Compare commits

..

14 Commits

Author SHA1 Message Date
Phil Wang
f19c99ecb0 fix decoder needing separate conditional dropping probabilities for image embeddings and text encodings, thanks to @xiankgx ! 2022-04-30 08:48:05 -07:00
Phil Wang
721a444686 Merge pull request #37 from ProGamerGov/patch-1
Fix spelling and grammatical errors
2022-04-30 08:19:07 -07:00
ProGamerGov
63450b466d Fix spelling and grammatical errors 2022-04-30 09:18:13 -06:00
Phil Wang
20e7eb5a9b cleanup 2022-04-30 07:22:57 -07:00
Phil Wang
e2f9615afa use @clip-anytorch , thanks to @rom1504 2022-04-30 06:40:54 -07:00
Phil Wang
0d1c07c803 fix a bug with classifier free guidance, thanks to @xiankgx again! 2022-04-30 06:34:57 -07:00
Phil Wang
a389f81138 todo 2022-04-29 15:40:51 -07:00
Phil Wang
0283556608 fix example in readme, since api changed 2022-04-29 13:40:55 -07:00
Phil Wang
5063d192b6 now completely OpenAI CLIP compatible for training
just take care of the logic for AdamW and transformers

used namedtuples for clip adapter embedding outputs
2022-04-29 13:05:01 -07:00
Phil Wang
f4a54e475e add some training fns 2022-04-29 09:44:55 -07:00
Phil Wang
fb662a62f3 fix another bug thanks to @xiankgx 2022-04-29 07:38:32 -07:00
Phil Wang
587c8c9b44 optimize for clarity 2022-04-28 21:59:13 -07:00
Phil Wang
aa900213e7 force first unet in the cascade to be conditioned on image embeds 2022-04-28 20:53:15 -07:00
Phil Wang
cb26187450 vqgan-vae codebook dims should be 256 or smaller 2022-04-28 08:59:03 -07:00
6 changed files with 280 additions and 69 deletions

110
README.md
View File

@@ -47,7 +47,7 @@ clip = CLIP(
use_all_token_embeds = True, # whether to use fine-grained contrastive learning (FILIP)
decoupled_contrastive_learning = True, # use decoupled contrastive learning (DCL) objective function, removing positive pairs from the denominator of the InfoNCE loss (CLOOB + DCL)
extra_latent_projection = True, # whether to use separate projections for text-to-image vs image-to-text comparisons (CLOOB)
use_visual_ssl = True, # whether to do self supervised learning on iages
use_visual_ssl = True, # whether to do self supervised learning on images
visual_ssl_type = 'simclr', # can be either 'simclr' or 'simsiam', depending on using DeCLIP or SLIP
use_mlm = False, # use masked language learning (MLM) on text (DeCLIP)
text_ssl_loss_weight = 0.05, # weight for text MLM loss
@@ -110,7 +110,8 @@ decoder = Decoder(
unet = unet,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5
).cuda()
# mock images (get a lot of this)
@@ -229,7 +230,8 @@ decoder = Decoder(
unet = (unet1, unet2), # insert both unets in order of low resolution to highest resolution (you can have as many stages as you want here)
image_sizes = (256, 512), # resolutions, 256 for first unet, 512 for second. these must be unique and in ascending order (matches with the unets passed in)
timesteps = 1000,
cond_drop_prob = 0.2
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5
).cuda()
# mock images (get a lot of this)
@@ -348,7 +350,8 @@ decoder = Decoder(
image_sizes = (128, 256),
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2,
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5,
condition_on_text_encodings = False # set this to True if you wish to condition on text during training and sampling
).cuda()
@@ -430,8 +433,8 @@ images = torch.randn(4, 3, 256, 256).cuda()
# precompute the text and image embeddings
# here using the diffusion prior class, but could be done with CLIP alone
clip_image_embeds = diffusion_prior.get_image_embed(images)
clip_text_embeds = diffusion_prior.get_text_cond(text).get('text_embed')
clip_image_embeds = diffusion_prior.clip.embed_image(images).image_embed
clip_text_embeds = diffusion_prior.clip.embed_text(text).text_embed
# feed text and images into diffusion prior network
@@ -495,6 +498,95 @@ loss.backward()
# now the diffusion prior can generate image embeddings from the text embeddings
```
## OpenAI CLIP
Although there is the possibility they are using an unreleased, more powerful CLIP, you can use one of the released ones, if you do not wish to train your own CLIP from scratch. This will also allow the community to more quickly validate the conclusions of the paper.
