Compare commits

..

1 Commits

21 changed files with 468 additions and 1176 deletions

View File

@@ -12,7 +12,7 @@ This model is SOTA for text-to-image for now.
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication with the <a href="https://laion.ai/">LAION</a> community | <a href="https://www.youtube.com/watch?v=AIOE1l1W0Tw">Yannic Interview</a>
As of 5/23/22, it is no longer SOTA. SOTA will be <a href="https://github.com/lucidrains/imagen-pytorch">here</a>. Jax versions as well as text-to-video project will be shifted towards the Imagen architecture, as it is way simpler.
There was enough interest for a <a href="https://github.com/lucidrains/dalle2-jax">Jax version</a>. I will also eventually extend this to <a href="https://github.com/lucidrains/dalle2-video">text to video</a>, once the repository is in a good place.
## Status
@@ -24,13 +24,6 @@ As of 5/23/22, it is no longer SOTA. SOTA will be <a href="https://github.com/lu
*ongoing at 21k steps*
- <a href="https://twitter.com/Buntworthy/status/1529475416775434240?t=0GEge3Kr9I36cjcUVCQUTg">Justin Pinkney</a> successfully trained the diffusion prior in the repository for his CLIP to Stylegan2 text-to-image application
## Pre-Trained Models
- LAION is training prior models. Checkpoints are available on <a href="https://huggingface.co/zenglishuci/conditioned-prior">🤗huggingface</a> and the training statistics are available on <a href="https://wandb.ai/nousr_laion/conditioned-prior/reports/LAION-DALLE2-PyTorch-Prior--VmlldzoyMDI2OTIx">🐝WANDB</a>.
- Decoder - <a href="https://wandb.ai/veldrovive/dalle2_train_decoder/runs/jkrtg0so?workspace=user-veldrovive">In-progress test run</a> 🚧
- DALL-E 2 🚧
## Install
```bash
@@ -943,7 +936,7 @@ from dalle2_pytorch.dataloaders import ImageEmbeddingDataset, create_image_embed
# Create a dataloader directly.
dataloader = create_image_embedding_dataloader(
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses bracket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses braket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
embeddings_url="path/or/url/to/embeddings/folder", # Included if .npy files are not in webdataset. Left out or set to None otherwise
num_workers=4,
batch_size=32,
@@ -1050,7 +1043,6 @@ This library would not have gotten to this working state without the help of
- <a href="https://github.com/rom1504">Romain</a> for the pull request reviews and project management
- <a href="https://github.com/Ciaohe">He Cao</a> and <a href="https://github.com/xiankgx">xiankgx</a> for the Q&A and for identifying of critical bugs
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
... and many others. Thank you! 🙏
@@ -1084,22 +1076,21 @@ This library would not have gotten to this working state without the help of
- [x] bring in cross-scale embedding from iclr paper https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/crossformer.py#L14
- [x] cross embed layers for downsampling, as an option
- [x] use an experimental tracker agnostic setup, as done <a href="https://github.com/lucidrains/tf-bind-transformer#simple-trainer-class-for-fine-tuning">here</a>
- [x] use pydantic for config drive training
- [x] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
- [x] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [x] allow for creation of diffusion prior model off pydantic config classes - consider the same for tracker configs
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] train on a toy task, offer in colab
- [ ] think about how best to design a declarative training config that handles preencoding for prior and training of multiple networks in decoder
- [ ] extend diffusion head to use diffusion-gan (potentially using lightweight-gan) to speed up inference
- [ ] figure out if possible to augment with external memory, as described in https://arxiv.org/abs/2204.11824
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
- [ ] bring in skip-layer excitations (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
- [ ] decoder needs one day worth of refactor for tech debt
- [ ] allow for unet to be able to condition non-cross attention style as well
- [ ] for all model classes with hyperparameters that changes the network architecture, make it requirement that they must expose a config property, and write a simple function that asserts that it restores the object correctly
- [ ] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
## Citations
@@ -1143,9 +1134,8 @@ This library would not have gotten to this working state without the help of
```bibtex
@inproceedings{Tu2022MaxViTMV,
title = {MaxViT: Multi-Axis Vision Transformer},
author = {Zhengzhong Tu and Hossein Talebi and Han Zhang and Feng Yang and Peyman Milanfar and Alan Conrad Bovik and Yinxiao Li},
year = {2022},
url = {https://arxiv.org/abs/2204.01697}
author = {Zhe-Wei Tu and Hossein Talebi and Han Zhang and Feng Yang and Peyman Milanfar and Alan Conrad Bovik and Yinxiao Li},
year = {2022}
}
```
@@ -1199,22 +1189,4 @@ This library would not have gotten to this working state without the help of
}
```
```bibtex
@misc{Saharia2022,
title = {Imagen: unprecedented photorealism × deep level of language understanding},
author = {Chitwan Saharia*, William Chan*, Saurabh Saxena†, Lala Li†, Jay Whang†, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho†, David Fleet†, Mohammad Norouzi*},
year = {2022}
}
```
```bibtex
@article{Choi2022PerceptionPT,
title = {Perception Prioritized Training of Diffusion Models},
author = {Jooyoung Choi and Jungbeom Lee and Chaehun Shin and Sungwon Kim and Hyunwoo J. Kim and Sung-Hoon Yoon},
journal = {ArXiv},
year = {2022},
volume = {abs/2204.00227}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -4,12 +4,11 @@ For more complex configuration, we provide the option of using a configuration f
### Decoder Trainer
The decoder trainer has 7 main configuration options. A full example of their use can be found in the [example decoder configuration](train_decoder_config.example.json).
The decoder trainer has 7 main configuration options. A full example of their use can be found in the [example decoder configuration](train_decoder_config.json.example).
**<ins>Unet</ins>:**
This is a single unet config, which belongs as an array nested under the decoder config as a list of `unets`
**<ins>Unets</ins>:**
Each member of this array defines a single unet that will be added to the decoder.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `dim` | Yes | N/A | The starting channels of the unet. |
@@ -23,7 +22,6 @@ Any parameter from the `Unet` constructor can also be given here.
Defines the configuration options for the decoder model. The unets defined above will automatically be inserted.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `unets` | Yes | N/A | A list of unets, using the configuration above |
| `image_sizes` | Yes | N/A | The resolution of the image after each upsampling step. The length of this array should be the number of unets defined. |
| `image_size` | Yes | N/A | Not used. Can be any number. |
| `timesteps` | No | `1000` | The number of diffusion timesteps used for generation. |
@@ -83,7 +81,7 @@ Defines which evaluation metrics will be used to test the model.
Each metric can be enabled by setting its configuration. The configuration keys for each metric are defined by the torchmetrics constructors which will be linked.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `n_evaluation_samples` | No | `1000` | The number of samples to generate to test the model. |
| `n_evalation_samples` | No | `1000` | The number of samples to generate to test the model. |
| `FID` | No | `None` | Setting to an object enables the [Frechet Inception Distance](https://torchmetrics.readthedocs.io/en/stable/image/frechet_inception_distance.html) metric.
| `IS` | No | `None` | Setting to an object enables the [Inception Score](https://torchmetrics.readthedocs.io/en/stable/image/inception_score.html) metric.
| `KID` | No | `None` | Setting to an object enables the [Kernel Inception Distance](https://torchmetrics.readthedocs.io/en/stable/image/kernel_inception_distance.html) metric. |

View File

@@ -0,0 +1,82 @@
"""
Defines the default values for the decoder config
"""
from enum import Enum
class ConfigField(Enum):
