Compare commits

...

13 Commits
1.0.6 ... 1.6.0

5 changed files with 348 additions and 83 deletions

View File

@@ -371,6 +371,7 @@ loss.backward()
unet1 = Unet(
dim = 128,
image_embed_dim = 512,
text_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8),
@@ -395,7 +396,7 @@ decoder = Decoder(
).cuda()
for unet_number in (1, 2):
loss = decoder(images, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss = decoder(images, text = text, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss.backward()
# do above for many steps
@@ -626,6 +627,18 @@ images = dalle2(
# save your image (in this example, of size 256x256)
```
Alternatively, you can also use <a href="https://github.com/mlfoundations/open_clip">Open Clip</a>
```bash
$ pip install open-clip-torch
```
```python
from dalle2_pytorch import OpenClipAdapter
clip = OpenClipAdapter()
```
Now you'll just have to worry about training the Prior and the Decoder!
## Inpainting
@@ -860,25 +873,23 @@ unet1 = Unet(
text_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
dim_mults=(1, 2, 4, 8),
cond_on_text_encodings = True,
).cuda()
unet2 = Unet(
dim = 16,
image_embed_dim = 512,
text_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults = (1, 2, 4, 8, 16),
cond_on_text_encodings = True
).cuda()
decoder = Decoder(
unet = (unet1, unet2),
image_sizes = (128, 256),
clip = clip,
timesteps = 1000,
condition_on_text_encodings = True
timesteps = 1000
).cuda()
decoder_trainer = DecoderTrainer(
@@ -903,8 +914,8 @@ for unet_number in (1, 2):
# after much training
# you can sample from the exponentially moving averaged unets as so
mock_image_embed = torch.randn(4, 512).cuda()
images = decoder_trainer.sample(mock_image_embed, text = text) # (4, 3, 256, 256)
mock_image_embed = torch.randn(32, 512).cuda()
images = decoder_trainer.sample(image_embed = mock_image_embed, text = text) # (4, 3, 256, 256)
```
### Diffusion Prior Training
@@ -1112,7 +1123,8 @@ For detailed information on training the diffusion prior, please refer to the [d
- [x] allow for unet to be able to condition non-cross attention style as well
- [x] speed up inference, read up on papers (ddim)
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
- [ ] try out the nested unet from https://arxiv.org/abs/2005.09007 after hearing several positive testimonies from researchers, for segmentation anyhow
- [x] add the final combination of upsample feature maps, used in unet squared, seems to have an effect in local experiments
- [ ] consider elucidated dalle2 https://arxiv.org/abs/2206.00364
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
## Citations
@@ -1241,4 +1253,15 @@ For detailed information on training the diffusion prior, please refer to the [d
}
```
```bibtex
@misc{chen2022analog,
title = {Analog Bits: Generating Discrete Data using Diffusion Models with Self-Conditioning},
author = {Ting Chen and Ruixiang Zhang and Geoffrey Hinton},
year = {2022},
eprint = {2208.04202},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -8,6 +8,7 @@ from pathlib import Path
import torch
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from torch import nn, einsum
import torchvision.transforms as T
@@ -108,6 +109,28 @@ def pad_tuple_to_length(t, length, fillvalue = None):
return t
return (*t, *((fillvalue,) * remain_length))
# checkpointing helper function
def make_checkpointable(fn, **kwargs):
if isinstance(fn, nn.ModuleList):
return [maybe(make_checkpointable)(el, **kwargs) for el in fn]
condition = kwargs.pop('condition', None)
if exists(condition) and not condition(fn):
return fn
@wraps(fn)
def inner(*args):
input_needs_grad = any([isinstance(el, torch.Tensor) and el.requires_grad for el in args])
if not input_needs_grad:
return fn(*args)
return checkpoint(fn, *args)
return inner
# for controlling freezing of CLIP
def set_module_requires_grad_(module, requires_grad):
@@ -339,6 +362,75 @@ class OpenAIClipAdapter(BaseClipAdapter):
image_embed = self.clip.encode_image(image)
return EmbeddedImage(l2norm(image_embed.float()), None)
class OpenClipAdapter(BaseClipAdapter):
def __init__(
self,
name = 'ViT-B/32',
pretrained = 'laion400m_e32'
):
import open_clip
clip, _, preprocess = open_clip.create_model_and_transforms(name, pretrained = pretrained)
super().__init__(clip)
self.eos_id = 49407