To use a pretrained OpenAI CLIP, simply import `OpenAIClipAdapter` and pass it into the `DiffusionPrior` or `Decoder` like so
```python
import torch
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder, OpenAIClipAdapter
# openai pretrained clip - defaults to ViT/B-32
clip = OpenAIClipAdapter()
# mock data
text = torch.randint(0, 49408, (4, 256)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()
# prior networks (with transformer)
prior_network = DiffusionPriorNetwork(
dim = 512,
depth = 6,
dim_head = 64,
heads = 8
).cuda()
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip,
timesteps = 100,
cond_drop_prob = 0.2
).cuda()
loss = diffusion_prior(text, images)
loss.backward()
# do above for many steps ...
# decoder (with unet)
unet1 = Unet(
dim = 128,
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
).cuda()
unet2 = Unet(
dim = 16,
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults = (1, 2, 4, 8, 16)
).cuda()
decoder = Decoder(
unet = (unet1, unet2),
image_sizes = (128, 256),
clip = clip,
timesteps = 100,
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5,
condition_on_text_encodings = False # set this to True if you wish to condition on text during training and sampling
).cuda()
for unet_number in (1, 2):
loss = decoder(images, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss.backward()
# do above for many steps
dalle2 = DALLE2(
prior = diffusion_prior,
decoder = decoder
)
images = dalle2(
['a butterfly trying to escape a tornado'],
cond_scale = 2. # classifier free guidance strength (> 1 would strengthen the condition)
)
# save your image (in this example, of size 256x256)
```
Now you'll just have to worry about training the Prior and the Decoder!
## Experimental
### DALL-E2 with Latent Diffusion
@@ -528,7 +620,7 @@ clip = CLIP(
# 3 unets for the decoder (a la cascading DDPM)
# first two unets are doing latent diffusion
# vqgan-vae must be trained before hand
# vqgan-vae must be trained beforehand
vae1 = VQGanVAE(
dim = 32,
@@ -581,7 +673,8 @@ decoder = Decoder(
unet = (unet1, unet2, unet3), # insert unets in order of low resolution to highest resolution (you can have as many stages as you want here)
image_sizes = (256, 512, 1024), # resolutions, 256 for first unet, 512 for second, 1024 for third
timesteps = 100,
cond_drop_prob = 0.2
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5
).cuda()
# mock images (get a lot of this)
@@ -651,6 +744,7 @@ Once built, images will be saved to the same directory the command is invoked
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
- [ ] copy the cascading ddpm code to a separate repo (perhaps https://github.com/lucidrains/denoising-diffusion-pytorch) as the main contribution of dalle2 really is just the prior network
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] just take care of the training for the decoder in a wrapper class, as each unet in the cascade will need its own optimizer
- [ ] train on a toy task, offer in colab
- [ ] think about how best to design a declarative training config that handles preencoding for prior and training of multiple networks in decoder
- [ ] extend diffusion head to use diffusion-gan (potentially using lightweight-gan) to speed up inference

View File

@@ -1,4 +1,5 @@
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter
from dalle2_pytorch.vqgan_vae import VQGanVAE
from x_clip import CLIP

View File

@@ -3,6 +3,7 @@ from tqdm import tqdm
from inspect import isfunction
from functools import partial
from contextlib import contextmanager
from collections import namedtuple
import torch
import torch.nn.functional as F
@@ -90,8 +91,21 @@ def resize_image_to(t, image_size, mode = 'bilinear'): # take a look at https://
return F.interpolate(t, size = shape, mode = mode, align_corners = False)
# image normalization functions
# ddpms expect images to be in the range of -1 to 1
# but CLIP may otherwise
def normalize_img(img):
return img * 2 - 1
def unnormalize_img(normed_img):
return (normed_img + 1) * 0.5
# clip related adapters
EmbeddedText = namedtuple('EmbedTextReturn', ['text_embed', 'text_encodings', 'text_mask'])
EmbeddedImage = namedtuple('EmbedImageReturn', ['image_embed', 'image_encodings'])
class BaseClipAdapter(nn.Module):
def __init__(self, clip):
super().__init__()