REQUIRED = 0 # This had more options. It's a bit unnecessary now, but I can't think of a better way to do it.
default_config = {
"unets": ConfigField.REQUIRED,
"decoder": {
"image_sizes": ConfigField.REQUIRED, # The side lengths of the upsampled image at the end of each unet
"image_size": ConfigField.REQUIRED, # Usually the same as image_sizes[-1] I think
"channels": 3,
"timesteps": 1000,
"loss_type": "l2",
"beta_schedule": "cosine",
"learned_variance": True
},
"data": {
"webdataset_base_url": ConfigField.REQUIRED, # Path to a webdataset with jpg images
"embeddings_url": ConfigField.REQUIRED, # Path to .npy files with embeddings
"num_workers": 4,
"batch_size": 64,
"start_shard": 0,
"end_shard": 9999999,
"shard_width": 6,
"index_width": 4,
"splits": {
"train": 0.75,
"val": 0.15,
"test": 0.1
},
"shuffle_train": True,
"resample_train": False,
"preprocessing": {
"ToTensor": True
}
},
"train": {
"epochs": 20,
"lr": 1e-4,
"wd": 0.01,
"max_grad_norm": 0.5,
"save_every_n_samples": 100000,
"n_sample_images": 6, # The number of example images to produce when sampling the train and test dataset
"device": "cuda:0",
"epoch_samples": None, # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
"validation_samples": None, # Same as above but for validation.
"use_ema": True,
"ema_beta": 0.99,
"amp": False,
"save_all": False, # Whether to preserve all checkpoints
"save_latest": True, # Whether to always save the latest checkpoint
"save_best": True, # Whether to save the best checkpoint
"unet_training_mask": None # If None, use all unets
},
"evaluate": {
"n_evalation_samples": 1000,
"FID": None,
"IS": None,
"KID": None,
"LPIPS": None
},
"tracker": {
"tracker_type": "console", # Decoder currently supports console and wandb
"data_path": "./models", # The path where files will be saved locally
"wandb_entity": "", # Only needs to be set if tracker_type is wandb
"wandb_project": "",
"verbose": False # Whether to print console logging for non-console trackers
},
"load": {
"source": None, # Supports file and wandb
"run_path": "", # Used only if source is wandb
"file_path": "", # The local filepath if source is file. If source is wandb, the relative path to the model file in wandb.
"resume": False # If using wandb, whether to resume the run
}
}

View File

@@ -1,17 +1,18 @@
{
"unets": [
{
"dim": 128,
"image_embed_dim": 768,
"cond_dim": 64,
"channels": 3,
"dim_mults": [1, 2, 4, 8],
"attn_dim_head": 32,
"attn_heads": 16
}
],
"decoder": {
"unets": [
{
"dim": 128,
"image_embed_dim": 768,
"cond_dim": 64,
"channels": 3,
"dim_mults": [1, 2, 4, 8],
"attn_dim_head": 32,
"attn_heads": 16
}
],
"image_sizes": [64],
"image_size": [64],
"channels": 3,
"timesteps": 1000,
"loss_type": "l2",
@@ -62,7 +63,7 @@
"unet_training_mask": [true]
},
"evaluate": {
"n_evaluation_samples": 1000,
"n_evalation_samples": 1000,
"FID": {
"feature": 64
},

View File

@@ -1,70 +0,0 @@
{
"prior": {
"clip": {
"make": "x-clip",
"model": "ViT-L/14",
"base_model_kwargs": {
"dim_text": 768,
"dim_image": 768,
"dim_latent": 768
}
},
"net": {
"dim": 768,
"depth": 12,
"num_timesteps": 1000,
"num_time_embeds": 1,
"num_image_embeds": 1,
"num_text_embeds": 1,
"dim_head": 64,
"heads": 12,
"ff_mult": 4,
"norm_out": true,
"attn_dropout": 0.0,
"ff_dropout": 0.0,
"final_proj": true,
"normformer": true,
"rotary_emb": true
},
"image_embed_dim": 768,
"image_size": 224,
"image_channels": 3,
"timesteps": 1000,
"cond_drop_prob": 0.1,
"loss_type": "l2",
"predict_x_start": true,
"beta_schedule": "cosine",
"condition_on_text_encodings": true
},
"data": {
"image_url": "https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/img_emb/",
"text_url": "https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/text_emb/",
"meta_url": "https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/laion2B-en-metadata/",
"batch_size": 256,
"splits": {
"train": 0.9,
"val": 1e-7,
"test": 0.0999999
}
},
"train": {
"epochs": 1,
"lr": 1.1e-4,
"wd": 6.02e-2,
"max_grad_norm": 0.5,
"use_ema": true,
"amp": false,
"save_every": 10000
},
"load": {
"source": null,
"resume": false
},
"tracker": {
"tracker_type": "wandb",
"data_path": "./prior_checkpoints",
"wandb_entity": "laion",
"wandb_project": "diffusion-prior",
"verbose": true
}
}

View File

@@ -1,4 +1,3 @@
from dalle2_pytorch.version import __version__
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer

View File

@@ -1,6 +1,6 @@
import math
import random
from tqdm import tqdm
from inspect import isfunction
from functools import partial, wraps
from contextlib import contextmanager
from collections import namedtuple
@@ -11,7 +11,7 @@ import torch.nn.functional as F
from torch import nn, einsum
import torchvision.transforms as T
from einops import rearrange, repeat, reduce
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from einops_exts import rearrange_many, repeat_many, check_shape
from einops_exts.torch import EinopsToAndFrom
@@ -56,7 +56,7 @@ def maybe(fn):
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
return d() if isfunction(d) else d
def cast_tuple(val, length = 1):
if isinstance(val, list):
@@ -313,6 +313,11 @@ def extract(a, t, x_shape):
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def meanflat(x):
return x.mean(dim = tuple(range(1, len(x.shape))))
@@ -367,7 +372,7 @@ def quadratic_beta_schedule(timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype = torch.float64) ** 2
return torch.linspace(beta_start**2, beta_end**2, timesteps, dtype = torch.float64) ** 2
def sigmoid_beta_schedule(timesteps):
@@ -379,7 +384,7 @@ def sigmoid_beta_schedule(timesteps):
class BaseGaussianDiffusion(nn.Module):
def __init__(self, *, beta_schedule, timesteps, loss_type, p2_loss_weight_gamma = 0., p2_loss_weight_k = 1):
def __init__(self, *, beta_schedule, timesteps, loss_type):
super().__init__()
if beta_schedule == "cosine":
@@ -444,11 +449,6 @@ class BaseGaussianDiffusion(nn.Module):
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
# p2 loss reweighting
self.has_p2_loss_reweighting = p2_loss_weight_gamma > 0.
register_buffer('p2_loss_weight', (p2_loss_weight_k + alphas_cumprod / (1 - alphas_cumprod)) ** -p2_loss_weight_gamma)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
@@ -890,8 +890,6 @@ class DiffusionPrior(BaseGaussianDiffusion):
)
if exists(clip):
assert image_channels == clip.image_channels, f'channels of image ({image_channels}) should be equal to the channels that CLIP accepts ({clip.image_channels})'
if isinstance(clip, CLIP):
clip = XClipAdapter(clip, **clip_adapter_overrides)
elif isinstance(clip, CoCa):
@@ -945,10 +943,10 @@ class DiffusionPrior(BaseGaussianDiffusion):
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, text_cond = None, clip_denoised = True, cond_scale = 1.):
def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False, cond_scale = 1.):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised, cond_scale = cond_scale)
noise = torch.randn_like(x)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@@ -1084,9 +1082,8 @@ class DiffusionPrior(BaseGaussianDiffusion):
def Upsample(dim):
return nn.ConvTranspose2d(dim, dim, 4, 2, 1)
def Downsample(dim, *, dim_out = None):
dim_out = default(dim_out, dim)
return nn.Conv2d(dim, dim_out, 4, 2, 1)
def Downsample(dim):
return nn.Conv2d(dim, dim, 4, 2, 1)
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
@@ -1108,20 +1105,13 @@ class Block(nn.Module):
groups = 8
):
super().__init__()
self.project = nn.Conv2d(dim, dim_out, 3, padding = 1)
self.norm = nn.GroupNorm(groups, dim_out)
self.act = nn.SiLU()
def forward(self, x, scale_shift = None):
x = self.project(x)
x = self.norm(x)
if exists(scale_shift):
scale, shift = scale_shift
x = x * (scale + 1) + shift
x = self.act(x)
return x
self.block = nn.Sequential(
nn.Conv2d(dim, dim_out, 3, padding = 1),
nn.GroupNorm(groups, dim_out),
nn.SiLU()
)
def forward(self, x):
return self.block(x)
class ResnetBlock(nn.Module):
def __init__(
@@ -1140,7 +1130,7 @@ class ResnetBlock(nn.Module):
if exists(time_cond_dim):
self.time_mlp = nn.Sequential(
nn.SiLU(),
nn.Linear(time_cond_dim, dim_out * 2)
nn.Linear(time_cond_dim, dim_out)
)
self.cross_attn = None
@@ -1160,14 +1150,11 @@ class ResnetBlock(nn.Module):
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
def forward(self, x, cond = None, time_emb = None):
h = self.block1(x)
