Compare commits

..

4 Commits

3 changed files with 20 additions and 11 deletions

View File

@@ -1352,6 +1352,7 @@ class Unet(nn.Module):
init_cross_embed_kernel_sizes = (3, 7, 15),
cross_embed_downsample = False,
cross_embed_downsample_kernel_sizes = (2, 4),
memory_efficient = False,
**kwargs
):
super().__init__()
@@ -1462,10 +1463,11 @@ class Unet(nn.Module):
layer_cond_dim = cond_dim if not is_first else None
self.downs.append(nn.ModuleList([
downsample_klass(dim_in, dim_out = dim_out),
ResnetBlock(dim_out, dim_out, time_cond_dim = time_cond_dim, groups = groups),
downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None,
ResnetBlock(dim_out if memory_efficient else dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
nn.ModuleList([ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
downsample_klass(dim_out) if not is_last and not memory_efficient else None
]))
mid_dim = dims[-1]
@@ -1475,18 +1477,18 @@ class Unet(nn.Module):
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks))):
is_last = ind >= (num_resolutions - 2)
is_last = ind >= (len(in_out) - 1)
layer_cond_dim = cond_dim if not is_last else None
self.ups.append(nn.ModuleList([
ResnetBlock(dim_out * 2, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_in, **attn_kwargs)) if sparse_attn else nn.Identity(),
nn.ModuleList([ResnetBlock(dim_in, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
Upsample(dim_in)
Upsample(dim_in) if not is_last or memory_efficient else nn.Identity()
]))
self.final_conv = nn.Sequential(
ResnetBlock(dim, dim, groups = resnet_groups[0]),
ResnetBlock(dim * 2, dim, groups = resnet_groups[0]),
nn.Conv2d(dim, self.channels_out, 1)
)
@@ -1558,6 +1560,7 @@ class Unet(nn.Module):
# initial convolution
x = self.init_conv(x)
r = x.clone() # final residual
# time conditioning
@@ -1655,8 +1658,10 @@ class Unet(nn.Module):
hiddens = []
for downsample, init_block, sparse_attn, resnet_blocks in self.downs:
x = downsample(x)
for pre_downsample, init_block, sparse_attn, resnet_blocks, post_downsample in self.downs:
if exists(pre_downsample):
x = pre_downsample(x)
x = init_block(x, c, t)
x = sparse_attn(x)
@@ -1665,6 +1670,9 @@ class Unet(nn.Module):
hiddens.append(x)
if exists(post_downsample):
x = post_downsample(x)
x = self.mid_block1(x, mid_c, t)
if exists(self.mid_attn):
@@ -1673,7 +1681,7 @@ class Unet(nn.Module):
x = self.mid_block2(x, mid_c, t)
for init_block, sparse_attn, resnet_blocks, upsample in self.ups:
x = torch.cat((x, hiddens.pop()), dim=1)
x = torch.cat((x, hiddens.pop()), dim = 1)
x = init_block(x, c, t)
x = sparse_attn(x)
@@ -1682,6 +1690,7 @@ class Unet(nn.Module):
x = upsample(x)
x = torch.cat((x, r), dim = 1)
return self.final_conv(x)
class LowresConditioner(nn.Module):

View File

@@ -1 +1 @@
__version__ = '0.8.0'
__version__ = '0.9.2'

View File

@@ -68,8 +68,8 @@ def group_dict_by_key(cond, d):
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def string_begins_with(prefix, string_input):
return string_input.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)