Compare commits

..

1 Commits
1.8.4 ... 1.7.0

4 changed files with 18 additions and 61 deletions

View File

@@ -49,7 +49,6 @@ This library would not have gotten to this working state without the help of
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
- <a href="https://huggingface.co">🤗 Huggingface</a> and in particular <a href="https://github.com/sgugger">Sylvain</a> for the <a href="https://github.com/huggingface/accelerate">Accelerate</a> library
- <a href="https://github.com/arogozhnikov">Alex</a> for <a href="https://github.com/arogozhnikov/einops">einops</a>, indispensable tool for tensor manipulation
... and many others. Thank you! 🙏
@@ -1275,14 +1274,4 @@ For detailed information on training the diffusion prior, please refer to the [d
}
```
```bibtex
@inproceedings{rogozhnikov2022einops,
title = {Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation},
author = {Alex Rogozhnikov},
booktitle = {International Conference on Learning Representations},
year = {2022},
url = {https://openreview.net/forum?id=oapKSVM2bcj}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -250,15 +250,9 @@ class XClipAdapter(BaseClipAdapter):
text = text[..., :self.max_text_len]
text_mask = text != 0
encoder_output = self.clip.text_transformer(text)
encoder_output_is_cls = encoder_output.ndim == 3
text_cls, text_encodings = (encoder_output[:, 0], encoder_output[:, 1:]) if encoder_output_is_cls else (encoder_output, None)
text_cls, text_encodings = encoder_output[:, 0], encoder_output[:, 1:]
text_embed = self.clip.to_text_latent(text_cls)
if exists(text_encodings):
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
return EmbeddedText(l2norm(text_embed), text_encodings)
@torch.no_grad()
@@ -879,8 +873,6 @@ class Attention(nn.Module):
# attention
attn = sim.softmax(dim = -1, dtype = torch.float32)
attn = attn.type(sim.dtype)
attn = self.dropout(attn)
# aggregate values
@@ -1464,6 +1456,10 @@ class WeightStandardizedConv2d(nn.Conv2d):
https://arxiv.org/abs/1903.10520
weight standardization purportedly works synergistically with group normalization
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
eps = 1e-5 if x.dtype == torch.float32 else 1e-3
@@ -1639,7 +1635,6 @@ class CrossAttention(nn.Module):
sim = sim.masked_fill(~mask, max_neg_value)
attn = sim.softmax(dim = -1, dtype = torch.float32)
attn = attn.type(sim.dtype)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')

