("No GPU detected...using cpu", fg="yellow")
device = "cpu"
device = accelerator.device
# make the trainer (will automatically distribute if possible & configured)
trainer = make_model(config.prior, config.train, device, accelerator).to(device)
trainer: DiffusionPriorTrainer = make_model(
config.prior, config.train, device, accelerator
).to(device)
# create a tracker
tracker = create_tracker(
accelerator, config, config_file, dummy=accelerator.process_index != 0
)
# reload from chcekpoint
if config.load.resume == True:
click.secho(f"Loading checkpoint: {config.load.source}", fg="cyan")
trainer.load(config.load.source)
if tracker.can_recall:
current_epoch, best_validation_loss, samples_seen = recall_trainer(
tracker=tracker, trainer=trainer
)
# display best values
if trainer.accelerator.is_main_process:
click.secho(f"Current Epoch: {current_epoch} | Best Val Loss: {best_validation_loss} | Samples Seen: {samples_seen}", fg="yellow")
# update config to reflect recalled values
config.train.num_samples_seen = samples_seen
config.train.current_epoch = current_epoch
config.train.best_validation_loss = best_validation_loss
# fetch and prepare data
if trainer.is_main_process():
click.secho("Grabbing data from source", fg="blue", blink=True)
if trainer.accelerator.is_main_process:
click.secho("Grabbing data...", fg="blue", blink=True)
trainer.accelerator.wait_for_everyone()
img_reader = get_reader(
text_conditioned=trainer.text_conditioned,
img_url=config.data.image_url,
meta_url=config.data.meta_url,
)
# calculate start point within epoch
trainer.accelerator.wait_for_everyone()
train_loader, eval_loader, test_loader = make_splits(
text_conditioned=trainer.text_conditioned,
batch_size=config.data.batch_size,
num_data_points=NUM_DATA_POINTS,
num_data_points=config.data.num_data_points,
train_split=config.data.splits.train,
eval_split=config.data.splits.val,
image_reader=img_reader,
rank=accelerator.state.process_index if exists(accelerator) else 0,
world_size=accelerator.state.num_processes if exists(accelerator) else 1,
start=START,
rank=accelerator.state.process_index,
world_size=accelerator.state.num_processes,
start=0,
)
# wait for everyone to load data before continuing
trainer.wait_for_everyone()
# update the start point to finish out the epoch on a resumed run
if tracker.can_recall:
samples_seen = config.train.num_samples_seen
length = (
config.data.num_data_points
if samples_seen <= img_reader.count
else img_reader.count
)
scaled_samples = length * config.train.current_epoch
start_point = (
scaled_samples - samples_seen if scaled_samples > samples_seen else samples_seen
)
if trainer.accelerator.is_main_process:
click.secho(f"Resuming at sample: {start_point}", fg="yellow")
train_loader.dataset.set_start(start_point)
# start training
if trainer.accelerator.is_main_process:
click.secho(
f"Beginning Prior Training : Distributed={accelerator.state.distributed_type != accelerate_dataclasses.DistributedType.NO}",
fg="yellow",
)
train(
trainer=trainer,
tracker=tracker,
train_loader=train_loader,
eval_loader=eval_loader,
test_loader=test_loader,
@@ -403,23 +757,13 @@ def initialize_training(config, accelerator=None):
@click.command()
@click.option("--hfa", default=True)
@click.option("--config_path", default="configs/prior.json")
def main(hfa, config_path):
# start HFA if requested
if hfa:
accelerator = Accelerator()
else:
accelerator = None
@click.option("--config_file", default="configs/train_prior_config.example.json")
def main(config_file):
# start HFA
accelerator = Accelerator()
# load the configuration file on main process
if not exists(accelerator) or accelerator.is_main_process:
click.secho(f"Loading configuration from {config_path}", fg="green")
config = TrainDiffusionPriorConfig.from_json_path(config_path)
# send config to get processed
initialize_training(config, accelerator)
# setup training
initialize_training(config_file, accelerator)
if __name__ == "__main__":