scale_shift = None
if exists(self.time_mlp) and exists(time_emb):
time_emb = self.time_mlp(time_emb)
time_emb = rearrange(time_emb, 'b c -> b c 1 1')
scale_shift = time_emb.chunk(2, dim = 1)
h = self.block1(x, scale_shift = scale_shift)
h = rearrange(time_emb, 'b c -> b c 1 1') + h
if exists(self.cross_attn):
assert exists(cond)
@@ -1344,11 +1331,9 @@ class Unet(nn.Module):
cond_on_text_encodings = False,
max_text_len = 256,
cond_on_image_embeds = False,
add_image_embeds_to_time = True, # alerted by @mhh0318 to a phrase in the paper - "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and adding CLIP embeddings to the existing timestep embedding"
init_dim = None,
init_conv_kernel_size = 7,
resnet_groups = 8,
num_resnet_blocks = 2,
init_cross_embed_kernel_sizes = (3, 7, 15),
cross_embed_downsample = False,
cross_embed_downsample_kernel_sizes = (2, 4),
@@ -1371,7 +1356,7 @@ class Unet(nn.Module):
self.channels_out = default(channels_out, channels)
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
init_dim = default(init_dim, dim)
init_dim = default(init_dim, dim // 3 * 2)
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1)
@@ -1398,16 +1383,11 @@ class Unet(nn.Module):
nn.Linear(time_cond_dim, time_cond_dim)
)
self.image_to_tokens = nn.Sequential(
self.image_to_cond = nn.Sequential(
nn.Linear(image_embed_dim, cond_dim * num_image_tokens),
Rearrange('b (n d) -> b n d', n = num_image_tokens)
) if cond_on_image_embeds and image_embed_dim != cond_dim else nn.Identity()
self.to_image_hiddens = nn.Sequential(
nn.Linear(image_embed_dim, time_cond_dim),
nn.GELU()
) if cond_on_image_embeds and add_image_embeds_to_time else None
self.norm_cond = nn.LayerNorm(cond_dim)
self.norm_mid_cond = nn.LayerNorm(cond_dim)
@@ -1428,7 +1408,6 @@ class Unet(nn.Module):
# for classifier free guidance
self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim))
self.null_image_hiddens = nn.Parameter(torch.randn(1, time_cond_dim))
self.max_text_len = max_text_len
self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, cond_dim))
@@ -1440,7 +1419,6 @@ class Unet(nn.Module):
# resnet block klass
resnet_groups = cast_tuple(resnet_groups, len(in_out))
num_resnet_blocks = cast_tuple(num_resnet_blocks, len(in_out))
assert len(resnet_groups) == len(in_out)
@@ -1456,16 +1434,16 @@ class Unet(nn.Module):
self.ups = nn.ModuleList([])
num_resolutions = len(in_out)
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks) in enumerate(zip(in_out, resnet_groups, num_resnet_blocks)):
for ind, ((dim_in, dim_out), groups) in enumerate(zip(in_out, resnet_groups)):
is_first = ind == 0
is_last = ind >= (num_resolutions - 1)
layer_cond_dim = cond_dim if not is_first else None
self.downs.append(nn.ModuleList([
downsample_klass(dim_in, dim_out = dim_out),
ResnetBlock(dim_out, dim_out, time_cond_dim = time_cond_dim, groups = groups),
ResnetBlock(dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
nn.ModuleList([ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
downsample_klass(dim_out) if not is_last else nn.Identity()
]))
mid_dim = dims[-1]
@@ -1474,14 +1452,14 @@ class Unet(nn.Module):
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim, **attn_kwargs))) if attend_at_middle else None
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks))):
for ind, ((dim_in, dim_out), groups) in enumerate(zip(reversed(in_out[1:]), reversed(resnet_groups))):
is_last = ind >= (num_resolutions - 2)
layer_cond_dim = cond_dim if not is_last else None
self.ups.append(nn.ModuleList([
ResnetBlock(dim_out * 2, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_in, **attn_kwargs)) if sparse_attn else nn.Identity(),
nn.ModuleList([ResnetBlock(dim_in, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
ResnetBlock(dim_in, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
Upsample(dim_in)
]))
@@ -1571,23 +1549,7 @@ class Unet(nn.Module):
image_keep_mask = prob_mask_like((batch_size,), 1 - image_cond_drop_prob, device = device)
text_keep_mask = prob_mask_like((batch_size,), 1 - text_cond_drop_prob, device = device)
text_keep_mask = rearrange(text_keep_mask, 'b -> b 1 1')
# image embedding to be summed to time embedding
# discovered by @mhh0318 in the paper
if exists(image_embed) and exists(self.to_image_hiddens):
image_hiddens = self.to_image_hiddens(image_embed)
image_keep_mask_hidden = rearrange(image_keep_mask, 'b -> b 1')
null_image_hiddens = self.null_image_hiddens.to(image_hiddens.dtype)
image_hiddens = torch.where(
image_keep_mask_hidden,
image_hiddens,
null_image_hiddens
)
t = t + image_hiddens
image_keep_mask, text_keep_mask = rearrange_many((image_keep_mask, text_keep_mask), 'b -> b 1 1')
# mask out image embedding depending on condition dropout
# for classifier free guidance
@@ -1595,12 +1557,11 @@ class Unet(nn.Module):
image_tokens = None
if self.cond_on_image_embeds:
image_keep_mask_embed = rearrange(image_keep_mask, 'b -> b 1 1')
image_tokens = self.image_to_tokens(image_embed)
image_tokens = self.image_to_cond(image_embed)
null_image_embed = self.null_image_embed.to(image_tokens.dtype) # for some reason pytorch AMP not working
image_tokens = torch.where(
image_keep_mask_embed,
image_keep_mask,
image_tokens,
null_image_embed
)
@@ -1655,15 +1616,12 @@ class Unet(nn.Module):
hiddens = []
for downsample, init_block, sparse_attn, resnet_blocks in self.downs:
x = downsample(x)
x = init_block(x, c, t)
for block1, sparse_attn, block2, downsample in self.downs:
x = block1(x, c, t)
x = sparse_attn(x)
for resnet_block in resnet_blocks:
x = resnet_block(x, c, t)
x = block2(x, c, t)
hiddens.append(x)
x = downsample(x)
x = self.mid_block1(x, mid_c, t)
@@ -1672,14 +1630,11 @@ class Unet(nn.Module):
x = self.mid_block2(x, mid_c, t)
for init_block, sparse_attn, resnet_blocks, upsample in self.ups:
for block1, sparse_attn, block2, upsample in self.ups:
x = torch.cat((x, hiddens.pop()), dim=1)
x = init_block(x, c, t)
x = block1(x, c, t)
x = sparse_attn(x)
for resnet_block in resnet_blocks:
x = resnet_block(x, c, t)
x = block2(x, c, t)
x = upsample(x)
return self.final_conv(x)
@@ -1688,7 +1643,7 @@ class LowresConditioner(nn.Module):
def __init__(
self,
downsample_first = True,
blur_sigma = (0.1, 0.2),
blur_sigma = 0.1,
blur_kernel_size = 3,
):
super().__init__()
@@ -1712,18 +1667,6 @@ class LowresConditioner(nn.Module):
# when training, blur the low resolution conditional image
blur_sigma = default(blur_sigma, self.blur_sigma)
blur_kernel_size = default(blur_kernel_size, self.blur_kernel_size)
# allow for drawing a random sigma between lo and hi float values
if isinstance(blur_sigma, tuple):
blur_sigma = tuple(map(float, blur_sigma))
blur_sigma = random.uniform(*blur_sigma)
# allow for drawing a random kernel size between lo and hi int values
if isinstance(blur_kernel_size, tuple):
blur_kernel_size = tuple(map(int, blur_kernel_size))
kernel_size_lo, kernel_size_hi = blur_kernel_size
blur_kernel_size = random.randrange(kernel_size_lo, kernel_size_hi + 1)
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
cond_fmap = resize_image_to(cond_fmap, target_image_size)
@@ -1749,44 +1692,30 @@ class Decoder(BaseGaussianDiffusion):
image_sizes = None, # for cascading ddpm, image size at each stage
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
blur_sigma = (0.1, 0.2), # cascading ddpm - blur sigma
blur_sigma = 0.1, # cascading ddpm - blur sigma
blur_kernel_size = 3, # cascading ddpm - blur kernel size
condition_on_text_encodings = False, # the paper suggested that this didn't do much in the decoder, but i'm allowing the option for experimentation
clip_denoised = True,
clip_x_start = True,
clip_adapter_overrides = dict(),
learned_variance = True,
learned_variance_constrain_frac = False,
vb_loss_weight = 0.001,
unconditional = False,
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
use_dynamic_thres = False, # from the Imagen paper
dynamic_thres_percentile = 0.9,
p2_loss_weight_gamma = 0., # p2 loss weight, from https://arxiv.org/abs/2204.00227 - 0 is equivalent to weight of 1 across time - 1. is recommended
p2_loss_weight_k = 1
):
super().__init__(
beta_schedule = beta_schedule,
timesteps = timesteps,
loss_type = loss_type,
p2_loss_weight_gamma = p2_loss_weight_gamma,
p2_loss_weight_k = p2_loss_weight_k
loss_type = loss_type
)
self.unconditional = unconditional