text_attention_final = self.find_layer('ln_final')
self.handle = text_attention_final.register_forward_hook(self._hook)
self.clip_normalize = preprocess.transforms[-1]
self.cleared = False
def find_layer(self, layer):
modules = dict([*self.clip.named_modules()])
return modules.get(layer, None)
def clear(self):
if self.cleared:
return
self.handle()
def _hook(self, _, inputs, outputs):
self.text_encodings = outputs
@property
def dim_latent(self):
return 512
@property
def image_size(self):
return self.clip.visual.image_size
@property
def image_channels(self):
return 3
@property
def max_text_len(self):
return self.clip.context_length
@torch.no_grad()
def embed_text(self, text):
text = text[..., :self.max_text_len]
is_eos_id = (text == self.eos_id)
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
assert not self.cleared
text_embed = self.clip.encode_text(text)
text_encodings = self.text_encodings
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
del self.text_encodings
return EmbeddedText(l2norm(text_embed.float()), text_encodings.float())
@torch.no_grad()
def embed_image(self, image):
assert not self.cleared
image = self.validate_and_resize_image(image)
image = self.clip_normalize(image)
image_embed = self.clip.encode_image(image)
return EmbeddedImage(l2norm(image_embed.float()), None)
# classifier free guidance functions
def prob_mask_like(shape, prob, device):
@@ -547,34 +639,40 @@ class NoiseScheduler(nn.Module):
# diffusion prior
class LayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5, stable = False):
def __init__(self, dim, eps = 1e-5, fp16_eps = 1e-3, stable = False):
super().__init__()
self.eps = eps
self.fp16_eps = fp16_eps
self.stable = stable
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
eps = self.eps if x.dtype == torch.float32 else self.fp16_eps
if self.stable:
x = x / x.amax(dim = -1, keepdim = True).detach()
var = torch.var(x, dim = -1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = -1, keepdim = True)
return (x - mean) * (var + self.eps).rsqrt() * self.g
return (x - mean) * (var + eps).rsqrt() * self.g
class ChanLayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5, stable = False):
def __init__(self, dim, eps = 1e-5, fp16_eps = 1e-3, stable = False):
super().__init__()
self.eps = eps
self.fp16_eps = fp16_eps
self.stable = stable
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
def forward(self, x):
eps = self.eps if x.dtype == torch.float32 else self.fp16_eps
if self.stable:
x = x / x.amax(dim = 1, keepdim = True).detach()
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) * (var + self.eps).rsqrt() * self.g
return (x - mean) * (var + eps).rsqrt() * self.g
class Residual(nn.Module):
def __init__(self, fn):
@@ -695,11 +793,12 @@ class Attention(nn.Module):
dropout = 0.,
causal = False,
rotary_emb = None,
pb_relax_alpha = 128
cosine_sim = True,
cosine_sim_scale = 16
):
super().__init__()
self.pb_relax_alpha = pb_relax_alpha
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1)
self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
self.cosine_sim = cosine_sim
self.heads = heads
inner_dim = dim_head * heads
@@ -739,6 +838,13 @@ class Attention(nn.Module):
k = torch.cat((nk, k), dim = -2)
v = torch.cat((nv, v), dim = -2)
# whether to use cosine sim
if self.cosine_sim:
q, k = map(l2norm, (q, k))
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
# calculate query / key similarities
sim = einsum('b h i d, b j d -> b h i j', q, k)
@@ -764,10 +870,7 @@ class Attention(nn.Module):
# attention
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
sim = sim * self.pb_relax_alpha
attn = sim.softmax(dim = -1)
attn = sim.softmax(dim = -1, dtype = torch.float32)
attn = self.dropout(attn)
# aggregate values
@@ -1054,17 +1157,17 @@ class DiffusionPrior(nn.Module):
pred = self.net.forward_with_cond_scale(x, t, cond_scale = cond_scale, **text_cond)
if self.predict_x_start:
x_recon = pred
x_start = pred
else:
x_recon = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
x_start = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised and not self.predict_x_start:
x_recon.clamp_(-1., 1.)
x_start.clamp_(-1., 1.)
if self.predict_x_start and self.sampling_clamp_l2norm:
x_recon = l2norm(x_recon) * self.image_embed_scale