@@ -109,6 +123,10 @@ class BaseClipAdapter(nn.Module):
def image_channels(self):
raise NotImplementedError
@property
def max_text_len(self):
raise NotImplementedError
def embed_text(self, text):
raise NotImplementedError
@@ -128,12 +146,18 @@ class XClipAdapter(BaseClipAdapter):
def image_channels(self):
return self.clip.image_channels
@property
def max_text_len(self):
return self.clip.text_seq_len
@torch.no_grad()
def embed_text(self, text):
text = text[..., :self.max_text_len]
text_mask = text != 0
encoder_output = self.clip.text_transformer(text)
text_cls, text_encodings = encoder_output[:, 0], encoder_output[:, 1:]
text_embed = self.clip.to_text_latent(text_cls)
return l2norm(text_embed), text_encodings
return EmbeddedText(l2norm(text_embed), text_encodings, text_mask)
@torch.no_grad()
def embed_image(self, image):
@@ -141,7 +165,69 @@ class XClipAdapter(BaseClipAdapter):
encoder_output = self.clip.visual_transformer(image)
image_cls, image_encodings = encoder_output[:, 0], encoder_output[:, 1:]
image_embed = self.clip.to_visual_latent(image_cls)
return l2norm(image_embed), image_encodings
return EmbeddedImage(l2norm(image_embed), image_encodings)
class OpenAIClipAdapter(BaseClipAdapter):
def __init__(
self,
name = 'ViT-B/32'
):
import clip
openai_clip, preprocess = clip.load(name)
super().__init__(openai_clip)
text_attention_final = self.find_layer('ln_final')
self.handle = text_attention_final.register_forward_hook(self._hook)
self.clip_normalize = preprocess.transforms[-1]
self.cleared = False
def find_layer(self, layer):
modules = dict([*self.clip.named_modules()])
return modules.get(layer, None)
def clear(self):
if self.cleared:
return
self.handle()
def _hook(self, _, inputs, outputs):
self.text_encodings = outputs
@property
def dim_latent(self):
return 512
@property
def image_size(self):
return self.clip.visual.input_resolution
@property
def image_channels(self):
return 3
@property
def max_text_len(self):
return self.clip.context_length
@torch.no_grad()
def embed_text(self, text):
text = text[..., :self.max_text_len]
text_mask = text != 0
assert not self.cleared
text_embed = self.clip.encode_text(text)
text_encodings = self.text_encodings
del self.text_encodings
return EmbeddedText(text_embed.float(), text_encodings.float(), text_mask)
@torch.no_grad()
def embed_image(self, image):
assert not self.cleared
image = resize_image_to(image, self.image_size)
image = self.clip_normalize(unnormalize_img(image))
image_embed = self.clip.encode_image(image)
return EmbeddedImage(image_embed.float(), None)
# classifier free guidance functions
@@ -223,7 +309,18 @@ class BaseGaussianDiffusion(nn.Module):
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
if loss_type == 'l1':
loss_fn = F.l1_loss
elif loss_type == 'l2':
loss_fn = F.mse_loss
elif loss_type == 'huber':
loss_fn = F.smooth_l1_loss
else:
raise NotImplementedError()
self.loss_type = loss_type
self.loss_fn = loss_fn
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
@@ -587,14 +684,14 @@ class DiffusionPriorNetwork(nn.Module):
# classifier free guidance
cond_prob_mask = prob_mask_like((batch,), cond_drop_prob, device = device)
cond_prob_mask = rearrange(cond_prob_mask, 'b -> b 1')
keep_mask = prob_mask_like((batch,), 1 - cond_drop_prob, device = device)
keep_mask = rearrange(keep_mask, 'b -> b 1')
mask &= cond_prob_mask
mask &= keep_mask
# whether text embedding is masked or not depends on the classifier free guidance conditional masking
mask = torch.cat((mask, cond_prob_mask), dim = 1)
mask = torch.cat((mask, keep_mask), dim = 1)
# whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different)
# but let's just do it right
@@ -703,29 +800,21 @@ class DiffusionPrior(BaseGaussianDiffusion):
img = self.p_sample(img, torch.full((b,), i, device = device, dtype = torch.long), text_cond = text_cond)
return img
def p_losses(self, image_embed, t, text_cond, noise = None):
def p_losses(self, image_embed, times, text_cond, noise = None):
noise = default(noise, lambda: torch.randn_like(image_embed))
image_embed_noisy = self.q_sample(x_start = image_embed, t = t, noise = noise)
image_embed_noisy = self.q_sample(x_start = image_embed, t = times, noise = noise)
x_recon = self.net(
pred = self.net(
image_embed_noisy,
t,
times,
cond_drop_prob = self.cond_drop_prob,
**text_cond
)
