|
|
|
|
@@ -8,6 +8,7 @@ from pathlib import Path
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
from torch.utils.checkpoint import checkpoint
|
|
|
|
|
from torch import nn, einsum
|
|
|
|
|
import torchvision.transforms as T
|
|
|
|
|
|
|
|
|
|
@@ -108,6 +109,28 @@ def pad_tuple_to_length(t, length, fillvalue = None):
|
|
|
|
|
return t
|
|
|
|
|
return (*t, *((fillvalue,) * remain_length))
|
|
|
|
|
|
|
|
|
|
# checkpointing helper function
|
|
|
|
|
|
|
|
|
|
def make_checkpointable(fn, **kwargs):
|
|
|
|
|
if isinstance(fn, nn.ModuleList):
|
|
|
|
|
return [maybe(make_checkpointable)(el, **kwargs) for el in fn]
|
|
|
|
|
|
|
|
|
|
condition = kwargs.pop('condition', None)
|
|
|
|
|
|
|
|
|
|
if exists(condition) and not condition(fn):
|
|
|
|
|
return fn
|
|
|
|
|
|
|
|
|
|
@wraps(fn)
|
|
|
|
|
def inner(*args):
|
|
|
|
|
input_needs_grad = any([isinstance(el, torch.Tensor) and el.requires_grad for el in args])
|
|
|
|
|
|
|
|
|
|
if not input_needs_grad:
|
|
|
|
|
return fn(*args)
|
|
|
|
|
|
|
|
|
|
return checkpoint(fn, *args)
|
|
|
|
|
|
|
|
|
|
return inner
|
|
|
|
|
|
|
|
|
|
# for controlling freezing of CLIP
|
|
|
|
|
|
|
|
|
|
def set_module_requires_grad_(module, requires_grad):
|
|
|
|
|
@@ -339,6 +362,75 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
|
|
|
|
image_embed = self.clip.encode_image(image)
|
|
|
|
|
return EmbeddedImage(l2norm(image_embed.float()), None)
|
|
|
|
|
|
|
|
|
|
class OpenClipAdapter(BaseClipAdapter):
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
name = 'ViT-B/32',
|
|
|
|
|
pretrained = 'laion400m_e32'
|
|
|
|
|
):
|
|
|
|
|
import open_clip
|
|
|
|
|
clip, _, preprocess = open_clip.create_model_and_transforms(name, pretrained = pretrained)
|
|
|
|
|
|
|
|
|
|
super().__init__(clip)
|
|
|
|
|
self.eos_id = 49407
|
|
|
|
|
|
|
|
|
|
text_attention_final = self.find_layer('ln_final')
|
|
|
|
|
self.handle = text_attention_final.register_forward_hook(self._hook)
|
|
|
|
|
self.clip_normalize = preprocess.transforms[-1]
|
|
|
|
|
self.cleared = False
|
|
|
|
|
|
|
|
|
|
def find_layer(self, layer):
|
|
|
|
|
modules = dict([*self.clip.named_modules()])
|
|
|
|
|
return modules.get(layer, None)
|
|
|
|
|
|
|
|
|
|
def clear(self):
|
|
|
|
|
if self.cleared:
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
self.handle()
|
|
|
|
|
|
|
|
|
|
def _hook(self, _, inputs, outputs):
|
|
|
|
|
self.text_encodings = outputs
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def dim_latent(self):
|
|
|
|
|
return 512
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def image_size(self):
|
|
|
|
|
return self.clip.visual.image_size
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def image_channels(self):
|
|
|
|
|
return 3
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def max_text_len(self):
|
|
|
|
|
return self.clip.context_length
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
def embed_text(self, text):
|
|
|
|
|
text = text[..., :self.max_text_len]
|
|
|
|
|
|
|
|
|
|
is_eos_id = (text == self.eos_id)
|
|
|
|
|
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
|
|
|
|
|
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
|
|
|
|
|
assert not self.cleared
|
|
|
|
|
|
|
|
|
|
text_embed = self.clip.encode_text(text)
|
|
|
|
|
text_encodings = self.text_encodings
|
|
|
|
|
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
|
|
|
|
|
del self.text_encodings
|
|
|
|
|
return EmbeddedText(l2norm(text_embed.float()), text_encodings.float())
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
def embed_image(self, image):
|
|
|
|
|
assert not self.cleared
|
|
|
|
|
image = self.validate_and_resize_image(image)
|
|
|
|
|
image = self.clip_normalize(image)
|
|
|
|
|
image_embed = self.clip.encode_image(image)
|
|
|
|
|
return EmbeddedImage(l2norm(image_embed.float()), None)
|
|
|
|
|
|
|
|
|
|
# classifier free guidance functions
|
|
|
|
|
|
|
|
|
|
def prob_mask_like(shape, prob, device):
|
|
|
|
|
@@ -516,6 +608,17 @@ class NoiseScheduler(nn.Module):
|
|
|
|
|
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def q_sample_from_to(self, x_from, from_t, to_t, noise = None):
|
|
|
|
|
shape = x_from.shape
|
|
|
|
|
noise = default(noise, lambda: torch.randn_like(x_from))
|
|
|
|
|
|
|
|
|
|
alpha = extract(self.sqrt_alphas_cumprod, from_t, shape)