# text conditioning
assert not (condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
self.condition_on_text_encodings = condition_on_text_encodings
# clip
assert self.unconditional or (exists(clip) ^ exists(image_size)), 'either CLIP is supplied, or you must give the image_size and channels (usually 3 for RGB)'
self.clip = None
if exists(clip):
assert not unconditional, 'clip must not be given if doing unconditional image training'
assert channels == clip.image_channels, f'channels of image ({channels}) should be equal to the channels that CLIP accepts ({clip.image_channels})'
if isinstance(clip, CLIP):
clip = XClipAdapter(clip, **clip_adapter_overrides)
elif isinstance(clip, CoCa):
@@ -1796,20 +1725,13 @@ class Decoder(BaseGaussianDiffusion):
assert isinstance(clip, BaseClipAdapter)
self.clip = clip
# determine image size, with image_size and image_sizes taking precedence
if exists(image_size) or exists(image_sizes):
assert exists(image_size) ^ exists(image_sizes), 'only one of image_size or image_sizes must be given'
image_size = default(image_size, lambda: image_sizes[-1])
elif exists(clip):
image_size = clip.image_size
self.clip_image_size = clip.image_size
self.channels = clip.image_channels
else:
raise Error('either image_size, image_sizes, or clip must be given to decoder')
self.clip_image_size = image_size
self.channels = channels
# channels
self.channels = channels
self.condition_on_text_encodings = condition_on_text_encodings
# automatically take care of ensuring that first unet is unconditional
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
@@ -1821,7 +1743,6 @@ class Decoder(BaseGaussianDiffusion):
learned_variance = pad_tuple_to_length(cast_tuple(learned_variance), len(unets), fillvalue = False)
self.learned_variance = learned_variance
self.learned_variance_constrain_frac = learned_variance_constrain_frac # whether to constrain the output of the network (the interpolation fraction) from 0 to 1
self.vb_loss_weight = vb_loss_weight
# construct unets and vaes
@@ -1852,7 +1773,7 @@ class Decoder(BaseGaussianDiffusion):
# unet image sizes
image_sizes = default(image_sizes, (image_size,))
image_sizes = default(image_sizes, (self.clip_image_size,))
image_sizes = tuple(sorted(set(image_sizes)))
assert len(self.unets) == len(image_sizes), f'you did not supply the correct number of u-nets ({len(self.unets)}) for resolutions {image_sizes}'
@@ -1889,13 +1810,7 @@ class Decoder(BaseGaussianDiffusion):
self.clip_denoised = clip_denoised
self.clip_x_start = clip_x_start
# dynamic thresholding settings, if clipping denoised during sampling
self.use_dynamic_thres = use_dynamic_thres
self.dynamic_thres_percentile = dynamic_thres_percentile
# normalize and unnormalize image functions
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
@@ -1936,21 +1851,7 @@ class Decoder(BaseGaussianDiffusion):
x_recon = self.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised:
# s is the threshold amount
# static thresholding would just be s = 1
s = 1.
if self.use_dynamic_thres:
s = torch.quantile(
rearrange(x_recon, 'b ... -> b (...)').abs(),
self.dynamic_thres_percentile,
dim = -1
)
s.clamp_(min = 1.)
s = s.view(-1, *((1,) * (x_recon.ndim - 1)))
# clip by threshold, depending on whether static or dynamic
x_recon = x_recon.clamp(-s, s) / s
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
@@ -1962,19 +1863,16 @@ class Decoder(BaseGaussianDiffusion):
max_log = extract(torch.log(self.betas), t, x.shape)
var_interp_frac = unnormalize_zero_to_one(var_interp_frac_unnormalized)
if self.learned_variance_constrain_frac:
var_interp_frac = var_interp_frac.sigmoid()
posterior_log_variance = var_interp_frac * max_log + (1 - var_interp_frac) * min_log
posterior_variance = posterior_log_variance.exp()
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True):
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, repeat_noise = False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, learned_variance = learned_variance)
noise = torch.randn_like(x)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@@ -2038,13 +1936,7 @@ class Decoder(BaseGaussianDiffusion):
target = noise if not predict_x_start else x_start
loss = self.loss_fn(pred, target, reduction = 'none')
loss = reduce(loss, 'b ... -> b (...)', 'mean')
if self.has_p2_loss_reweighting:
loss = loss * extract(self.p2_loss_weight, times, loss.shape)
loss = loss.mean()
loss = self.loss_fn(pred, target)
if not learned_variance:
# return simple loss if not using learned variance

View File

@@ -4,7 +4,7 @@ In order to make loading data simple and efficient, we include some general data
### Decoder: Image Embedding Dataset
When training the decoder (and up samplers if training together) in isolation, you will need to load images and corresponding image embeddings. This dataset can read two similar types of datasets. First, it can read a [webdataset](https://github.com/webdataset/webdataset) that contains `.jpg` and `.npy` files in the `.tar`s that contain the images and associated image embeddings respectively. Alternatively, you can also specify a source for the embeddings outside of the webdataset. In this case, the path to the embeddings should contain `.npy` files with the same shard numbers as the webdataset and there should be a correspondence between the filename of the `.jpg` and the index of the embedding in the `.npy`. So, for example, `0001.tar` from the webdataset with image `00010509.jpg` (the first 4 digits are the shard number and the last 4 are the index) in it should be paralleled by a `img_emb_0001.npy` which contains a NumPy array with the embedding at index 509.
Generating a dataset of this type:
Generating a dataset of this type:
1. Use [img2dataset](https://github.com/rom1504/img2dataset) to generate a webdataset.
2. Use [clip-retrieval](https://github.com/rom1504/clip-retrieval) to convert the images to embeddings.
3. Use [embedding-dataset-reordering](https://github.com/Veldrovive/embedding-dataset-reordering) to reorder the embeddings into the expected format.
@@ -15,7 +15,7 @@ from dalle2_pytorch.dataloaders import ImageEmbeddingDataset, create_image_embed
# Create a dataloader directly.
dataloader = create_image_embedding_dataloader(
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses bracket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses braket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
embeddings_url="path/or/url/to/embeddings/folder", # Included if .npy files are not in webdataset. Left out or set to None otherwise
num_workers=4,
batch_size=32,
@@ -39,37 +39,3 @@ dataset = ImageEmbeddingDataset(
)
```
### Diffusion Prior: Prior Embedding Dataset
When training the prior it is much more efficient to work with pre-computed embeddings. The `PriorEmbeddingDataset` class enables you to leverage the same script (with minimal modification) for both embedding-only and text-conditioned prior training. This saves you from having to worry about a lot of the boilerplate code.
To utilize the `PriorEmbeddingDataset`, all you need to do is make a single call to `get_reader()` which will create `EmbeddingReader` object(s) for you. Afterwards, you can utilize `make_splits()` to cleanly create DataLoader objects from for your training run.
If you are training in a distributed manner, `make_splits()` accepts `rank` and `world_size` arguments to properly distribute to each process. The defaults for these values are `rank=0` and `world_size=1`, so single-process training can safely ignore these parameters.
Usage:
```python
from dalle2_pytorch.dataloaders import get_reader, make_splits
# grab embeddings from some specified location
IMG_URL = "data/img_emb/"
META_URL = "data/meta/"
reader = get_reader(text_conditioned=True, img_url=IMG_URL, meta_url=META_URL)
# some config for training
TRAIN_ARGS = {
"world_size": 3,
"text_conditioned": True,
"start": 0,
"num_data_points": 10000,
"batch_size": 2,
"train_split": 0.5,
"eval_split": 0.25,
"image_reader": reader,
}
# specifying a rank will handle allocation internally
rank0_train, rank0_eval, rank0_test = make_splits(rank=0, **TRAIN_ARGS)
rank1_train, rank1_eval, rank1_test = make_splits(rank=1, **TRAIN_ARGS)
rank2_train, rank2_eval, rank2_test = make_splits(rank=2, **TRAIN_ARGS)
```