x_start = l2norm(x_start) * self.image_embed_scale
model_mean, posterior_variance, posterior_log_variance = self.noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t)
model_mean, posterior_variance, posterior_log_variance = self.noise_scheduler.q_posterior(x_start=x_start, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
@@ -1357,7 +1460,8 @@ class ResnetBlock(nn.Module):
*,
cond_dim = None,
time_cond_dim = None,
groups = 8
groups = 8,
cosine_sim_cross_attn = False
):
super().__init__()
@@ -1377,7 +1481,8 @@ class ResnetBlock(nn.Module):
'b (h w) c',
CrossAttention(
dim = dim_out,
context_dim = cond_dim
context_dim = cond_dim,
cosine_sim = cosine_sim_cross_attn
)
)
@@ -1412,11 +1517,12 @@ class CrossAttention(nn.Module):
heads = 8,
dropout = 0.,
norm_context = False,
pb_relax_alpha = 32 ** 2
cosine_sim = False,
cosine_sim_scale = 16
):
super().__init__()
self.pb_relax_alpha = pb_relax_alpha
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1)
self.cosine_sim = cosine_sim
self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
self.heads = heads
inner_dim = dim_head * heads
@@ -1452,7 +1558,10 @@ class CrossAttention(nn.Module):
k = torch.cat((nk, k), dim = -2)
v = torch.cat((nv, v), dim = -2)
q = q * self.scale
if self.cosine_sim:
q, k = map(l2norm, (q, k))
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
sim = einsum('b h i d, b h j d -> b h i j', q, k)
max_neg_value = -torch.finfo(sim.dtype).max
@@ -1462,10 +1571,7 @@ class CrossAttention(nn.Module):
mask = rearrange(mask, 'b j -> b 1 1 j')
sim = sim.masked_fill(~mask, max_neg_value)
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
sim = sim * self.pb_relax_alpha
attn = sim.softmax(dim = -1)
attn = sim.softmax(dim = -1, dtype = torch.float32)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
@@ -1476,7 +1582,8 @@ class LinearAttention(nn.Module):
self,
dim,
dim_head = 32,
heads = 8
heads = 8,
**kwargs
):
super().__init__()
self.scale = dim_head ** -0.5
@@ -1494,6 +1601,7 @@ class LinearAttention(nn.Module):
def forward(self, fmap):
h, x, y = self.heads, *fmap.shape[-2:]
seq_len = x * y
fmap = self.norm(fmap)
q, k, v = self.to_qkv(fmap).chunk(3, dim = 1)
@@ -1503,6 +1611,9 @@ class LinearAttention(nn.Module):
k = k.softmax(dim = -2)
q = q * self.scale
v = l2norm(v)
k, v = map(lambda t: t / math.sqrt(seq_len), (k, v))
context = einsum('b n d, b n e -> b d e', k, v)
out = einsum('b n d, b d e -> b n e', q, context)
@@ -1538,6 +1649,38 @@ class CrossEmbedLayer(nn.Module):
fmaps = tuple(map(lambda conv: conv(x), self.convs))
return torch.cat(fmaps, dim = 1)
class UpsampleCombiner(nn.Module):
def __init__(
self,
dim,
*,
enabled = False,
dim_ins = tuple(),
dim_outs = tuple()
):
super().__init__()
assert len(dim_ins) == len(dim_outs)
self.enabled = enabled
if not self.enabled:
self.dim_out = dim
return
self.fmap_convs = nn.ModuleList([Block(dim_in, dim_out) for dim_in, dim_out in zip(dim_ins, dim_outs)])
self.dim_out = dim + (sum(dim_outs) if len(dim_outs) > 0 else 0)
def forward(self, x, fmaps = None):
target_size = x.shape[-1]
fmaps = default(fmaps, tuple())
if not self.enabled or len(fmaps) == 0 or len(self.fmap_convs) == 0:
return x
fmaps = [resize_image_to(fmap, target_size) for fmap in fmaps]
outs = [conv(fmap) for fmap, conv in zip(fmaps, self.fmap_convs)]
return torch.cat((x, *outs), dim = 1)
class Unet(nn.Module):
def __init__(
self,
@@ -1557,7 +1700,10 @@ class Unet(nn.Module):
attn_heads = 16,
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
self_cond = False,
sparse_attn = False,
cosine_sim_cross_attn = False,
cosine_sim_self_attn = False,
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
cond_on_text_encodings = False,
max_text_len = 256,
@@ -1575,6 +1721,8 @@ class Unet(nn.Module):
scale_skip_connection = False,
pixel_shuffle_upsample = True,
final_conv_kernel_size = 1,
combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper
checkpoint_during_training = False,
**kwargs
):
super().__init__()
@@ -1588,12 +1736,21 @@ class Unet(nn.Module):
self.lowres_cond = lowres_cond
# whether to do self conditioning
self.self_cond = self_cond
# determine dimensions
self.channels = channels
self.channels_out = default(channels_out, channels)
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