|
|
|
|
|
sigma = extract(self.sqrt_one_minus_alphas_cumprod, from_t, shape)
|
|
|
|
|
alpha_next = extract(self.sqrt_alphas_cumprod, to_t, shape)
|
|
|
|
|
sigma_next = extract(self.sqrt_one_minus_alphas_cumprod, to_t, shape)
|
|
|
|
|
|
|
|
|
|
return x_from * (alpha_next / alpha) + noise * (sigma_next * alpha - sigma * alpha_next) / alpha
|
|
|
|
|
|
|
|
|
|
def predict_start_from_noise(self, x_t, t, noise):
|
|
|
|
|
return (
|
|
|
|
|
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
|
|
|
|
@@ -536,34 +639,40 @@ class NoiseScheduler(nn.Module):
|
|
|
|
|
# diffusion prior
|
|
|
|
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
|
|
|
def __init__(self, dim, eps = 1e-5, stable = False):
|
|
|
|
|
def __init__(self, dim, eps = 1e-5, fp16_eps = 1e-3, stable = False):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.eps = eps
|
|
|
|
|
self.fp16_eps = fp16_eps
|
|
|
|
|
self.stable = stable
|
|
|
|
|
self.g = nn.Parameter(torch.ones(dim))
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
eps = self.eps if x.dtype == torch.float32 else self.fp16_eps
|
|
|
|
|
|
|
|
|
|
if self.stable:
|
|
|
|
|
x = x / x.amax(dim = -1, keepdim = True).detach()
|
|
|
|
|
|
|
|
|
|
var = torch.var(x, dim = -1, unbiased = False, keepdim = True)
|
|
|
|
|
mean = torch.mean(x, dim = -1, keepdim = True)
|
|
|
|
|
return (x - mean) * (var + self.eps).rsqrt() * self.g
|
|
|
|
|
return (x - mean) * (var + eps).rsqrt() * self.g
|
|
|
|
|
|
|
|
|
|
class ChanLayerNorm(nn.Module):
|
|
|
|
|
def __init__(self, dim, eps = 1e-5, stable = False):
|
|
|
|
|
def __init__(self, dim, eps = 1e-5, fp16_eps = 1e-3, stable = False):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.eps = eps
|
|
|
|
|
self.fp16_eps = fp16_eps
|
|
|
|
|
self.stable = stable
|
|
|
|
|
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
eps = self.eps if x.dtype == torch.float32 else self.fp16_eps
|
|
|
|
|
|
|
|
|
|
if self.stable:
|
|
|
|
|
x = x / x.amax(dim = 1, keepdim = True).detach()
|
|
|
|
|
|
|
|
|
|
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
|
|
|
|
|
mean = torch.mean(x, dim = 1, keepdim = True)
|
|
|
|
|
return (x - mean) * (var + self.eps).rsqrt() * self.g
|
|
|
|
|
return (x - mean) * (var + eps).rsqrt() * self.g
|
|
|
|
|
|
|
|
|
|
class Residual(nn.Module):
|
|
|
|
|
def __init__(self, fn):
|
|
|
|
|
@@ -684,11 +793,12 @@ class Attention(nn.Module):
|
|
|
|
|
dropout = 0.,
|
|
|
|
|
causal = False,
|
|
|
|
|
rotary_emb = None,
|
|
|
|
|
pb_relax_alpha = 128
|
|
|
|
|
cosine_sim = True,
|
|
|
|
|
cosine_sim_scale = 16
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.pb_relax_alpha = pb_relax_alpha
|
|
|
|
|
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1)
|
|
|
|
|
self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
|
|
|
|
|
self.cosine_sim = cosine_sim
|
|
|
|
|
|
|
|
|
|
self.heads = heads
|
|
|
|
|
inner_dim = dim_head * heads
|
|
|
|
|
@@ -728,6 +838,13 @@ class Attention(nn.Module):
|
|
|
|
|
k = torch.cat((nk, k), dim = -2)
|
|
|
|
|
v = torch.cat((nv, v), dim = -2)
|
|
|
|
|
|
|
|
|
|
# whether to use cosine sim
|
|
|
|
|
|
|
|
|
|
if self.cosine_sim:
|
|
|
|
|
q, k = map(l2norm, (q, k))
|
|
|
|
|
|
|
|
|
|
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
|
|
|
|
|
|
|
|
|
|
# calculate query / key similarities
|
|
|
|
|
|
|
|
|
|
sim = einsum('b h i d, b j d -> b h i j', q, k)
|
|
|
|
|
@@ -753,10 +870,7 @@ class Attention(nn.Module):
|
|
|
|
|
|
|
|
|
|
# attention
|
|
|
|
|
|
|
|
|
|
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
|
|
|
|
sim = sim * self.pb_relax_alpha
|
|
|
|
|
|
|
|
|
|
attn = sim.softmax(dim = -1)
|
|
|
|
|
attn = sim.softmax(dim = -1, dtype = torch.float32)
|
|
|
|
|
attn = self.dropout(attn)
|
|
|
|
|
|
|
|
|
|
# aggregate values
|
|
|
|
|
@@ -1043,17 +1157,17 @@ class DiffusionPrior(nn.Module):
|
|
|
|
|
pred = self.net.forward_with_cond_scale(x, t, cond_scale = cond_scale, **text_cond)
|
|
|
|
|
|
|
|
|
|
if self.predict_x_start:
|
|
|
|
|
x_recon = pred
|
|
|
|
|
x_start = pred
|
|
|
|
|
else:
|
|
|
|
|
x_recon = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
|
|
|
|
|
x_start = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
|
|
|
|
|
|
|
|
|
|
if clip_denoised and not self.predict_x_start:
|
|
|
|
|
x_recon.clamp_(-1., 1.)
|
|
|
|
|
x_start.clamp_(-1., 1.)