View File

@@ -1,2 +1,2 @@
from dalle2_pytorch.dataloaders.decoder_loader import ImageEmbeddingDataset, create_image_embedding_dataloader
from dalle2_pytorch.dataloaders.prior_loader import make_splits, get_reader, PriorEmbeddingDataset
from dalle2_pytorch.dataloaders.embedding_wrapper import make_splits

View File

@@ -0,0 +1,180 @@
from torch.utils.data import IterableDataset
from torch import from_numpy
from clip import tokenize
from embedding_reader import EmbeddingReader
class PriorEmbeddingLoader(IterableDataset):
def __init__(
self,
text_conditioned: bool,
batch_size: int,
start: int,
stop: int,
image_reader,
text_reader: EmbeddingReader = None,
device: str = "cpu",
) -> None:
super(PriorEmbeddingLoader).__init__()
self.text_conditioned = text_conditioned
if not self.text_conditioned:
self.text_reader = text_reader
self.image_reader = image_reader
self.batch_size = batch_size
self.start = start
self.stop = stop
self.device = device
def __iter__(self):
self.n = 0
loader_args = dict(
batch_size=self.batch_size,
start=self.start,
end=self.stop,
show_progress=False,
)
if self.text_conditioned:
self.loader = self.image_reader(**loader_args)
else:
self.loader = zip(
self.image_reader(**loader_args), self.text_reader(**loader_args)
)
return self
def __next__(self):
try:
return self.get_sample()
except StopIteration:
raise StopIteration
def get_sample(self):
"""
pre-proocess data from either reader into a common format
"""
self.n += 1
if self.text_conditioned:
image_embedding, caption = next(self.loader)
image_embedding = from_numpy(image_embedding).to(self.device)
tokenized_caption = tokenize(
caption["caption"].to_list(), truncate=True
).to(self.device)
return image_embedding, tokenized_caption
else:
(image_embedding, _), (text_embedding, _) = next(self.loader)
image_embedding = from_numpy(image_embedding).to(self.device)
text_embedding = from_numpy(text_embedding).to(self.device)
return image_embedding, text_embedding
def make_splits(
text_conditioned: bool,
batch_size: int,
num_data_points: int,
train_split: float,
eval_split: float,
device: str,
img_url: str,
meta_url: str = None,
txt_url: str = None,
):
assert img_url is not None, "Must supply some image embeddings"
if text_conditioned:
assert meta_url is not None, "Must supply metadata url if text-conditioning"
image_reader = EmbeddingReader(
embeddings_folder=img_url,
file_format="parquet_npy",
meta_columns=["caption"],
metadata_folder=meta_url,
)
# compute split points
if num_data_points > image_reader.count:
print("Specified point count is larger than the number of points available...defaulting to max length of reader.")
num_data_points = image_reader.count
train_set_size = int(train_split * num_data_points)
eval_set_size = int(eval_split * num_data_points)
eval_stop = int(train_set_size + eval_set_size)
train_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
batch_size=batch_size,
start=0,
stop=train_set_size,
device=device,
)
eval_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
batch_size=batch_size,
start=train_set_size,
stop=eval_stop,
device=device,
)
test_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
batch_size=batch_size,
start=eval_stop,
stop=int(num_data_points),
device=device,
)
else:
assert (
txt_url is not None
), "Must supply text embedding url if not text-conditioning"
image_reader = EmbeddingReader(img_url, file_format="npy")
text_reader = EmbeddingReader(txt_url, file_format="npy")
# compute split points
if num_data_points > image_reader.count:
print("Specified point count is larger than the number of points available...defaulting to max length of reader.")
num_data_points = image_reader.count
train_set_size = int(train_split * num_data_points)
eval_set_size = int(eval_split * num_data_points)
eval_stop = int(train_set_size + eval_set_size)
train_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
text_reader=text_reader,
batch_size=batch_size,
start=0,
stop=train_set_size,
device=device,
)
eval_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
text_reader=text_reader,
batch_size=batch_size,
start=train_set_size,
stop=eval_stop,
device=device,
)
test_loader = PriorEmbeddingLoader(
text_conditioned=text_conditioned,
image_reader=image_reader,
text_reader=text_reader,
batch_size=batch_size,
start=eval_stop,
stop=int(num_data_points),
device=device,
)
return train_loader, eval_loader, test_loader

