mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 01:34:19 +01:00
in ddim, noise should be predicted after x0 is maybe clipped, thanks to @lukovnikov for pointing this out in another repository
This commit is contained in:
@@ -1281,12 +1281,14 @@ class DiffusionPrior(nn.Module):
|
||||
|
||||
pred = self.net.forward_with_cond_scale(image_embed, time_cond, self_cond = self_cond, cond_scale = cond_scale, **text_cond)
|
||||
|
||||
# derive x0
|
||||
|
||||
if self.predict_x_start:
|
||||
x_start = pred
|
||||
pred_noise = self.noise_scheduler.predict_noise_from_start(image_embed, t = time_cond, x0 = pred)
|
||||
else:
|
||||
x_start = self.noise_scheduler.predict_start_from_noise(image_embed, t = time_cond, noise = pred)
|
||||
pred_noise = pred
|
||||
x_start = self.noise_scheduler.predict_start_from_noise(image_embed, t = time_cond, noise = pred_noise)
|
||||
|
||||
# clip x0 before maybe predicting noise
|
||||
|
||||
if not self.predict_x_start:
|
||||
x_start.clamp_(-1., 1.)
|
||||
@@ -1294,6 +1296,13 @@ class DiffusionPrior(nn.Module):
|
||||
if self.predict_x_start and self.sampling_clamp_l2norm:
|
||||
x_start = self.l2norm_clamp_embed(x_start)
|
||||
|
||||
# predict noise
|
||||
|
||||
if self.predict_x_start:
|
||||
pred_noise = self.noise_scheduler.predict_noise_from_start(image_embed, t = time_cond, x0 = x_start)
|
||||
else:
|
||||
pred_noise = pred
|
||||
|
||||
if time_next < 0:
|
||||
image_embed = x_start
|
||||
continue
|
||||
@@ -2897,16 +2906,25 @@ class Decoder(nn.Module):
|
||||
|
||||
pred, _ = self.parse_unet_output(learned_variance, unet_output)
|
||||
|
||||
# predict x0
|
||||
|
||||
if predict_x_start:
|
||||
x_start = pred
|
||||
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
|
||||
else:
|
||||
x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred)
|
||||
pred_noise = pred
|
||||
|
||||
# maybe clip x0
|
||||
|
||||
if clip_denoised:
|
||||
x_start = self.dynamic_threshold(x_start)
|
||||
|
||||
# predict noise
|
||||
|
||||
if predict_x_start:
|
||||
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
|
||||
else:
|
||||
pred_noise = pred
|
||||
|
||||
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
||||
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
|
||||
noise = torch.randn_like(img) if not is_last_timestep else 0.
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '1.10.4'
|
||||
__version__ = '1.10.5'
|
||||
|
||||
Reference in New Issue
Block a user