|
|
|
|
|
|
|
|
|
|
if self.predict_x_start and self.sampling_clamp_l2norm:
|
|
|
|
|
x_recon = l2norm(x_recon) * self.image_embed_scale
|
|
|
|
|
x_start = l2norm(x_start) * self.image_embed_scale
|
|
|
|
|
|
|
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t)
|
|
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.noise_scheduler.q_posterior(x_start=x_start, x_t=x, t=t)
|
|
|
|
|
return model_mean, posterior_variance, posterior_log_variance
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
@@ -1346,7 +1460,8 @@ class ResnetBlock(nn.Module):
|
|
|
|
|
*,
|
|
|
|
|
cond_dim = None,
|
|
|
|
|
time_cond_dim = None,
|
|
|
|
|
groups = 8
|
|
|
|
|
groups = 8,
|
|
|
|
|
cosine_sim_cross_attn = False
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
@@ -1366,7 +1481,8 @@ class ResnetBlock(nn.Module):
|
|
|
|
|
'b (h w) c',
|
|
|
|
|
CrossAttention(
|
|
|
|
|
dim = dim_out,
|
|
|
|
|
context_dim = cond_dim
|
|
|
|
|
context_dim = cond_dim,
|
|
|
|
|
cosine_sim = cosine_sim_cross_attn
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
@@ -1401,11 +1517,12 @@ class CrossAttention(nn.Module):
|
|
|
|
|
heads = 8,
|
|
|
|
|
dropout = 0.,
|
|
|
|
|
norm_context = False,
|
|
|
|
|
pb_relax_alpha = 32 ** 2
|
|
|
|
|
cosine_sim = False,
|
|
|
|
|
cosine_sim_scale = 16
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.pb_relax_alpha = pb_relax_alpha
|
|
|
|
|
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1)
|
|
|
|
|
self.cosine_sim = cosine_sim
|
|
|
|
|
self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
|
|
|
|
|
self.heads = heads
|
|
|
|
|
inner_dim = dim_head * heads
|
|
|
|
|
|
|
|
|
|
@@ -1441,7 +1558,10 @@ class CrossAttention(nn.Module):
|
|
|
|
|
k = torch.cat((nk, k), dim = -2)
|
|
|
|
|
v = torch.cat((nv, v), dim = -2)
|
|
|
|
|
|
|
|
|
|
q = q * self.scale
|
|
|
|
|
if self.cosine_sim:
|
|
|
|
|
q, k = map(l2norm, (q, k))
|
|
|
|
|
|
|
|
|
|
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
|
|
|
|
|
|
|
|
|
|
sim = einsum('b h i d, b h j d -> b h i j', q, k)
|
|
|
|
|
max_neg_value = -torch.finfo(sim.dtype).max
|
|
|
|
|
@@ -1451,10 +1571,7 @@ class CrossAttention(nn.Module):
|
|
|
|
|
mask = rearrange(mask, 'b j -> b 1 1 j')
|
|
|
|
|
sim = sim.masked_fill(~mask, max_neg_value)
|
|
|
|
|
|
|
|
|
|
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
|
|
|
|
sim = sim * self.pb_relax_alpha
|
|
|
|
|
|
|
|
|
|
attn = sim.softmax(dim = -1)
|
|
|
|
|
attn = sim.softmax(dim = -1, dtype = torch.float32)
|
|
|
|
|
|
|
|
|
|
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
|
|
|
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
|
|
|
@@ -1465,7 +1582,8 @@ class LinearAttention(nn.Module):
|
|
|
|
|
self,
|
|
|
|
|
dim,
|
|
|
|
|
dim_head = 32,
|
|
|
|
|
heads = 8
|
|
|
|
|
heads = 8,
|
|
|
|
|
**kwargs
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.scale = dim_head ** -0.5
|
|
|
|
|
@@ -1483,6 +1601,7 @@ class LinearAttention(nn.Module):
|
|
|
|
|
|
|
|
|
|
def forward(self, fmap):
|
|
|
|
|
h, x, y = self.heads, *fmap.shape[-2:]
|
|
|
|
|
seq_len = x * y
|
|
|
|
|
|
|
|
|
|
fmap = self.norm(fmap)
|
|
|
|
|
q, k, v = self.to_qkv(fmap).chunk(3, dim = 1)
|
|
|
|
|
@@ -1492,6 +1611,9 @@ class LinearAttention(nn.Module):
|
|
|
|
|
k = k.softmax(dim = -2)
|
|
|
|
|
|
|
|
|
|
q = q * self.scale
|
|
|
|
|
v = l2norm(v)
|
|
|
|
|
|
|
|
|
|
k, v = map(lambda t: t / math.sqrt(seq_len), (k, v))
|
|
|
|
|
|
|
|
|
|
context = einsum('b n d, b n e -> b d e', k, v)
|
|
|
|
|
out = einsum('b n d, b d e -> b n e', q, context)
|
|
|
|
|
@@ -1527,6 +1649,38 @@ class CrossEmbedLayer(nn.Module):
|
|
|
|
|
fmaps = tuple(map(lambda conv: conv(x), self.convs))
|
|
|
|
|
return torch.cat(fmaps, dim = 1)
|
|
|
|
|
|
|
|
|
|
class UpsampleCombiner(nn.Module):
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
dim,
|
|
|
|
|
*,
|
|
|
|
|
enabled = False,
|
|
|
|
|
dim_ins = tuple(),
|
|
|
|
|
dim_outs = tuple()
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
assert len(dim_ins) == len(dim_outs)
|
|
|
|
|
self.enabled = enabled
|
|
|
|
|
|
|
|
|
|
if not self.enabled:
|
|
|
|
|
self.dim_out = dim
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
self.fmap_convs = nn.ModuleList([Block(dim_in, dim_out) for dim_in, dim_out in zip(dim_ins, dim_outs)])
|
|
|
|
|
self.dim_out = dim + (sum(dim_outs) if len(dim_outs) > 0 else 0)
|
|
|
|
|
|
|
|
|
|
def forward(self, x, fmaps = None):
|
|
|
|
|
target_size = x.shape[-1]
|
|
|
|
|
|
|
|
|
|
fmaps = default(fmaps, tuple())
|
|
|
|
|
|
|
|
|
|
if not self.enabled or len(fmaps) == 0 or len(self.fmap_convs) == 0:
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
fmaps = [resize_image_to(fmap, target_size) for fmap in fmaps]
|
|
|
|
|
outs = [conv(fmap) for fmap, conv in zip(fmaps, self.fmap_convs)]
|
|
|
|
|
return torch.cat((x, *outs), dim = 1)
|
|
|
|
|
|
|
|
|
|
class Unet(nn.Module):
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
@@ -1546,7 +1700,10 @@ class Unet(nn.Module):
|
|
|
|
|
attn_heads = 16,
|
|
|
|
|
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