View File

@@ -1,273 +0,0 @@
from math import ceil
from clip import tokenize
from embedding_reader import EmbeddingReader
from torch import from_numpy
from torch.utils.data import IterableDataset, DataLoader
class PriorEmbeddingDataset(IterableDataset):
"""
PriorEmbeddingDataset is a wrapper of EmbeddingReader.
It enables one to simplify the logic necessary to yield samples from
the different EmbeddingReader configurations available.
"""
def __init__(
self,
text_conditioned: bool,
batch_size: int,
start: int,
stop: int,
image_reader,
text_reader: EmbeddingReader = None,
) -> None:
super(PriorEmbeddingDataset).__init__()
self.text_conditioned = text_conditioned
if not self.text_conditioned:
self.text_reader = text_reader
self.image_reader = image_reader
self.start = start
self.stop = stop
self.batch_size = batch_size
def __len__(self):
return self.stop - self.start
def __iter__(self):
# D.R.Y loader args
loader_args = dict(
batch_size=self.batch_size,
start=self.start,
end=self.stop,
show_progress=False,
)
# if the data requested is text conditioned, only load images
if self.text_conditioned:
self.loader = self.image_reader(**loader_args)
# otherwise, include text embeddings and bypass metadata
else:
self.loader = zip(
self.image_reader(**loader_args), self.text_reader(**loader_args)
)
# return the data loader in its formatted state
return self
def __next__(self):
try:
return self.get_sample()
except StopIteration:
raise StopIteration
def __str__(self):
return f"<PriorEmbeddingDataset: start: {self.start}, stop: {self.stop}, len: {self.__len__()}>"
def get_sample(self):
"""
pre-proocess data from either reader into a common format
"""
if self.text_conditioned:
image_embedding, caption = next(self.loader)
image_embedding = from_numpy(image_embedding)
tokenized_caption = tokenize(caption["caption"].to_list(), truncate=True)
return image_embedding, tokenized_caption
else:
(image_embedding, _), (text_embedding, _) = next(self.loader)
image_embedding = from_numpy(image_embedding)
text_embedding = from_numpy(text_embedding)
return image_embedding, text_embedding
# helper functions
def distribute_to_rank(start, stop, rank, world_size):
"""
Distribute data to each rank given the world size.
Return:
- New start and stop points for this rank.
"""
num_samples = int(stop - start)
per_rank = int(ceil((num_samples) / float(world_size)))
assert (
per_rank > 0
), f"Number of samples per rank must be larger than 0, (found: {per_rank})"
rank_start = start + rank * per_rank
rank_stop = min(rank_start + per_rank, stop)
new_length = rank_stop - rank_start
assert (
new_length > 0
), "Calculated start and stop points result in a length of zero for this rank."
return rank_start, rank_stop
def get_reader(
text_conditioned: bool, img_url: str, meta_url: str = None, txt_url: str = None
):
"""
Create an EmbeddingReader object from the specified URLs
get_reader() will always expect a url to image embeddings.
If text-conditioned, it will also expect a meta_url for the captions.
Otherwise, it will need txt_url for the matching text embeddings.
Returns an image_reader object if text-conditioned.
Otherwise it returns both an image_reader and a text_reader
"""
assert img_url is not None, "Must supply a image url"
if text_conditioned:
assert meta_url is not None, "Must supply meta url if text-conditioned"
image_reader = EmbeddingReader(
embeddings_folder=img_url,
file_format="parquet_npy",
# will assume the caption column exists and is the only one requested
meta_columns=["caption"],
metadata_folder=meta_url,
)
return image_reader
# otherwise we will require text embeddings as well and return two readers
assert (
txt_url is not None
), "Must supply text embedding url if not text-conditioning"
image_reader = EmbeddingReader(img_url, file_format="npy")
text_reader = EmbeddingReader(txt_url, file_format="npy")
return image_reader, text_reader
def make_splits(
text_conditioned: bool,
batch_size: int,
num_data_points: int,
train_split: float,
eval_split: float,
image_reader: EmbeddingReader,
text_reader: EmbeddingReader = None,
start=0,
rank=0,
world_size=1,
):
"""
Split an embedding reader object as needed.
NOTE: make_splits() will infer the test set size from your train and eval.
Input:
- text_conditioned: whether to prepare text-conditioned training data
- batch_size: the batch size for a single gpu
- num_data_points: the total number of data points you wish to train on
- train_split: the percentage of data you wish to train on
- eval_split: the percentage of data you wish to validate on
- image_reader: the image_reader you wish to split
- text_reader: the text_reader you want to split (if !text_conditioned)
- start: the starting point within your dataset
- rank: the rank of your worker
- world_size: the total world size of your distributed training run
Returns:
- PyTorch Dataloaders that yield tuples of (img, txt) data.
"""
assert start < image_reader.count, "start position cannot exceed reader count."
# verify that the num_data_points does not exceed the max points
if num_data_points > (image_reader.count - start):
print(
"Specified count is larger than what's available...defaulting to reader's count."
)
num_data_points = image_reader.count
# compute split points
train_set_size = int(train_split * num_data_points)
eval_set_size = int(eval_split * num_data_points)
eval_start = train_set_size
eval_stop = int(eval_start + eval_set_size)
assert (
train_split + eval_split
) < 1.0, "Specified train and eval split is too large to infer a test split."
# distribute to rank
rank_train_start, rank_train_stop = distribute_to_rank(
start, train_set_size, rank, world_size
)
rank_eval_start, rank_eval_stop = distribute_to_rank(
train_set_size, eval_stop, rank, world_size
)
rank_test_start, rank_test_stop = distribute_to_rank(
eval_stop, num_data_points, rank, world_size
)
# wrap up splits into a dict
train_split_args = dict(
start=rank_train_start, stop=rank_train_stop, batch_size=batch_size
)
eval_split_args = dict(
start=rank_eval_start, stop=rank_eval_stop, batch_size=batch_size
)
test_split_args = dict(
start=rank_test_start, stop=rank_test_stop, batch_size=batch_size
)
if text_conditioned:
# add the text-conditioned args to a unified dict
reader_args = dict(
text_conditioned=text_conditioned,
image_reader=image_reader,
)
train_split_args = dict(**reader_args, **train_split_args)
eval_split_args = dict(**reader_args, **eval_split_args)
test_split_args = dict(**reader_args, **test_split_args)
train = PriorEmbeddingDataset(**train_split_args)
val = PriorEmbeddingDataset(**eval_split_args)
test = PriorEmbeddingDataset(**test_split_args)
else:
# add the non-conditioned args to a unified dict
reader_args = dict(
text_conditioned=text_conditioned,
image_reader=image_reader,
text_reader=text_reader,
)
train_split_args = dict(**reader_args, **train_split_args)
eval_split_args = dict(**reader_args, **eval_split_args)
test_split_args = dict(**reader_args, **test_split_args)
train = PriorEmbeddingDataset(**train_split_args)
val = PriorEmbeddingDataset(**eval_split_args)
test = PriorEmbeddingDataset(**test_split_args)
# true batch size is specifed in the PriorEmbeddingDataset
train_loader = DataLoader(train, batch_size=None)
eval_loader = DataLoader(val, batch_size=None)
test_loader = DataLoader(test, batch_size=None)
return train_loader, eval_loader, test_loader