View File

@@ -9,7 +9,7 @@ from collections.abc import Iterable
import torch
import torch.nn.functional as F
from torch import nn
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR
from torch.optim.lr_scheduler import LambdaLR
from torch.cuda.amp import autocast, GradScaler
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
@@ -181,8 +181,7 @@ class DiffusionPriorTrainer(nn.Module):
eps = 1e-6,
max_grad_norm = None,
group_wd_params = True,
warmup_steps = None,
cosine_decay_max_steps = None,
warmup_steps = 1,
**kwargs
):
super().__init__()
@@ -234,11 +233,8 @@ class DiffusionPriorTrainer(nn.Module):
**self.optim_kwargs,
**kwargs
)
if exists(cosine_decay_max_steps):
self.scheduler = CosineAnnealingLR(optimizer, T_max = cosine_decay_max_steps)
else:
self.scheduler = LambdaLR(self.optimizer, lr_lambda = lambda _: 1.0)
self.scheduler = LambdaLR(self.optimizer, lr_lambda = lambda _: 1.0)
self.warmup_scheduler = warmup.LinearWarmup(self.optimizer, warmup_period = warmup_steps) if exists(warmup_steps) else None
@@ -275,7 +271,6 @@ class DiffusionPriorTrainer(nn.Module):
# FIXME: LambdaLR can't be saved due to pickling issues
save_obj = dict(
optimizer = self.optimizer.state_dict(),
scheduler = self.scheduler.state_dict(),
warmup_scheduler = self.warmup_scheduler,
model = self.accelerator.unwrap_model(self.diffusion_prior).state_dict(),
version = version.parse(__version__),
@@ -322,9 +317,7 @@ class DiffusionPriorTrainer(nn.Module):
# unwrap the model when loading from checkpoint
self.accelerator.unwrap_model(self.diffusion_prior).load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step, device=self.device) * loaded_obj['step'].to(self.device))
self.optimizer.load_state_dict(loaded_obj['optimizer'])
self.scheduler.load_state_dict(loaded_obj['scheduler'])
# set warmupstep
if exists(self.warmup_scheduler):
@@ -357,8 +350,7 @@ class DiffusionPriorTrainer(nn.Module):
# accelerator will ocassionally skip optimizer steps in a "dynamic loss scaling strategy"
if not self.accelerator.optimizer_step_was_skipped:
sched_context = self.warmup_scheduler.dampening if exists(self.warmup_scheduler) else nullcontext
with sched_context():
with self.warmup_scheduler.dampening():
self.scheduler.step()
if self.use_ema:
@@ -441,7 +433,6 @@ class DecoderTrainer(nn.Module):
wd = 1e-2,
eps = 1e-8,
warmup_steps = None,
cosine_decay_max_steps = None,
max_grad_norm = 0.5,
amp = False,
group_wd_params = True,
@@ -463,7 +454,7 @@ class DecoderTrainer(nn.Module):
# be able to finely customize learning rate, weight decay
# per unet
lr, wd, eps, warmup_steps, cosine_decay_max_steps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps, warmup_steps, cosine_decay_max_steps))
lr, wd, eps, warmup_steps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps, warmup_steps))
assert all([unet_lr <= 1e-2 for unet_lr in lr]), 'your learning rate is too high, recommend sticking with 1e-4, at most 5e-4'
@@ -471,7 +462,7 @@ class DecoderTrainer(nn.Module):
schedulers = []
warmup_schedulers = []
for unet, unet_lr, unet_wd, unet_eps, unet_warmup_steps, unet_cosine_decay_max_steps in zip(decoder.unets, lr, wd, eps, warmup_steps, cosine_decay_max_steps):
for unet, unet_lr, unet_wd, unet_eps, unet_warmup_steps in zip(decoder.unets, lr, wd, eps, warmup_steps):
if isinstance(unet, nn.Identity):
optimizers.append(None)
schedulers.append(None)
@@ -487,11 +478,7 @@ class DecoderTrainer(nn.Module):
)
optimizers.append(optimizer)
if exists(unet_cosine_decay_max_steps):
scheduler = CosineAnnealingLR(optimizer, T_max = unet_cosine_decay_max_steps)
else:
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps) if exists(unet_warmup_steps) else None
warmup_schedulers.append(warmup_scheduler)
@@ -571,15 +558,9 @@ class DecoderTrainer(nn.Module):
for ind in range(0, self.num_unets):
optimizer_key = f'optim{ind}'
scheduler_key = f'sched{ind}'
optimizer = getattr(self, optimizer_key)
scheduler = getattr(self, scheduler_key)
optimizer_state_dict = optimizer.state_dict() if exists(optimizer) else None
scheduler_state_dict = scheduler.state_dict() if exists(scheduler) else None
save_obj = {**save_obj, optimizer_key: optimizer_state_dict, scheduler_key: scheduler_state_dict}
state_dict = optimizer.state_dict() if optimizer is not None else None
save_obj = {**save_obj, optimizer_key: state_dict}
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
@@ -600,18 +581,10 @@ class DecoderTrainer(nn.Module):
optimizer_key = f'optim{ind}'
optimizer = getattr(self, optimizer_key)
scheduler_key = f'sched{ind}'
scheduler = getattr(self, scheduler_key)
warmup_scheduler = self.warmup_schedulers[ind]
if exists(optimizer):
if optimizer is not None:
optimizer.load_state_dict(loaded_obj[optimizer_key])
if exists(scheduler):
scheduler.load_state_dict(loaded_obj[scheduler_key])
if exists(warmup_scheduler):
warmup_scheduler.last_step = last_step

View File

@@ -1 +1 @@
__version__ = '1.8.4'
__version__ = '1.7.0'