|
|
|
|
|
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
|
|
|
|
|
self_cond = False,
|
|
|
|
|
sparse_attn = False,
|
|
|
|
|
cosine_sim_cross_attn = False,
|
|
|
|
|
cosine_sim_self_attn = False,
|
|
|
|
|
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
|
|
|
|
cond_on_text_encodings = False,
|
|
|
|
|
max_text_len = 256,
|
|
|
|
|
@@ -1564,6 +1721,8 @@ class Unet(nn.Module):
|
|
|
|
|
scale_skip_connection = False,
|
|
|
|
|
pixel_shuffle_upsample = True,
|
|
|
|
|
final_conv_kernel_size = 1,
|
|
|
|
|
combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper
|
|
|
|
|
checkpoint_during_training = False,
|
|
|
|
|
**kwargs
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
@@ -1577,12 +1736,21 @@ class Unet(nn.Module):
|
|
|
|
|
|
|
|
|
|
self.lowres_cond = lowres_cond
|
|
|
|
|
|
|
|
|
|
# whether to do self conditioning
|
|
|
|
|
|
|
|
|
|
self.self_cond = self_cond
|
|
|
|
|
|
|
|
|
|
# determine dimensions
|
|
|
|
|
|
|
|
|
|
self.channels = channels
|
|
|
|
|
self.channels_out = default(channels_out, channels)
|
|
|
|
|
|
|
|
|
|
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
|
|
|
|
|
# initial number of channels depends on
|
|
|
|
|
# (1) low resolution conditioning from cascading ddpm paper, conditioned on previous unet output in the cascade
|
|
|
|
|
# (2) self conditioning (bit diffusion paper)
|
|
|
|
|
|
|
|
|
|
init_channels = channels * (1 + int(lowres_cond) + int(self_cond))
|
|
|
|
|
|
|
|
|
|
init_dim = default(init_dim, dim)
|
|
|
|
|
|
|
|
|
|
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1) if init_cross_embed else nn.Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2)
|
|
|
|
|
@@ -1666,7 +1834,7 @@ class Unet(nn.Module):
|
|
|
|
|
|
|
|
|
|
# attention related params
|
|
|
|
|
|
|
|
|
|
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
|
|
|
|
|
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head, cosine_sim = cosine_sim_self_attn)
|
|
|
|
|
|
|
|
|
|
self_attn = cast_tuple(self_attn, num_stages)
|
|
|
|
|
|
|
|
|
|
@@ -1689,9 +1857,13 @@ class Unet(nn.Module):
|
|
|
|
|
|
|
|
|
|
upsample_klass = NearestUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample
|
|
|
|
|
|
|
|
|
|
# prepare resnet klass
|
|
|
|
|
|
|
|
|
|
resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn)
|
|
|
|
|
|
|
|
|
|
# give memory efficient unet an initial resnet block
|
|
|
|
|
|
|
|
|
|
self.init_resnet_block = ResnetBlock(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
|
|
|
|
|
self.init_resnet_block = resnet_block(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
|
|
|
|
|
|
|
|
|
|
# layers
|
|
|
|
|
|
|
|
|
|
@@ -1699,7 +1871,8 @@ class Unet(nn.Module):
|
|
|
|
|
self.ups = nn.ModuleList([])
|
|
|
|
|
num_resolutions = len(in_out)
|
|
|
|
|
|
|
|
|
|
skip_connect_dims = [] # keeping track of skip connection dimensions
|
|
|
|
|
skip_connect_dims = [] # keeping track of skip connection dimensions
|
|
|
|
|
upsample_combiner_dims = [] # keeping track of dimensions for final upsample feature map combiner
|
|
|
|
|
|
|
|
|
|
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(in_out, resnet_groups, num_resnet_blocks, self_attn)):
|
|
|
|
|
is_first = ind == 0
|
|
|
|
|
@@ -1717,17 +1890,17 @@ class Unet(nn.Module):
|
|
|
|
|
|
|
|
|
|
self.downs.append(nn.ModuleList([
|
|
|
|
|
downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None,
|
|
|
|
|
ResnetBlock(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
|
|
|
|
|
nn.ModuleList([ResnetBlock(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
|
|
|
|
resnet_block(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
|
|
|
|
|
nn.ModuleList([resnet_block(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
|
|
|
|
attention,
|
|
|
|
|
downsample_klass(dim_layer, dim_out = dim_out) if not is_last and not memory_efficient else nn.Conv2d(dim_layer, dim_out, 1)
|
|
|
|
|
]))
|
|
|
|
|
|
|
|
|
|
mid_dim = dims[-1]
|
|
|
|
|
|
|
|
|
|
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
|
|
|
|
self.mid_block1 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
|
|
|
|
self.mid_attn = create_self_attn(mid_dim)
|
|
|
|
|
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
|
|
|
|
self.mid_block2 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
|
|
|
|
|
|
|
|
|
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks), reversed(self_attn))):
|
|
|
|
|
is_last = ind >= (len(in_out) - 1)
|
|
|
|
|
@@ -1741,14 +1914,27 @@ class Unet(nn.Module):
|
|
|
|
|
elif sparse_attn:
|
|
|
|
|
attention = Residual(LinearAttention(dim_out, **attn_kwargs))
|
|
|
|
|
|
|
|
|
|
upsample_combiner_dims.append(dim_out)
|
|
|
|
|
|
|
|
|
|
self.ups.append(nn.ModuleList([
|
|
|
|
|
ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
|
|
|
|
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
|
|
|
|
resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
|
|
|
|
nn.ModuleList([resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
|
|
|
|
attention,
|
|
|
|
|
upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity()
|
|
|
|
|
]))
|
|
|
|
|
|
|
|
|
|
self.final_resnet_block = ResnetBlock(dim * 2, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
|
|
|
|
# whether to combine outputs from all upsample blocks for final resnet block
|
|
|
|
|
|
|
|
|
|
self.upsample_combiner = UpsampleCombiner(
|
|
|
|
|
dim = dim,
|
|
|
|
|
enabled = combine_upsample_fmaps,
|
|
|
|
|
dim_ins = upsample_combiner_dims,
|
|
|
|
|
dim_outs = (dim,) * len(upsample_combiner_dims)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# a final resnet block
|
|
|
|
|
|
|
|
|
|
self.final_resnet_block = resnet_block(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
|
|
|
|
|
|
|
|
|
out_dim_in = dim + (channels if lowres_cond else 0)
|
|
|
|
|
|
|
|
|
|
@@ -1756,6 +1942,10 @@ class Unet(nn.Module):
|
|
|
|
|
|
|
|
|
|
zero_init_(self.to_out) # since both OpenAI and @crowsonkb are doing it
|
|
|
|
|
|
|
|
|
|
# whether to checkpoint during training
|
|
|
|
|
|
|
|
|
|
self.checkpoint_during_training = checkpoint_during_training
|
|
|
|
|
|
|
|
|
|
# if the current settings for the unet are not correct
|
|
|
|
|
# for cascading DDPM, then reinit the unet with the right settings
|
|
|
|
|
def cast_model_parameters(
|
|
|
|
|
@@ -1772,7 +1962,7 @@ class Unet(nn.Module):
|
|
|
|
|
channels == self.channels and \
|
|
|
|
|
cond_on_image_embeds == self.cond_on_image_embeds and \
|
|
|
|
|
cond_on_text_encodings == self.cond_on_text_encodings and \
|
|
|
|
|
cond_on_lowres_noise == self.cond_on_lowres_noise and \
|
|
|
|
|
lowres_noise_cond == self.lowres_noise_cond and \
|
|
|
|
|
channels_out == self.channels_out:
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
@@ -1813,7 +2003,9 @@ class Unet(nn.Module):
|
|
|
|
|
image_cond_drop_prob = 0.,
|
|
|
|
|
text_cond_drop_prob = 0.,
|
|
|
|
|
blur_sigma = None,
|
|
|
|
|
blur_kernel_size = None
|
|
|
|
|
blur_kernel_size = None,
|
|
|
|
|
disable_checkpoint = False,
|
|
|
|
|
self_cond = None
|
|
|
|
|
):
|
|
|
|
|
batch_size, device = x.shape[0], x.device
|
|
|
|
|
|
|
|
|
|
@@ -1821,6 +2013,14 @@ class Unet(nn.Module):
|
|
|
|
|
|
|
|
|
|
assert not (self.lowres_cond and not exists(lowres_cond_img)), 'low resolution conditioning image must be present'
|
|
|
|
|
|
|
|
|
|
# concat self conditioning, if needed
|
|
|
|
|
|
|
|
|
|
if self.self_cond:
|
|
|
|
|
self_cond = default(self_cond, lambda: torch.zeros_like(x))
|
|
|
|
|
x = torch.cat((x, self_cond), dim = 1)
|
|
|
|
|
|
|
|
|
|
# concat low resolution conditioning
|
|
|
|
|
|
|
|
|
|
if exists(lowres_cond_img):
|
|
|
|
|
x = torch.cat((x, lowres_cond_img), dim = 1)
|
|
|
|
|
|
|
|
|
|
@@ -1935,16 +2135,29 @@ class Unet(nn.Module):
|
|
|
|
|
c = self.norm_cond(c)
|
|
|
|
|
mid_c = self.norm_mid_cond(mid_c)
|
|
|
|
|
|
|
|
|
|
# gradient checkpointing
|
|
|
|
|
|
|
|
|
|
can_checkpoint = self.training and self.checkpoint_during_training and not disable_checkpoint
|
|
|
|
|
apply_checkpoint_fn = make_checkpointable if can_checkpoint else identity
|
|
|
|
|
|
|
|
|
|
# make checkpointable modules
|
|
|
|
|
|
|
|
|
|
init_resnet_block, mid_block1, mid_attn, mid_block2, final_resnet_block = [maybe(apply_checkpoint_fn)(module) for module in (self.init_resnet_block, self.mid_block1, self.mid_attn, self.mid_block2, self.final_resnet_block)]
|
|
|
|
|
|
|
|
|
|
can_checkpoint_cond = lambda m: isinstance(m, ResnetBlock)
|
|
|
|
|
downs, ups = [maybe(apply_checkpoint_fn)(m, condition = can_checkpoint_cond) for m in (self.downs, self.ups)]
|
|
|
|
|
|
|
|
|
|
# initial resnet block
|
|
|
|
|
|
|
|
|
|
if exists(self.init_resnet_block):
|
|
|
|
|
x = self.init_resnet_block(x, t)
|
|
|
|
|
if exists(init_resnet_block):
|
|
|
|
|
x = init_resnet_block(x, t)
|
|
|
|
|
|
|
|
|
|
# go through the layers of the unet, down and up
|
|
|
|
|
|
|
|
|
|
hiddens = []
|
|
|
|
|
down_hiddens = []
|
|
|
|
|
up_hiddens = []
|
|
|
|
|
|
|
|
|
|
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in self.downs:
|
|
|
|
|
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in downs:
|
|
|
|
|
if exists(pre_downsample):
|
|
|
|
|
x = pre_downsample(x)
|
|
|
|
|
|
|
|
|
|
@@ -1952,24 +2165,24 @@ class Unet(nn.Module):
|
|
|
|
|
|
|
|
|
|
for resnet_block in resnet_blocks:
|
|
|
|
|
x = resnet_block(x, t, c)
|
|
|
|
|
hiddens.append(x)
|
|
|
|
|
down_hiddens.append(x.contiguous())
|
|
|
|
|
|
|
|
|
|
x = attn(x)
|
|
|
|
|
hiddens.append(x.contiguous())
|
|
|
|
|
down_hiddens.append(x.contiguous())
|
|
|
|
|
|
|
|
|
|
if exists(post_downsample):
|
|
|
|
|
x = post_downsample(x)
|
|
|
|
|
|
|
|
|
|
x = self.mid_block1(x, t, mid_c)
|
|
|
|
|
x = mid_block1(x, t, mid_c)
|
|
|
|
|
|
|
|
|
|
if exists(self.mid_attn):
|
|
|
|
|
x = self.mid_attn(x)
|
|
|
|
|
if exists(mid_attn):
|
|
|
|
|
x = mid_attn(x)
|
|
|
|
|
|
|
|
|
|
x = self.mid_block2(x, t, mid_c)
|
|
|
|
|
x = mid_block2(x, t, mid_c)
|
|
|
|
|
|
|
|
|
|
connect_skip = lambda fmap: torch.cat((fmap, hiddens.pop() * self.skip_connect_scale), dim = 1)
|
|
|
|
|
connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1)