View File

@@ -1,20 +1,17 @@
from torch.optim import AdamW, Adam
def separate_weight_decayable_params(params):
wd_params, no_wd_params = [], []
for param in params:
param_list = no_wd_params if param.ndim < 2 else wd_params
param_list.append(param)
no_wd_params = set([param for param in params if param.ndim < 2])
wd_params = set(params) - no_wd_params
return wd_params, no_wd_params
def get_optimizer(
params,
lr = 1e-4,
wd = 1e-2,
betas = (0.9, 0.99),
betas = (0.9, 0.999),
eps = 1e-8,
filter_by_requires_grad = False,
group_wd_params = True,
**kwargs
):
if filter_by_requires_grad:
@@ -23,12 +20,12 @@ def get_optimizer(
if wd == 0:
return Adam(params, lr = lr, betas = betas, eps = eps)
if group_wd_params:
wd_params, no_wd_params = separate_weight_decayable_params(params)
params = set(params)
wd_params, no_wd_params = separate_weight_decayable_params(params)
params = [
{'params': wd_params},
{'params': no_wd_params, 'weight_decay': 0},
]
param_groups = [
{'params': list(wd_params)},
{'params': list(no_wd_params), 'weight_decay': 0},
]
return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas, eps = eps)

View File

@@ -2,6 +2,7 @@
# to give users a quick easy start to training DALL-E without doing BPE
import torch
import youtokentome as yttm
import html
import os
@@ -10,8 +11,6 @@ import regex as re
from functools import lru_cache
from pathlib import Path
from dalle2_pytorch.utils import import_or_print_error
# OpenAI simple tokenizer
@lru_cache()
@@ -157,9 +156,7 @@ class YttmTokenizer:
bpe_path = Path(bpe_path)
assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist'
self.yttm = import_or_print_error('youtokentome', 'you need to install youtokentome by `pip install youtokentome`')
tokenizer = self.yttm.BPE(model = str(bpe_path))
tokenizer = yttm.BPE(model = str(bpe_path))
self.tokenizer = tokenizer
self.vocab_size = tokenizer.vocab_size()
@@ -170,7 +167,7 @@ class YttmTokenizer:
return self.tokenizer.decode(tokens, ignore_ids = pad_tokens.union({0}))
def encode(self, texts):
encoded = self.tokenizer.encode(texts, output_type = self.yttm.OutputType.ID)
encoded = self.tokenizer.encode(texts, output_type = yttm.OutputType.ID)
return list(map(torch.tensor, encoded))
def tokenize(self, texts, context_length = 256, truncate_text = False):

View File

@@ -6,8 +6,6 @@ from itertools import zip_longest
import torch
from torch import nn
from dalle2_pytorch.utils import import_or_print_error
# constants
DEFAULT_DATA_PATH = './.tracker-data'
@@ -17,6 +15,14 @@ DEFAULT_DATA_PATH = './.tracker-data'
def exists(val):
return val is not None
def import_or_print_error(pkg_name, err_str = None):
try:
return importlib.import_module(pkg_name)
except ModuleNotFoundError as e:
if exists(err_str):
print(err_str)
exit()
# load state dict functions
def load_wandb_state_dict(run_path, file_path, **kwargs):