to_predict = noise if not self.predict_x_start else image_embed
if self.loss_type == 'l1':
loss = F.l1_loss(to_predict, x_recon)
elif self.loss_type == 'l2':
loss = F.mse_loss(to_predict, x_recon)
elif self.loss_type == "huber":
loss = F.smooth_l1_loss(to_predict, x_recon)
else:
raise NotImplementedError()
target = noise if not self.predict_x_start else image_embed
loss = self.loss_fn(pred, target)
return loss
@torch.no_grad()
@@ -738,12 +827,12 @@ class DiffusionPrior(BaseGaussianDiffusion):
batch_size = text.shape[0]
image_embed_dim = self.image_embed_dim
text_embed, text_encodings = self.clip.embed_text(text)
text_embed, text_encodings, text_mask = self.clip.embed_text(text)
text_cond = dict(text_embed = text_embed)
if self.condition_on_text_encodings:
text_cond = {**text_cond, 'text_encodings': text_encodings, 'mask': text != 0}
text_cond = {**text_cond, 'text_encodings': text_encodings, 'mask': text_mask}
image_embeds = self.p_sample_loop((batch_size, image_embed_dim), text_cond = text_cond)
text_embeds = text_cond['text_embed']
@@ -780,8 +869,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
# calculate text conditionings, based on what is passed in
if exists(text):
text_embed, text_encodings = self.clip.embed_text(text)
text_mask = text != 0
text_embed, text_encodings, text_mask = self.clip.embed_text(text)
text_cond = dict(text_embed = text_embed)
@@ -1066,13 +1154,14 @@ class Unet(nn.Module):
self,
*,
lowres_cond,
channels
channels,
cond_on_image_embeds
):
if lowres_cond == self.lowres_cond and channels == self.channels:
if lowres_cond == self.lowres_cond and channels == self.channels and cond_on_image_embeds == self.cond_on_image_embeds:
return self
updated_kwargs = {**self._locals, 'lowres_cond': lowres_cond, 'channels': channels}
return self.__class__(**updated_kwargs)
updated_kwargs = {'lowres_cond': lowres_cond, 'channels': channels, 'cond_on_image_embeds': cond_on_image_embeds}
return self.__class__(**{**self._locals, **updated_kwargs})
def forward_with_cond_scale(
self,
@@ -1085,7 +1174,7 @@ class Unet(nn.Module):
if cond_scale == 1:
return logits
null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs)
null_logits = self.forward(*args, text_cond_drop_prob = 1., image_cond_drop_prob = 1., **kwargs)
return null_logits + (logits - null_logits) * cond_scale
def forward(
@@ -1096,7 +1185,8 @@ class Unet(nn.Module):
image_embed,
lowres_cond_img = None,
text_encodings = None,
cond_drop_prob = 0.,
image_cond_drop_prob = 0.,
text_cond_drop_prob = 0.,
blur_sigma = None,
blur_kernel_size = None
):
@@ -1115,8 +1205,10 @@ class Unet(nn.Module):
# conditional dropout
cond_prob_mask = prob_mask_like((batch_size,), cond_drop_prob, device = device)
cond_prob_mask = rearrange(cond_prob_mask, 'b -> b 1 1')
image_keep_mask = prob_mask_like((batch_size,), 1 - image_cond_drop_prob, device = device)
text_keep_mask = prob_mask_like((batch_size,), 1 - text_cond_drop_prob, device = device)
image_keep_mask, text_keep_mask = rearrange_many((image_keep_mask, text_keep_mask), 'b -> b 1 1')
# mask out image embedding depending on condition dropout
# for classifier free guidance
@@ -1127,7 +1219,7 @@ class Unet(nn.Module):
image_tokens = self.image_to_cond(image_embed)
image_tokens = torch.where(
cond_prob_mask,
image_keep_mask,
image_tokens,
self.null_image_embed
)
@@ -1139,7 +1231,7 @@ class Unet(nn.Module):
if exists(text_encodings) and self.cond_on_text_encodings:
text_tokens = self.text_to_cond(text_encodings)
text_tokens = torch.where(
cond_prob_mask,
text_keep_mask,
text_tokens,
self.null_text_embed[:, :text_tokens.shape[1]]
)
@@ -1209,7 +1301,7 @@ class LowresConditioner(nn.Module):
target_image_size = cast_tuple(target_image_size, 2)
if self.training and self.downsample_first and exists(downsample_image_size):
cond_fmap = resize_image_to(cond_fmap, target_image_size, mode = self.cond_upsample_mode)
cond_fmap = resize_image_to(cond_fmap, downsample_image_size, mode = self.cond_upsample_mode)
if self.training:
# when training, blur the low resolution conditional image
@@ -1229,7 +1321,8 @@ class Decoder(BaseGaussianDiffusion):
clip,
vae = tuple(),
timesteps = 1000,
cond_drop_prob = 0.2,
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5,
loss_type = 'l1',
beta_schedule = 'cosine',
predict_x_start = False,
