mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 01:34:19 +01:00
make open clip available for use with dalle2 pytorch
This commit is contained in:
12
README.md
12
README.md
@@ -627,6 +627,18 @@ images = dalle2(
|
||||
# save your image (in this example, of size 256x256)
|
||||
```
|
||||
|
||||
Alternatively, you can also use <a href="https://github.com/mlfoundations/open_clip">Open Clip</a>
|
||||
|
||||
```bash
|
||||
$ pip install open-clip-torch
|
||||
```
|
||||
|
||||
```python
|
||||
from dalle2_pytorch import OpenClipAdapter
|
||||
|
||||
clip = OpenClipAdapter()
|
||||
```
|
||||
|
||||
Now you'll just have to worry about training the Prior and the Decoder!
|
||||
|
||||
## Inpainting
|
||||
|
||||
@@ -339,6 +339,75 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
||||
image_embed = self.clip.encode_image(image)
|
||||
return EmbeddedImage(l2norm(image_embed.float()), None)
|
||||
|
||||
class OpenClipAdapter(BaseClipAdapter):
|
||||
def __init__(
|
||||
self,
|
||||
name = 'ViT-B/32',
|
||||
pretrained = 'laion400m_e32'
|
||||
):
|
||||
import open_clip
|
||||
clip, _, preprocess = open_clip.create_model_and_transforms(name, pretrained = pretrained)
|
||||
|
||||
super().__init__(clip)
|
||||
self.eos_id = 49407
|
||||
|
||||
text_attention_final = self.find_layer('ln_final')
|
||||
self.handle = text_attention_final.register_forward_hook(self._hook)
|
||||
self.clip_normalize = preprocess.transforms[-1]
|
||||
self.cleared = False
|
||||
|
||||
def find_layer(self, layer):
|
||||
modules = dict([*self.clip.named_modules()])
|
||||
return modules.get(layer, None)
|
||||
|
||||
def clear(self):
|
||||
if self.cleared:
|
||||
return
|
||||
|
||||
self.handle()
|
||||
|
||||
def _hook(self, _, inputs, outputs):
|
||||
self.text_encodings = outputs
|
||||
|
||||
@property
|
||||
def dim_latent(self):
|
||||
return 512
|
||||
|
||||
@property
|
||||
def image_size(self):
|
||||
return self.clip.visual.image_size
|
||||
|
||||
@property
|
||||
def image_channels(self):
|
||||
return 3
|
||||
|
||||
@property
|
||||
def max_text_len(self):
|
||||
return self.clip.context_length
|
||||
|
||||
@torch.no_grad()
|
||||
def embed_text(self, text):
|
||||
text = text[..., :self.max_text_len]
|
||||
|
||||
is_eos_id = (text == self.eos_id)
|
||||
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
|
||||
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
|
||||
assert not self.cleared
|
||||
|
||||
text_embed = self.clip.encode_text(text)
|
||||
text_encodings = self.text_encodings
|
||||
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
|
||||
del self.text_encodings
|
||||
return EmbeddedText(l2norm(text_embed.float()), text_encodings.float())
|
||||
|
||||
@torch.no_grad()
|
||||
def embed_image(self, image):
|
||||
assert not self.cleared
|
||||
image = self.validate_and_resize_image(image)
|
||||
image = self.clip_normalize(image)
|
||||
image_embed = self.clip.encode_image(image)
|
||||
return EmbeddedImage(l2norm(image_embed.float()), None)
|
||||
|
||||
# classifier free guidance functions
|
||||
|
||||
def prob_mask_like(shape, prob, device):
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '1.4.4'
|
||||
__version__ = '1.4.5'
|
||||
|
||||
Reference in New Issue
Block a user