# initial number of channels depends on
# (1) low resolution conditioning from cascading ddpm paper, conditioned on previous unet output in the cascade
# (2) self conditioning (bit diffusion paper)
init_channels = channels * (1 + int(lowres_cond) + int(self_cond))
init_dim = default(init_dim, dim)
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1) if init_cross_embed else nn.Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2)
@@ -1677,7 +1834,7 @@ class Unet(nn.Module):
# attention related params
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head, cosine_sim = cosine_sim_self_attn)
self_attn = cast_tuple(self_attn, num_stages)
@@ -1700,9 +1857,13 @@ class Unet(nn.Module):
upsample_klass = NearestUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample
# prepare resnet klass
resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn)
# give memory efficient unet an initial resnet block
self.init_resnet_block = ResnetBlock(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
self.init_resnet_block = resnet_block(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
# layers
@@ -1710,7 +1871,8 @@ class Unet(nn.Module):
self.ups = nn.ModuleList([])
num_resolutions = len(in_out)
skip_connect_dims = [] # keeping track of skip connection dimensions
skip_connect_dims = [] # keeping track of skip connection dimensions
upsample_combiner_dims = [] # keeping track of dimensions for final upsample feature map combiner
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(in_out, resnet_groups, num_resnet_blocks, self_attn)):
is_first = ind == 0
@@ -1728,17 +1890,17 @@ class Unet(nn.Module):
self.downs.append(nn.ModuleList([
downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None,
ResnetBlock(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
nn.ModuleList([ResnetBlock(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
resnet_block(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
nn.ModuleList([resnet_block(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
attention,
downsample_klass(dim_layer, dim_out = dim_out) if not is_last and not memory_efficient else nn.Conv2d(dim_layer, dim_out, 1)
]))
mid_dim = dims[-1]
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
self.mid_block1 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
self.mid_attn = create_self_attn(mid_dim)
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
self.mid_block2 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks), reversed(self_attn))):
is_last = ind >= (len(in_out) - 1)
@@ -1752,14 +1914,27 @@ class Unet(nn.Module):
elif sparse_attn:
attention = Residual(LinearAttention(dim_out, **attn_kwargs))
upsample_combiner_dims.append(dim_out)
self.ups.append(nn.ModuleList([
ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
nn.ModuleList([resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
attention,
upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity()
]))
self.final_resnet_block = ResnetBlock(dim * 2, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
# whether to combine outputs from all upsample blocks for final resnet block
self.upsample_combiner = UpsampleCombiner(
dim = dim,
enabled = combine_upsample_fmaps,
dim_ins = upsample_combiner_dims,
dim_outs = (dim,) * len(upsample_combiner_dims)
)
# a final resnet block
self.final_resnet_block = resnet_block(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
out_dim_in = dim + (channels if lowres_cond else 0)
@@ -1767,6 +1942,10 @@ class Unet(nn.Module):
zero_init_(self.to_out) # since both OpenAI and @crowsonkb are doing it
# whether to checkpoint during training
self.checkpoint_during_training = checkpoint_during_training
# if the current settings for the unet are not correct
# for cascading DDPM, then reinit the unet with the right settings
def cast_model_parameters(
@@ -1783,7 +1962,7 @@ class Unet(nn.Module):
channels == self.channels and \
cond_on_image_embeds == self.cond_on_image_embeds and \
cond_on_text_encodings == self.cond_on_text_encodings and \
cond_on_lowres_noise == self.cond_on_lowres_noise and \
lowres_noise_cond == self.lowres_noise_cond and \
channels_out == self.channels_out:
return self
@@ -1824,7 +2003,9 @@ class Unet(nn.Module):
image_cond_drop_prob = 0.,
text_cond_drop_prob = 0.,
blur_sigma = None,
blur_kernel_size = None