|
|
|
|
|
|
|
|
|
|
for init_block, resnet_blocks, attn, upsample in self.ups:
|
|
|
|
|
for init_block, resnet_blocks, attn, upsample in ups:
|
|
|
|
|
x = connect_skip(x)
|
|
|
|
|
x = init_block(x, t, c)
|
|
|
|
|
|
|
|
|
|
@@ -1978,11 +2191,15 @@ class Unet(nn.Module):
|
|
|
|
|
x = resnet_block(x, t, c)
|
|
|
|
|
|
|
|
|
|
x = attn(x)
|
|
|
|
|
|
|
|
|
|
up_hiddens.append(x.contiguous())
|
|
|
|
|
x = upsample(x)
|
|
|
|
|
|
|
|
|
|
x = self.upsample_combiner(x, up_hiddens)
|
|
|
|
|
|
|
|
|
|
x = torch.cat((x, r), dim = 1)
|
|
|
|
|
|
|
|
|
|
x = self.final_resnet_block(x, t)
|
|
|
|
|
x = final_resnet_block(x, t)
|
|
|
|
|
|
|
|
|
|
if exists(lowres_cond_img):
|
|
|
|
|
x = torch.cat((x, lowres_cond_img), dim = 1)
|
|
|
|
|
@@ -2373,23 +2590,23 @@ class Decoder(nn.Module):
|
|
|
|
|
x = x.clamp(-s, s) / s
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None):
|
|
|
|
|
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, self_cond = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None):
|
|
|
|
|
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
|
|
|
|
|
|
|
|
|
|
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level))
|
|
|
|
|
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level))
|
|
|
|
|
|
|
|
|
|
if learned_variance:
|
|
|
|
|
pred, var_interp_frac_unnormalized = pred.chunk(2, dim = 1)
|
|
|
|
|
|
|
|
|
|
if predict_x_start:
|
|
|
|
|
x_recon = pred
|
|
|
|
|
x_start = pred
|
|
|
|
|
else:
|
|
|
|
|
x_recon = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
|
|
|
|
|
x_start = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
|
|
|
|
|
|
|
|
|
|
if clip_denoised:
|
|
|
|
|
x_recon = self.dynamic_threshold(x_recon)
|
|
|
|
|
x_start = self.dynamic_threshold(x_start)
|
|
|
|
|
|
|
|
|
|
model_mean, posterior_variance, posterior_log_variance = noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t)
|
|
|
|
|
model_mean, posterior_variance, posterior_log_variance = noise_scheduler.q_posterior(x_start=x_start, x_t=x, t=t)
|
|
|
|
|
|
|
|
|
|
if learned_variance:
|
|
|
|
|
# if learned variance, posterio variance and posterior log variance are predicted by the network
|
|
|
|
|
@@ -2405,16 +2622,17 @@ class Decoder(nn.Module):
|
|
|
|
|
posterior_log_variance = var_interp_frac * max_log + (1 - var_interp_frac) * min_log
|
|
|
|
|
posterior_variance = posterior_log_variance.exp()
|
|
|
|
|
|
|
|
|
|
return model_mean, posterior_variance, posterior_log_variance
|
|
|
|
|
return model_mean, posterior_variance, posterior_log_variance, x_start
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None):
|
|
|
|
|
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, self_cond = None, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None):
|
|
|
|
|
b, *_, device = *x.shape, x.device
|
|
|
|
|
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level)
|
|
|
|
|
model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level)
|
|
|
|
|
noise = torch.randn_like(x)
|
|
|
|
|
# no noise when t == 0
|
|
|
|
|
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
|
|
|
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
|
|
|
|
pred = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
|
|
|
|
return pred, x_start
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
def p_sample_loop_ddpm(
|
|
|
|
|
@@ -2432,14 +2650,20 @@ class Decoder(nn.Module):
|
|
|
|
|
is_latent_diffusion = False,
|
|
|
|
|
lowres_noise_level = None,
|
|
|
|
|
inpaint_image = None,
|
|
|
|
|
inpaint_mask = None
|
|
|
|
|
inpaint_mask = None,
|
|
|
|
|
inpaint_resample_times = 5
|
|
|
|
|
):
|
|
|
|
|
device = self.device
|
|
|
|
|
|
|
|
|
|
b = shape[0]
|
|
|
|
|
img = torch.randn(shape, device = device)
|
|
|
|
|
|
|
|
|
|
if exists(inpaint_image):
|
|
|
|
|
x_start = None # for self-conditioning
|
|
|
|
|
|
|
|
|
|
is_inpaint = exists(inpaint_image)
|
|
|
|
|
resample_times = inpaint_resample_times if is_inpaint else 1
|
|
|
|
|
|
|
|
|
|
if is_inpaint:
|
|
|
|
|
inpaint_image = self.normalize_img(inpaint_image)
|
|
|
|
|
inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True)
|
|
|
|
|
inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float()
|
|
|
|
|
@@ -2449,31 +2673,43 @@ class Decoder(nn.Module):
|
|
|
|
|
if not is_latent_diffusion:
|
|
|
|
|
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
|
|
|
|
|
|
|
|
|
for i in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
|
|
|
|
|
times = torch.full((b,), i, device = device, dtype = torch.long)
|
|
|
|
|
for time in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
|
|
|
|
|
is_last_timestep = time == 0
|
|
|
|
|
|
|
|
|
|
if exists(inpaint_image):
|
|
|
|
|
# following the repaint paper
|
|
|
|
|
# https://arxiv.org/abs/2201.09865
|
|
|
|
|
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times)
|
|
|
|
|
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
|
|
|
|
for r in reversed(range(0, resample_times)):
|
|
|
|
|
is_last_resample_step = r == 0
|
|
|
|
|
|
|
|
|
|
img = self.p_sample(
|
|
|
|
|
unet,
|
|
|
|
|
img,
|
|
