mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 01:34:19 +01:00
make it so diffusion prior p_sample_loop returns unnormalized image embeddings
This commit is contained in:
@@ -1279,9 +1279,12 @@ class DiffusionPrior(nn.Module):
|
||||
is_ddim = timesteps < self.noise_scheduler.num_timesteps
|
||||
|
||||
if not is_ddim:
|
||||
return self.p_sample_loop_ddpm(*args, **kwargs)
|
||||
normalized_image_embed = self.p_sample_loop_ddpm(*args, **kwargs)
|
||||
else:
|
||||
normalized_image_embed = self.p_sample_loop_ddim(*args, **kwargs, timesteps = timesteps)
|
||||
|
||||
return self.p_sample_loop_ddim(*args, **kwargs, timesteps = timesteps)
|
||||
image_embed = normalized_image_embed / self.image_embed_scale
|
||||
return image_embed
|
||||
|
||||
def p_losses(self, image_embed, times, text_cond, noise = None):
|
||||
noise = default(noise, lambda: torch.randn_like(image_embed))
|
||||
@@ -1350,8 +1353,6 @@ class DiffusionPrior(nn.Module):
|
||||
|
||||
# retrieve original unscaled image embed
|
||||
|
||||
image_embeds /= self.image_embed_scale
|
||||
|
||||
text_embeds = text_cond['text_embed']
|
||||
|
||||
text_embeds = rearrange(text_embeds, '(b r) d -> b r d', r = num_samples_per_batch)
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '1.6.4'
|
||||
__version__ = '1.6.5'
|
||||
|
||||
Reference in New Issue
Block a user