blur_kernel_size = None,
disable_checkpoint = False,
self_cond = None
):
batch_size, device = x.shape[0], x.device
@@ -1832,6 +2013,14 @@ class Unet(nn.Module):
assert not (self.lowres_cond and not exists(lowres_cond_img)), 'low resolution conditioning image must be present'
# concat self conditioning, if needed
if self.self_cond:
self_cond = default(self_cond, lambda: torch.zeros_like(x))
x = torch.cat((x, self_cond), dim = 1)
# concat low resolution conditioning
if exists(lowres_cond_img):
x = torch.cat((x, lowres_cond_img), dim = 1)
@@ -1946,16 +2135,29 @@ class Unet(nn.Module):
c = self.norm_cond(c)
mid_c = self.norm_mid_cond(mid_c)
# gradient checkpointing
can_checkpoint = self.training and self.checkpoint_during_training and not disable_checkpoint
apply_checkpoint_fn = make_checkpointable if can_checkpoint else identity
# make checkpointable modules
init_resnet_block, mid_block1, mid_attn, mid_block2, final_resnet_block = [maybe(apply_checkpoint_fn)(module) for module in (self.init_resnet_block, self.mid_block1, self.mid_attn, self.mid_block2, self.final_resnet_block)]
can_checkpoint_cond = lambda m: isinstance(m, ResnetBlock)
downs, ups = [maybe(apply_checkpoint_fn)(m, condition = can_checkpoint_cond) for m in (self.downs, self.ups)]
# initial resnet block
if exists(self.init_resnet_block):
x = self.init_resnet_block(x, t)
if exists(init_resnet_block):
x = init_resnet_block(x, t)
# go through the layers of the unet, down and up
hiddens = []
down_hiddens = []
up_hiddens = []
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in self.downs:
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in downs:
if exists(pre_downsample):
x = pre_downsample(x)
@@ -1963,24 +2165,24 @@ class Unet(nn.Module):
for resnet_block in resnet_blocks:
x = resnet_block(x, t, c)
hiddens.append(x)
down_hiddens.append(x.contiguous())
x = attn(x)
hiddens.append(x.contiguous())
down_hiddens.append(x.contiguous())
if exists(post_downsample):
x = post_downsample(x)
x = self.mid_block1(x, t, mid_c)
x = mid_block1(x, t, mid_c)
if exists(self.mid_attn):
x = self.mid_attn(x)
if exists(mid_attn):
x = mid_attn(x)
x = self.mid_block2(x, t, mid_c)
x = mid_block2(x, t, mid_c)
connect_skip = lambda fmap: torch.cat((fmap, hiddens.pop() * self.skip_connect_scale), dim = 1)
connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1)
for init_block, resnet_blocks, attn, upsample in self.ups:
for init_block, resnet_blocks, attn, upsample in ups:
x = connect_skip(x)
x = init_block(x, t, c)
@@ -1989,11 +2191,15 @@ class Unet(nn.Module):
x = resnet_block(x, t, c)
x = attn(x)
up_hiddens.append(x.contiguous())
x = upsample(x)
x = self.upsample_combiner(x, up_hiddens)
x = torch.cat((x, r), dim = 1)
x = self.final_resnet_block(x, t)
x = final_resnet_block(x, t)
if exists(lowres_cond_img):
x = torch.cat((x, lowres_cond_img), dim = 1)
@@ -2384,23 +2590,23 @@ class Decoder(nn.Module):
x = x.clamp(-s, s) / s
return x
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None):
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, self_cond = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None):
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level))
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level))
if learned_variance:
pred, var_interp_frac_unnormalized = pred.chunk(2, dim = 1)
if predict_x_start:
x_recon = pred
x_start = pred
else:
x_recon = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
x_start = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised:
x_recon = self.dynamic_threshold(x_recon)
x_start = self.dynamic_threshold(x_start)
model_mean, posterior_variance, posterior_log_variance = noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t)
model_mean, posterior_variance, posterior_log_variance = noise_scheduler.q_posterior(x_start=x_start, x_t=x, t=t)
if learned_variance:
# if learned variance, posterio variance and posterior log variance are predicted by the network
@@ -2416,16 +2622,17 @@ class Decoder(nn.Module):
posterior_log_variance = var_interp_frac * max_log + (1 - var_interp_frac) * min_log
posterior_variance = posterior_log_variance.exp()
return model_mean, posterior_variance, posterior_log_variance
return model_mean, posterior_variance, posterior_log_variance, x_start
@torch.no_grad()