@@ -1279,6 +1372,7 @@ class Decoder(BaseGaussianDiffusion):
one_unet = one_unet.cast_model_parameters(
lowres_cond = not is_first,
cond_on_image_embeds = is_first,
channels = unet_channels
)
@@ -1312,7 +1406,8 @@ class Decoder(BaseGaussianDiffusion):
# classifier free guidance
self.cond_drop_prob = cond_drop_prob
self.image_cond_drop_prob = image_cond_drop_prob
self.text_cond_drop_prob = text_cond_drop_prob
def get_unet(self, unet_number):
assert 0 < unet_number <= len(self.unets)
@@ -1336,11 +1431,8 @@ class Decoder(BaseGaussianDiffusion):
@torch.no_grad()
def get_image_embed(self, image):
image = resize_image_to(image, self.clip_image_size)
image_encoding = self.clip.visual_transformer(image)
image_cls = image_encoding[:, 0]
image_embed = self.clip.to_visual_latent(image_cls)
return l2norm(image_embed)
image_embed, _ = self.clip.embed_image(image)
return image_embed
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, cond_scale = 1.):
pred = unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img)
@@ -1386,31 +1478,24 @@ class Decoder(BaseGaussianDiffusion):
return img
def p_losses(self, unet, x_start, t, *, image_embed, lowres_cond_img = None, text_encodings = None, predict_x_start = False, noise = None):
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, predict_x_start = False, noise = None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start = x_start, t = t, noise = noise)
x_noisy = self.q_sample(x_start = x_start, t = times, noise = noise)
x_recon = unet(
pred = unet(
x_noisy,
t,
times,
image_embed = image_embed,
text_encodings = text_encodings,
lowres_cond_img = lowres_cond_img,
cond_drop_prob = self.cond_drop_prob
image_cond_drop_prob = self.image_cond_drop_prob,
text_cond_drop_prob = self.text_cond_drop_prob,
)
target = noise if not predict_x_start else x_start
if self.loss_type == 'l1':
loss = F.l1_loss(target, x_recon)
elif self.loss_type == 'l2':
loss = F.mse_loss(target, x_recon)
elif self.loss_type == "huber":
loss = F.smooth_l1_loss(target, x_recon)
else:
raise NotImplementedError()
loss = self.loss_fn(pred, target)
return loss
@torch.no_grad()
@@ -1420,7 +1505,7 @@ class Decoder(BaseGaussianDiffusion):
text_encodings = None
if exists(text):
_, text_encodings = self.clip.embed_text(text)
_, text_encodings, _ = self.clip.embed_text(text)
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
@@ -1488,7 +1573,7 @@ class Decoder(BaseGaussianDiffusion):
text_encodings = None
if exists(text) and not exists(text_encodings):
_, text_encodings = self.clip.embed_text(text)
_, text_encodings, _ = self.clip.embed_text(text)
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
@@ -1553,4 +1638,3 @@ class DALLE2(nn.Module):
return images[0]
return images

View File

@@ -0,0 +1,29 @@
from torch.optim import AdamW, Adam
def separate_weight_decayable_params(params):
no_wd_params = set([param for param in params if param.ndim < 2])
wd_params = set(params) - no_wd_params
return wd_params, no_wd_params
def get_optimizer(
params,
lr = 3e-4,
wd = 1e-2,
betas = (0.9, 0.999),
filter_by_requires_grad = False
):
if filter_by_requires_grad:
params = list(filter(lambda t: t.requires_grad, params))
if wd == 0:
return Adam(params, lr = lr, betas = betas)
params = set(params)
wd_params, no_wd_params = separate_weight_decayable_params(params)
param_groups = [
{'params': list(wd_params)},
{'params': list(no_wd_params), 'weight_decay': 0},
]
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas)

View File

@@ -545,6 +545,7 @@ class VQGanVAE(nn.Module):
l2_recon_loss = False,
use_hinge_loss = True,
vgg = None,
vq_codebook_dim = 256,
vq_codebook_size = 512,
vq_decay = 0.8,
vq_commitment_weight = 1.,
@@ -579,6 +580,7 @@ class VQGanVAE(nn.Module):
self.vq = VQ(
dim = self.enc_dec.encoded_dim,
codebook_dim = vq_codebook_dim,
codebook_size = vq_codebook_size,
decay = vq_decay,
commitment_weight = vq_commitment_weight,

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.62',
version = '0.0.74',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',
@@ -23,6 +23,7 @@ setup(
],
install_requires=[
'click',
'clip-anytorch',
'einops>=0.4',
'einops-exts>=0.0.3',
'kornia>=0.5.4',
@@ -31,7 +32,7 @@ setup(
'torchvision',
'tqdm',
'vector-quantize-pytorch',
'x-clip>=0.4.4',
'x-clip>=0.5.1',
'youtokentome'
],
classifiers=[