|
|
|
times,
|
|
|
|
|
image_embed = image_embed,
|
|
|
|
|
text_encodings = text_encodings,
|
|
|
|
|
cond_scale = cond_scale,
|
|
|
|
|
lowres_cond_img = lowres_cond_img,
|
|
|
|
|
lowres_noise_level = lowres_noise_level,
|
|
|
|
|
predict_x_start = predict_x_start,
|
|
|
|
|
noise_scheduler = noise_scheduler,
|
|
|
|
|
learned_variance = learned_variance,
|
|
|
|
|
clip_denoised = clip_denoised
|
|
|
|
|
)
|
|
|
|
|
times = torch.full((b,), time, device = device, dtype = torch.long)
|
|
|
|
|
|
|
|
|
|
if exists(inpaint_image):
|
|
|
|
|
if is_inpaint:
|
|
|
|
|
# following the repaint paper
|
|
|
|
|
# https://arxiv.org/abs/2201.09865
|
|
|
|
|
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times)
|
|
|
|
|
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
|
|
|
|
|
|
|
|
|
self_cond = x_start if unet.self_cond else None
|
|
|
|
|
|
|
|
|
|
img, x_start = self.p_sample(
|
|
|
|
|
unet,
|
|
|
|
|
img,
|
|
|
|
|
times,
|
|
|
|
|
image_embed = image_embed,
|
|
|
|
|
text_encodings = text_encodings,
|
|
|
|
|
cond_scale = cond_scale,
|
|
|
|
|
self_cond = self_cond,
|
|
|
|
|
lowres_cond_img = lowres_cond_img,
|
|
|
|
|
lowres_noise_level = lowres_noise_level,
|
|
|
|
|
predict_x_start = predict_x_start,
|
|
|
|
|
noise_scheduler = noise_scheduler,
|
|
|
|
|
learned_variance = learned_variance,
|
|
|
|
|
clip_denoised = clip_denoised
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if is_inpaint and not (is_last_timestep or is_last_resample_step):
|
|
|
|
|
# in repaint, you renoise and resample up to 10 times every step
|
|
|
|
|
img = noise_scheduler.q_sample_from_to(img, times - 1, times)
|
|
|
|
|
|
|
|
|
|
if is_inpaint:
|
|
|
|
|
img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask)
|
|
|
|
|
|
|
|
|
|
unnormalize_img = self.unnormalize_img(img)
|
|
|
|
|
@@ -2497,7 +2733,8 @@ class Decoder(nn.Module):
|
|
|
|
|
is_latent_diffusion = False,
|
|
|
|
|
lowres_noise_level = None,
|
|
|
|
|
inpaint_image = None,
|
|
|
|
|
inpaint_mask = None
|
|
|
|
|
inpaint_mask = None,
|
|
|
|
|
inpaint_resample_times = 5
|
|
|
|
|
):
|
|
|
|
|
batch, device, total_timesteps, alphas, eta = shape[0], self.device, noise_scheduler.num_timesteps, noise_scheduler.alphas_cumprod_prev, self.ddim_sampling_eta
|
|
|
|
|
|
|
|
|
|
@@ -2506,7 +2743,10 @@ class Decoder(nn.Module):
|
|
|
|
|
times = list(reversed(times.int().tolist()))
|
|
|
|
|
time_pairs = list(zip(times[:-1], times[1:]))
|
|
|
|
|
|
|
|
|
|
if exists(inpaint_image):
|
|
|
|
|
is_inpaint = exists(inpaint_image)
|
|
|
|
|
resample_times = inpaint_resample_times if is_inpaint else 1
|
|
|
|
|
|
|
|
|
|
if is_inpaint:
|
|
|
|
|
inpaint_image = self.normalize_img(inpaint_image)
|
|
|
|
|
inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True)
|
|
|
|
|
inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float()
|
|
|
|
|
@@ -2515,43 +2755,57 @@ class Decoder(nn.Module):
|
|
|
|
|
|
|
|
|
|
img = torch.randn(shape, device = device)
|
|
|
|
|
|
|
|
|
|
x_start = None # for self-conditioning
|
|
|
|
|
|
|
|
|
|
if not is_latent_diffusion:
|
|
|
|
|
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
|
|
|
|
|
|
|
|
|
for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step'):
|
|
|
|
|
alpha = alphas[time]
|
|
|
|
|
alpha_next = alphas[time_next]
|
|
|
|
|
is_last_timestep = time_next == 0
|
|
|
|
|
|
|
|
|
|
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
|
|
|
|
|
for r in reversed(range(0, resample_times)):
|
|
|
|
|
is_last_resample_step = r == 0
|
|
|
|
|
|
|
|
|
|
if exists(inpaint_image):
|
|
|
|
|
# following the repaint paper
|
|
|
|
|
# https://arxiv.org/abs/2201.09865
|
|
|
|
|
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond)
|
|
|
|
|
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
|
|
|
|
alpha = alphas[time]
|
|
|
|
|
alpha_next = alphas[time_next]
|
|
|
|
|
|
|
|
|
|
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
|
|
|
|
|
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
|
|
|
|
|
|
|
|
|
|
if learned_variance:
|
|
|
|
|
pred, _ = pred.chunk(2, dim = 1)
|
|
|
|
|
if is_inpaint:
|
|
|
|
|
# following the repaint paper
|
|
|
|
|
# https://arxiv.org/abs/2201.09865
|
|
|
|
|
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond)
|
|
|
|
|
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
|
|
|
|
|
|
|
|
|
if predict_x_start:
|
|
|
|
|
x_start = pred
|
|
|
|
|
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
|
|
|
|
|
else:
|
|
|
|
|
x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred)
|
|
|
|
|
pred_noise = pred
|
|
|
|
|
self_cond = x_start if unet.self_cond else None
|
|
|
|
|
|
|
|
|
|
if clip_denoised:
|
|
|
|
|
x_start = self.dynamic_threshold(x_start)
|
|
|
|
|
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, self_cond = self_cond, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
|
|
|
|
|
|
|
|
|
|
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
|
|
|
|
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
|
|
|
|
|
noise = torch.randn_like(img) if time_next > 0 else 0.