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None):
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, self_cond = None, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level)
model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level)
noise = torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
pred = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
return pred, x_start
@torch.no_grad()
def p_sample_loop_ddpm(
@@ -2451,6 +2658,8 @@ class Decoder(nn.Module):
b = shape[0]
img = torch.randn(shape, device = device)
x_start = None # for self-conditioning
is_inpaint = exists(inpaint_image)
resample_times = inpaint_resample_times if is_inpaint else 1
@@ -2478,13 +2687,16 @@ class Decoder(nn.Module):
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times)
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
img = self.p_sample(
self_cond = x_start if unet.self_cond else None
img, x_start = self.p_sample(
unet,
img,
times,
image_embed = image_embed,
text_encodings = text_encodings,
cond_scale = cond_scale,
self_cond = self_cond,
lowres_cond_img = lowres_cond_img,
lowres_noise_level = lowres_noise_level,
predict_x_start = predict_x_start,
@@ -2543,6 +2755,8 @@ class Decoder(nn.Module):
img = torch.randn(shape, device = device)
x_start = None # for self-conditioning
if not is_latent_diffusion:
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
@@ -2563,7 +2777,9 @@ class Decoder(nn.Module):
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond)
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
self_cond = x_start if unet.self_cond else None
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, self_cond = self_cond, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
if learned_variance:
pred, _ = pred.chunk(2, dim = 1)
@@ -2623,13 +2839,35 @@ class Decoder(nn.Module):
x_noisy = noise_scheduler.q_sample(x_start = x_start, t = times, noise = noise)
model_output = unet(
x_noisy,
times,
# unet kwargs
unet_kwargs = dict(
image_embed = image_embed,
text_encodings = text_encodings,
lowres_cond_img = lowres_cond_img,
lowres_noise_level = lowres_noise_level,
)
# self conditioning
self_cond = None
if unet.self_cond and random.random() < 0.5:
with torch.no_grad():
self_cond = unet(x_noisy, times, **unet_kwargs)
if learned_variance:
self_cond, _ = self_cond.chunk(2, dim = 1)
self_cond = self_cond.detach()
# forward to get model prediction
model_output = unet(
x_noisy,
times,
**unet_kwargs,
self_cond = self_cond,
image_cond_drop_prob = self.image_cond_drop_prob,
text_cond_drop_prob = self.text_cond_drop_prob,
)
@@ -2660,7 +2898,7 @@ class Decoder(nn.Module):
# if learning the variance, also include the extra weight kl loss
true_mean, _, true_log_variance_clipped = noise_scheduler.q_posterior(x_start = x_start, x_t = x_noisy, t = times)
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
model_mean, _, model_log_variance, _ = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
# kl loss with detached model predicted mean, for stability reasons as in paper
@@ -2885,7 +3123,7 @@ class DALLE2(nn.Module):
image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale)
text_cond = text if self.decoder_need_text_cond else None
images = self.decoder.sample(image_embed, text = text_cond, cond_scale = cond_scale)
images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale)
if return_pil_images:
images = list(map(self.to_pil, images.unbind(dim = 0)))

View File

@@ -174,7 +174,7 @@ class DiffusionPriorTrainer(nn.Module):
def __init__(
self,
diffusion_prior,
accelerator,
accelerator = None,
use_ema = True,
lr = 3e-4,
wd = 1e-2,
@@ -186,8 +186,12 @@ class DiffusionPriorTrainer(nn.Module):
):
super().__init__()
assert isinstance(diffusion_prior, DiffusionPrior)
assert isinstance(accelerator, Accelerator)
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
accelerator_kwargs, kwargs = groupby_prefix_and_trim('accelerator_', kwargs)
if not exists(accelerator):
accelerator = Accelerator(**accelerator_kwargs)
# assign some helpful member vars

View File

@@ -1 +1 @@
__version__ = '1.0.6'
__version__ = '1.6.0'

View File

@@ -26,7 +26,7 @@ setup(
install_requires=[
'accelerate',
'click',
'clip-anytorch',
'clip-anytorch>=2.4.0',
'coca-pytorch>=0.0.5',
'ema-pytorch>=0.0.7',
'einops>=0.4',