mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
7 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
aa900213e7 | ||
|
|
cb26187450 | ||
|
|
625ce23f6b | ||
|
|
dbf4a281f1 | ||
|
|
4ab527e779 | ||
|
|
d0cdeb3247 | ||
|
|
8c610aad9a |
@@ -7,6 +7,7 @@ from contextlib import contextmanager
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn, einsum
|
||||
import torchvision.transforms as T
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
@@ -646,9 +647,12 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
)
|
||||
|
||||
if exists(clip):
|
||||
assert isinstance(clip, CLIP)
|
||||
if isinstance(clip, CLIP):
|
||||
clip = XClipAdapter(clip)
|
||||
|
||||
assert isinstance(clip, BaseClipAdapter)
|
||||
freeze_model_and_make_eval_(clip)
|
||||
self.clip = XClipAdapter(clip)
|
||||
self.clip = clip
|
||||
else:
|
||||
assert exists(image_embed_dim), 'latent dimension must be given, if training prior network without CLIP given'
|
||||
self.clip = None
|
||||
@@ -736,11 +740,10 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
|
||||
text_embed, text_encodings = self.clip.embed_text(text)
|
||||
|
||||
text_cond = dict(
|
||||
text_embed = text_embed,
|
||||
text_encodings = text_encodings,
|
||||
mask = text != 0
|
||||
)
|
||||
text_cond = dict(text_embed = text_embed)
|
||||
|
||||
if self.condition_on_text_encodings:
|
||||
text_cond = {**text_cond, 'text_encodings': text_encodings, 'mask': text != 0}
|
||||
|
||||
image_embeds = self.p_sample_loop((batch_size, image_embed_dim), text_cond = text_cond)
|
||||
text_embeds = text_cond['text_embed']
|
||||
@@ -780,11 +783,11 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
text_embed, text_encodings = self.clip.embed_text(text)
|
||||
text_mask = text != 0
|
||||
|
||||
text_cond = dict(
|
||||
text_embed = text_embed,
|
||||
text_encodings = text_encodings,
|
||||
mask = text_mask
|
||||
)
|
||||
text_cond = dict(text_embed = text_embed)
|
||||
|
||||
if self.condition_on_text_encodings:
|
||||
assert exists(text_encodings), 'text encodings must be present for diffusion prior if specified'
|
||||
text_cond = {**text_cond, 'text_encodings': text_encodings, 'mask': text_mask}
|
||||
|
||||
# timestep conditioning from ddpm
|
||||
|
||||
@@ -793,8 +796,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
|
||||
# calculate forward loss
|
||||
|
||||
loss = self.p_losses(image_embed, times, text_cond = text_cond, *args, **kwargs)
|
||||
return loss
|
||||
return self.p_losses(image_embed, times, text_cond = text_cond, *args, **kwargs)
|
||||
|
||||
# decoder
|
||||
|
||||
@@ -1064,13 +1066,14 @@ class Unet(nn.Module):
|
||||
self,
|
||||
*,
|
||||
lowres_cond,
|
||||
channels
|
||||
channels,
|
||||
cond_on_image_embeds
|
||||
):
|
||||
if lowres_cond == self.lowres_cond and channels == self.channels:
|
||||
if lowres_cond == self.lowres_cond and channels == self.channels and cond_on_image_embeds == self.cond_on_image_embeds:
|
||||
return self
|
||||
|
||||
updated_kwargs = {**self._locals, 'lowres_cond': lowres_cond, 'channels': channels}
|
||||
return self.__class__(**updated_kwargs)
|
||||
updated_kwargs = {'lowres_cond': lowres_cond, 'channels': channels, 'cond_on_image_embeds': cond_on_image_embeds}
|
||||
return self.__class__(**{**self._locals, **updated_kwargs})
|
||||
|
||||
def forward_with_cond_scale(
|
||||
self,
|
||||
@@ -1249,6 +1252,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
clip = XClipAdapter(clip)
|
||||
|
||||
freeze_model_and_make_eval_(clip)
|
||||
assert isinstance(clip, BaseClipAdapter)
|
||||
|
||||
self.clip = clip
|
||||
self.clip_image_size = clip.image_size
|
||||
self.channels = clip.image_channels
|
||||
@@ -1275,6 +1280,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
one_unet = one_unet.cast_model_parameters(
|
||||
lowres_cond = not is_first,
|
||||
cond_on_image_embeds = is_first,
|
||||
channels = unet_channels
|
||||
)
|
||||
|
||||
@@ -1419,6 +1425,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
_, text_encodings = self.clip.embed_text(text)
|
||||
|
||||
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
|
||||
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
|
||||
|
||||
img = None
|
||||
|
||||
@@ -1486,6 +1493,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
_, text_encodings = self.clip.embed_text(text)
|
||||
|
||||
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
|
||||
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
|
||||
|
||||
lowres_cond_img = self.to_lowres_cond(image, target_image_size = target_image_size, downsample_image_size = self.image_sizes[unet_index - 1]) if unet_number > 1 else None
|
||||
image = resize_image_to(image, target_image_size)
|
||||
@@ -1518,12 +1526,15 @@ class DALLE2(nn.Module):
|
||||
self.prior_num_samples = prior_num_samples
|
||||
self.decoder_need_text_cond = self.decoder.condition_on_text_encodings
|
||||
|
||||
self.to_pil = T.ToPILImage()
|
||||
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def forward(
|
||||
self,
|
||||
text,
|
||||
cond_scale = 1.
|
||||
cond_scale = 1.,
|
||||
return_pil_images = False
|
||||
):
|
||||
device = next(self.parameters()).device
|
||||
one_text = isinstance(text, str) or (not is_list_str(text) and text.shape[0] == 1)
|
||||
@@ -1537,7 +1548,11 @@ class DALLE2(nn.Module):
|
||||
text_cond = text if self.decoder_need_text_cond else None
|
||||
images = self.decoder.sample(image_embed, text = text_cond, cond_scale = cond_scale)
|
||||
|
||||
if return_pil_images:
|
||||
images = list(map(self.to_pil, images.unbind(dim = 0)))
|
||||
|
||||
if one_text:
|
||||
return images[0]
|
||||
|
||||
return images
|
||||
|
||||
|
||||
@@ -545,6 +545,7 @@ class VQGanVAE(nn.Module):
|
||||
l2_recon_loss = False,
|
||||
use_hinge_loss = True,
|
||||
vgg = None,
|
||||
vq_codebook_dim = 256,
|
||||
vq_codebook_size = 512,
|
||||
vq_decay = 0.8,
|
||||
vq_commitment_weight = 1.,
|
||||
@@ -579,6 +580,7 @@ class VQGanVAE(nn.Module):
|
||||
|
||||
self.vq = VQ(
|
||||
dim = self.enc_dec.encoded_dim,
|
||||
codebook_dim = vq_codebook_dim,
|
||||
codebook_size = vq_codebook_size,
|
||||
decay = vq_decay,
|
||||
commitment_weight = vq_commitment_weight,
|
||||
|
||||
Reference in New Issue
Block a user