Compare commits

..

2 Commits

Author SHA1 Message Date
Phil Wang
aa900213e7 force first unet in the cascade to be conditioned on image embeds 2022-04-28 20:53:15 -07:00
Phil Wang
cb26187450 vqgan-vae codebook dims should be 256 or smaller 2022-04-28 08:59:03 -07:00
3 changed files with 9 additions and 5 deletions

View File

@@ -1066,13 +1066,14 @@ class Unet(nn.Module):
self,
*,
lowres_cond,
channels
channels,
cond_on_image_embeds
):
if lowres_cond == self.lowres_cond and channels == self.channels:
if lowres_cond == self.lowres_cond and channels == self.channels and cond_on_image_embeds == self.cond_on_image_embeds:
return self
updated_kwargs = {**self._locals, 'lowres_cond': lowres_cond, 'channels': channels}
return self.__class__(**updated_kwargs)
updated_kwargs = {'lowres_cond': lowres_cond, 'channels': channels, 'cond_on_image_embeds': cond_on_image_embeds}
return self.__class__(**{**self._locals, **updated_kwargs})
def forward_with_cond_scale(
self,
@@ -1279,6 +1280,7 @@ class Decoder(BaseGaussianDiffusion):
one_unet = one_unet.cast_model_parameters(
lowres_cond = not is_first,
cond_on_image_embeds = is_first,
channels = unet_channels
)

View File

@@ -545,6 +545,7 @@ class VQGanVAE(nn.Module):
l2_recon_loss = False,
use_hinge_loss = True,
vgg = None,
vq_codebook_dim = 256,
vq_codebook_size = 512,
vq_decay = 0.8,
vq_commitment_weight = 1.,
@@ -579,6 +580,7 @@ class VQGanVAE(nn.Module):
self.vq = VQ(
dim = self.enc_dec.encoded_dim,
codebook_dim = vq_codebook_dim,
codebook_size = vq_codebook_size,
decay = vq_decay,
commitment_weight = vq_commitment_weight,

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.62',
version = '0.0.64',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',