Compare commits

..

4 Commits
1.6.2 ... 1.7.0

3 changed files with 70 additions and 28 deletions

View File

@@ -1264,4 +1264,14 @@ For detailed information on training the diffusion prior, please refer to the [d
}
```
```bibtex
@article{Qiao2019WeightS,
title = {Weight Standardization},
author = {Siyuan Qiao and Huiyu Wang and Chenxi Liu and Wei Shen and Alan Loddon Yuille},
journal = {ArXiv},
year = {2019},
volume = {abs/1903.10520}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -38,6 +38,8 @@ from coca_pytorch import CoCa
NAT = 1. / math.log(2.)
UnetOutput = namedtuple('UnetOutput', ['pred', 'var_interp_frac_unnormalized'])
# helper functions
def exists(val):
@@ -1277,9 +1279,12 @@ class DiffusionPrior(nn.Module):
is_ddim = timesteps < self.noise_scheduler.num_timesteps
if not is_ddim:
return self.p_sample_loop_ddpm(*args, **kwargs)
normalized_image_embed = self.p_sample_loop_ddpm(*args, **kwargs)
else:
normalized_image_embed = self.p_sample_loop_ddim(*args, **kwargs, timesteps = timesteps)
return self.p_sample_loop_ddim(*args, **kwargs, timesteps = timesteps)
image_embed = normalized_image_embed / self.image_embed_scale
return image_embed
def p_losses(self, image_embed, times, text_cond, noise = None):
noise = default(noise, lambda: torch.randn_like(image_embed))
@@ -1287,7 +1292,7 @@ class DiffusionPrior(nn.Module):
image_embed_noisy = self.noise_scheduler.q_sample(x_start = image_embed, t = times, noise = noise)
self_cond = None
if self.net.self_cond and random.random() < 1.5:
if self.net.self_cond and random.random() < 0.5:
with torch.no_grad():
self_cond = self.net(image_embed_noisy, times, **text_cond).detach()
@@ -1348,8 +1353,6 @@ class DiffusionPrior(nn.Module):
# retrieve original unscaled image embed
image_embeds /= self.image_embed_scale
text_embeds = text_cond['text_embed']
text_embeds = rearrange(text_embeds, '(b r) d -> b r d', r = num_samples_per_batch)
@@ -1448,6 +1451,30 @@ def Downsample(dim, *, dim_out = None):
dim_out = default(dim_out, dim)
return nn.Conv2d(dim, dim_out, 4, 2, 1)
class WeightStandardizedConv2d(nn.Conv2d):
"""
https://arxiv.org/abs/1903.10520
weight standardization purportedly works synergistically with group normalization
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
eps = 1e-5 if x.dtype == torch.float32 else 1e-3
weight = self.weight
flattened_weights = rearrange(weight, 'o ... -> o (...)')
mean = reduce(weight, 'o ... -> o 1 1 1', 'mean')
var = torch.var(flattened_weights, dim = -1, unbiased = False)
var = rearrange(var, 'o -> o 1 1 1')
weight = (weight - mean) * (var + eps).rsqrt()
return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
@@ -1466,10 +1493,13 @@ class Block(nn.Module):
self,
dim,
dim_out,
groups = 8
groups = 8,
weight_standardization = False
):
super().__init__()
self.project = nn.Conv2d(dim, dim_out, 3, padding = 1)
conv_klass = nn.Conv2d if not weight_standardization else WeightStandardizedConv2d
self.project = conv_klass(dim, dim_out, 3, padding = 1)
self.norm = nn.GroupNorm(groups, dim_out)
self.act = nn.SiLU()
@@ -1493,6 +1523,7 @@ class ResnetBlock(nn.Module):
cond_dim = None,
time_cond_dim = None,
groups = 8,
weight_standardization = False,
cosine_sim_cross_attn = False
):
super().__init__()
@@ -1518,8 +1549,8 @@ class ResnetBlock(nn.Module):
)
)
self.block1 = Block(dim, dim_out, groups = groups)
self.block2 = Block(dim_out, dim_out, groups = groups)
self.block1 = Block(dim, dim_out, groups = groups, weight_standardization = weight_standardization)
self.block2 = Block(dim_out, dim_out, groups = groups, weight_standardization = weight_standardization)
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
def forward(self, x, time_emb = None, cond = None):
@@ -1744,6 +1775,7 @@ class Unet(nn.Module):
init_dim = None,
init_conv_kernel_size = 7,
resnet_groups = 8,
resnet_weight_standardization = False,
num_resnet_blocks = 2,
init_cross_embed = True,
init_cross_embed_kernel_sizes = (3, 7, 15),
@@ -1891,7 +1923,7 @@ class Unet(nn.Module):
# prepare resnet klass
resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn)
resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn, weight_standardization = resnet_weight_standardization)
# give memory efficient unet an initial resnet block
@@ -2584,6 +2616,14 @@ class Decoder(nn.Module):
index = unet_number - 1
return self.unets[index]
def parse_unet_output(self, learned_variance, output):
var_interp_frac_unnormalized = None
if learned_variance:
output, var_interp_frac_unnormalized = output.chunk(2, dim = 1)
return UnetOutput(output, var_interp_frac_unnormalized)
@contextmanager
def one_unet_in_gpu(self, unet_number = None, unet = None):
assert exists(unet_number) ^ exists(unet)
@@ -2625,10 +2665,9 @@ class Decoder(nn.Module):
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, self_cond = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None):
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level))
model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level))
if learned_variance:
pred, var_interp_frac_unnormalized = pred.chunk(2, dim = 1)
pred, var_interp_frac_unnormalized = self.parse_unet_output(learned_variance, model_output)
if predict_x_start:
x_start = pred
@@ -2811,10 +2850,9 @@ class Decoder(nn.Module):
self_cond = x_start if unet.self_cond else None
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, self_cond = self_cond, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
unet_output = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, self_cond = self_cond, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
if learned_variance:
pred, _ = pred.chunk(2, dim = 1)
pred, _ = self.parse_unet_output(learned_variance, unet_output)
if predict_x_start:
x_start = pred
@@ -2886,16 +2924,13 @@ class Decoder(nn.Module):
if unet.self_cond and random.random() < 0.5:
with torch.no_grad():
self_cond = unet(x_noisy, times, **unet_kwargs)
if learned_variance:
self_cond, _ = self_cond.chunk(2, dim = 1)
unet_output = unet(x_noisy, times, **unet_kwargs)
self_cond, _ = self.parse_unet_output(learned_variance, unet_output)
self_cond = self_cond.detach()
# forward to get model prediction
model_output = unet(
unet_output = unet(
x_noisy,
times,
**unet_kwargs,
@@ -2904,10 +2939,7 @@ class Decoder(nn.Module):
text_cond_drop_prob = self.text_cond_drop_prob,
)
if learned_variance:
pred, _ = model_output.chunk(2, dim = 1)
else:
pred = model_output
pred, _ = self.parse_unet_output(learned_variance, unet_output)
target = noise if not predict_x_start else x_start
@@ -2930,7 +2962,7 @@ class Decoder(nn.Module):
# if learning the variance, also include the extra weight kl loss
true_mean, _, true_log_variance_clipped = noise_scheduler.q_posterior(x_start = x_start, x_t = x_noisy, t = times)
model_mean, _, model_log_variance, _ = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
model_mean, _, model_log_variance, _ = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = unet_output)
# kl loss with detached model predicted mean, for stability reasons as in paper

View File

@@ -1 +1 @@
__version__ = '1.6.2'
__version__ = '1.7.0'