|
|
|
|
|
if learned_variance:
|
|
|
|
|
pred, _ = pred.chunk(2, dim = 1)
|
|
|
|
|
|
|
|
|
|
img = x_start * alpha_next.sqrt() + \
|
|
|
|
|
c1 * noise + \
|
|
|
|
|
c2 * pred_noise
|
|
|
|
|
if predict_x_start:
|
|
|
|
|
x_start = pred
|
|
|
|
|
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
|
|
|
|
|
else:
|
|
|
|
|
x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred)
|
|
|
|
|
pred_noise = pred
|
|
|
|
|
|
|
|
|
|
if clip_denoised:
|
|
|
|
|
x_start = self.dynamic_threshold(x_start)
|
|
|
|
|
|
|
|
|
|
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
|
|
|
|
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
|
|
|
|
|
noise = torch.randn_like(img) if not is_last_timestep else 0.
|
|
|
|
|
|
|
|
|
|
img = x_start * alpha_next.sqrt() + \
|
|
|
|
|
c1 * noise + \
|
|
|
|
|
c2 * pred_noise
|
|
|
|
|
|
|
|
|
|
if is_inpaint and not (is_last_timestep or is_last_resample_step):
|
|
|
|
|
# in repaint, you renoise and resample up to 10 times every step
|
|
|
|
|
time_next_cond = torch.full((batch,), time_next, device = device, dtype = torch.long)
|
|
|
|
|
img = noise_scheduler.q_sample_from_to(img, time_next_cond, time_cond)
|
|
|
|
|
|
|
|
|
|
if exists(inpaint_image):
|
|
|
|
|
img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask)
|
|
|
|
|
@@ -2585,13 +2839,35 @@ class Decoder(nn.Module):
|
|
|
|
|
|
|
|
|
|
x_noisy = noise_scheduler.q_sample(x_start = x_start, t = times, noise = noise)
|
|
|
|
|
|
|
|
|
|
model_output = unet(
|
|
|
|
|
x_noisy,
|
|
|
|
|
times,
|
|
|
|
|
# unet kwargs
|
|
|
|
|
|
|
|
|
|
unet_kwargs = dict(
|
|
|
|
|
image_embed = image_embed,
|
|
|
|
|
text_encodings = text_encodings,
|
|
|
|
|
lowres_cond_img = lowres_cond_img,
|
|
|
|
|
lowres_noise_level = lowres_noise_level,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# self conditioning
|
|
|
|
|
|
|
|
|
|
self_cond = None
|
|
|
|
|
|
|
|
|
|
if unet.self_cond and random.random() < 0.5:
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
self_cond = unet(x_noisy, times, **unet_kwargs)
|
|
|
|
|
|
|
|
|
|
if learned_variance:
|
|
|
|
|
self_cond, _ = self_cond.chunk(2, dim = 1)
|
|
|
|
|
|
|
|
|
|
self_cond = self_cond.detach()
|
|
|
|
|
|
|
|
|
|
# forward to get model prediction
|
|
|
|
|
|
|
|
|
|
model_output = unet(
|
|
|
|
|
x_noisy,
|
|
|
|
|
times,
|
|
|
|
|
**unet_kwargs,
|
|
|
|
|
self_cond = self_cond,
|
|
|
|
|
image_cond_drop_prob = self.image_cond_drop_prob,
|
|
|
|
|
text_cond_drop_prob = self.text_cond_drop_prob,
|
|
|
|
|
)
|
|
|
|
|
@@ -2622,7 +2898,7 @@ class Decoder(nn.Module):
|
|
|
|
|
# if learning the variance, also include the extra weight kl loss
|
|
|
|
|
|
|
|
|
|
true_mean, _, true_log_variance_clipped = noise_scheduler.q_posterior(x_start = x_start, x_t = x_noisy, t = times)
|
|
|
|
|
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
|
|
|
|
|
model_mean, _, model_log_variance, _ = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
|
|
|
|
|
|
|
|
|
|
# kl loss with detached model predicted mean, for stability reasons as in paper
|
|
|
|
|
|
|
|
|
|
@@ -2658,7 +2934,8 @@ class Decoder(nn.Module):
|
|
|
|
|
stop_at_unet_number = None,
|
|
|
|
|
distributed = False,
|
|
|
|
|
inpaint_image = None,
|
|
|
|
|
inpaint_mask = None
|
|
|
|
|
inpaint_mask = None,
|
|
|
|
|
inpaint_resample_times = 5
|
|
|
|
|
):
|
|
|
|
|
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
|
|
|
|
|
|
|
|
|
|
@@ -2730,7 +3007,8 @@ class Decoder(nn.Module):
|
|
|
|
|
noise_scheduler = noise_scheduler,
|
|
|
|
|
timesteps = sample_timesteps,
|
|
|
|
|
inpaint_image = inpaint_image,
|
|
|
|
|
inpaint_mask = inpaint_mask
|
|
|
|
|
inpaint_mask = inpaint_mask,
|
|
|
|
|
inpaint_resample_times = inpaint_resample_times
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
img = vae.decode(img)
|
|
|
|
|
@@ -2845,7 +3123,7 @@ class DALLE2(nn.Module):
|
|
|
|
|
image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale)
|
|
|
|
|
|
|
|
|
|
text_cond = text if self.decoder_need_text_cond else None
|
|
|
|
|
images = self.decoder.sample(image_embed, text = text_cond, cond_scale = cond_scale)
|
|
|
|
|
images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale)
|
|
|
|
|
|
|
|
|
|
if return_pil_images:
|
|
|
|
|
images = list(map(self.to_pil, images.unbind(dim = 0)))
|
|
|
|
|
|