View File

@@ -1,269 +0,0 @@
import json
from torchvision import transforms as T
from pydantic import BaseModel, validator, root_validator
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
from x_clip import CLIP as XCLIP
from coca_pytorch import CoCa
from dalle2_pytorch.dalle2_pytorch import (
CoCaAdapter,
OpenAIClipAdapter,
Unet,
Decoder,
DiffusionPrior,
DiffusionPriorNetwork,
XClipAdapter,
)
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def ListOrTuple(inner_type):
return Union[List[inner_type], Tuple[inner_type]]
def SingularOrIterable(inner_type):
return Union[inner_type, ListOrTuple(inner_type)]
# general pydantic classes
class TrainSplitConfig(BaseModel):
train: float = 0.75
val: float = 0.15
test: float = 0.1
@root_validator
def validate_all(cls, fields):
actual_sum = sum([*fields.values()])
if actual_sum != 1.:
raise ValueError(f'{fields.keys()} must sum to 1.0. Found: {actual_sum}')
return fields
class TrackerConfig(BaseModel):
tracker_type: str = 'console' # Decoder currently supports console and wandb
data_path: str = './models' # The path where files will be saved locally
init_config: Dict[str, Any] = None
wandb_entity: str = '' # Only needs to be set if tracker_type is wandb
wandb_project: str = ''
verbose: bool = False # Whether to print console logging for non-console trackers
# diffusion prior pydantic classes
class AdapterConfig(BaseModel):
make: str = "openai"
model: str = "ViT-L/14"
base_model_kwargs: Dict[str, Any] = None
def create(self):
if self.make == "openai":
return OpenAIClipAdapter(self.model)
elif self.make == "x-clip":
return XClipAdapter(XCLIP(**self.base_model_kwargs))
elif self.make == "coca":
return CoCaAdapter(CoCa(**self.base_model_kwargs))
else:
raise AttributeError("No adapter with that name is available.")
class DiffusionPriorNetworkConfig(BaseModel):
dim: int
depth: int
num_timesteps: int = None
num_time_embeds: int = 1
num_image_embeds: int = 1
num_text_embeds: int = 1
dim_head: int = 64
heads: int = 8
ff_mult: int = 4
norm_out: bool = True
attn_dropout: float = 0.
ff_dropout: float = 0.
final_proj: bool = True
normformer: bool = False
rotary_emb: bool = True
def create(self):
kwargs = self.dict()
return DiffusionPriorNetwork(**kwargs)
class DiffusionPriorConfig(BaseModel):
clip: AdapterConfig = None
net: DiffusionPriorNetworkConfig
image_embed_dim: int
image_size: int
image_channels: int = 3
timesteps: int = 1000
cond_drop_prob: float = 0.
loss_type: str = 'l2'
predict_x_start: bool = True
beta_schedule: str = 'cosine'
condition_on_text_encodings: bool = True
class Config:
extra = "allow"
def create(self):
kwargs = self.dict()
has_clip = exists(kwargs.pop('clip'))
kwargs.pop('net')
clip = None
if has_clip:
clip = self.clip.create()
diffusion_prior_network = self.net.create()
return DiffusionPrior(net = diffusion_prior_network, clip = clip, **kwargs)
class DiffusionPriorTrainConfig(BaseModel):
epochs: int = 1
lr: float = 1.1e-4
wd: float = 6.02e-2
max_grad_norm: float = 0.5
use_ema: bool = True
ema_beta: float = 0.99
amp: bool = False
save_every: int = 10000 # what steps to save on
class DiffusionPriorDataConfig(BaseModel):
image_url: str # path to embeddings folder
meta_url: str # path to metadata (captions) for images
splits: TrainSplitConfig
batch_size: int = 64
class DiffusionPriorLoadConfig(BaseModel):
source: str = None
resume: bool = False
class TrainDiffusionPriorConfig(BaseModel):
prior: DiffusionPriorConfig
data: DiffusionPriorDataConfig
train: DiffusionPriorTrainConfig
load: DiffusionPriorLoadConfig
tracker: TrackerConfig
@classmethod
def from_json_path(cls, json_path):
with open(json_path) as f:
config = json.load(f)
return cls(**config)
# decoder pydantic classes
class UnetConfig(BaseModel):
dim: int
dim_mults: ListOrTuple(int)
image_embed_dim: int = None
cond_dim: int = None
channels: int = 3
attn_dim_head: int = 32
attn_heads: int = 16
class Config:
extra = "allow"
class DecoderConfig(BaseModel):
unets: ListOrTuple(UnetConfig)
image_size: int = None
image_sizes: ListOrTuple(int) = None
channels: int = 3
timesteps: int = 1000
loss_type: str = 'l2'
beta_schedule: str = 'cosine'
learned_variance: bool = True
image_cond_drop_prob: float = 0.1
text_cond_drop_prob: float = 0.5
def create(self):
decoder_kwargs = self.dict()
unet_configs = decoder_kwargs.pop('unets')
unets = [Unet(**config) for config in unet_configs]
return Decoder(unets, **decoder_kwargs)
@validator('image_sizes')
def check_image_sizes(cls, image_sizes, values):
if exists(values.get('image_size')) ^ exists(image_sizes):
return image_sizes
raise ValueError('either image_size or image_sizes is required, but not both')
class Config:
extra = "allow"
class DecoderDataConfig(BaseModel):
webdataset_base_url: str # path to a webdataset with jpg images
embeddings_url: str # path to .npy files with embeddings
num_workers: int = 4
batch_size: int = 64
start_shard: int = 0
end_shard: int = 9999999
shard_width: int = 6
index_width: int = 4
splits: TrainSplitConfig
shuffle_train: bool = True
resample_train: bool = False
preprocessing: Dict[str, Any] = {'ToTensor': True}
@property
def img_preproc(self):
def _get_transformation(transformation_name, **kwargs):
if transformation_name == "RandomResizedCrop":
return T.RandomResizedCrop(**kwargs)
elif transformation_name == "RandomHorizontalFlip":
return T.RandomHorizontalFlip()
elif transformation_name == "ToTensor":
return T.ToTensor()
transforms = []
for transform_name, transform_kwargs_or_bool in self.preprocessing.items():
transform_kwargs = {} if not isinstance(transform_kwargs_or_bool, dict) else transform_kwargs_or_bool
transforms.append(_get_transformation(transform_name, **transform_kwargs))
return T.Compose(transforms)
class DecoderTrainConfig(BaseModel):
epochs: int = 20
lr: SingularOrIterable(float) = 1e-4
wd: SingularOrIterable(float) = 0.01
max_grad_norm: SingularOrIterable(float) = 0.5
save_every_n_samples: int = 100000
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
device: str = 'cuda:0'
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
validation_samples: int = None # Same as above but for validation.
use_ema: bool = True
ema_beta: float = 0.999
amp: bool = False
save_all: bool = False # Whether to preserve all checkpoints
save_latest: bool = True # Whether to always save the latest checkpoint
save_best: bool = True # Whether to save the best checkpoint
unet_training_mask: ListOrTuple(bool) = None # If None, use all unets
class DecoderEvaluateConfig(BaseModel):
n_evaluation_samples: int = 1000
FID: Dict[str, Any] = None
IS: Dict[str, Any] = None
KID: Dict[str, Any] = None
LPIPS: Dict[str, Any] = None
class DecoderLoadConfig(BaseModel):
source: str = None # Supports file and wandb
run_path: str = '' # Used only if source is wandb
file_path: str = '' # The local filepath if source is file. If source is wandb, the relative path to the model file in wandb.
resume: bool = False # If using wandb, whether to resume the run
class TrainDecoderConfig(BaseModel):
decoder: DecoderConfig
data: DecoderDataConfig
train: DecoderTrainConfig
evaluate: DecoderEvaluateConfig
tracker: TrackerConfig
load: DecoderLoadConfig
@classmethod
def from_json_path(cls, json_path):
with open(json_path) as f:
config = json.load(f)
return cls(**config)

View File

@@ -1,6 +1,5 @@
import time
import copy
from pathlib import Path
from math import ceil
from functools import partial, wraps
from collections.abc import Iterable
@@ -11,8 +10,6 @@ from torch.cuda.amp import autocast, GradScaler
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
from dalle2_pytorch.optimizer import get_optimizer
from dalle2_pytorch.version import __version__
from packaging import version
import numpy as np
@@ -58,16 +55,6 @@ def num_to_groups(num, divisor):
arr.append(remainder)
return arr
def clamp(value, min_value = None, max_value = None):
assert exists(min_value) or exists(max_value)
if exists(min_value):
value = max(value, min_value)
if exists(max_value):
value = min(value, max_value)
return value
# decorators
def cast_torch_tensor(fn):
@@ -141,6 +128,12 @@ def split_args_and_kwargs(*args, split_size = None, **kwargs):
chunk_size_frac = chunk_size / batch_size
yield chunk_size_frac, (chunked_args, chunked_kwargs)
# print helpers
def print_ribbon(s, symbol = '=', repeat = 40):
flank = symbol * repeat
return f'{flank} {s} {flank}'
# saving and loading functions
# for diffusion prior
@@ -182,34 +175,12 @@ def save_diffusion_model(save_path, model, optimizer, scaler, config, image_embe
# exponential moving average wrapper
class EMA(nn.Module):
"""
Implements exponential moving average shadowing for your model.
Utilizes an inverse decay schedule to manage longer term training runs.
By adjusting the power, you can control how fast EMA will ramp up to your specified beta.
@crowsonkb's notes on EMA Warmup:
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are
good values for models you plan to train for a million or more steps (reaches decay
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), gamma=1, power=3/4 for models
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
215.4k steps).
Args:
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
power (float): Exponential factor of EMA warmup. Default: 1.
min_value (float): The minimum EMA decay rate. Default: 0.
"""
def __init__(
self,
model,
beta = 0.9999,
update_after_step = 10000,
update_after_step = 1000,
update_every = 10,
inv_gamma = 1.0,
power = 2/3,
min_value = 0.0,
):
super().__init__()
self.beta = beta
@@ -217,65 +188,47 @@ class EMA(nn.Module):
self.ema_model = copy.deepcopy(model)
self.update_every = update_every
self.update_after_step = update_after_step
self.inv_gamma = inv_gamma
self.power = power
self.min_value = min_value
self.update_after_step = update_after_step // update_every # only start EMA after this step number, starting at 0
self.register_buffer('initted', torch.Tensor([False]))
self.register_buffer('step', torch.tensor([0]))
self.register_buffer('step', torch.tensor([0.]))
def restore_ema_model_device(self):
device = self.initted.device
self.ema_model.to(device)
def copy_params_from_model_to_ema(self):
for ma_param, current_param in zip(list(self.ema_model.parameters()), list(self.online_model.parameters())):
ma_param.data.copy_(current_param.data)
for ma_buffer, current_buffer in zip(list(self.ema_model.buffers()), list(self.online_model.buffers())):
ma_buffer.data.copy_(current_buffer.data)
def get_current_decay(self):
epoch = clamp(self.step.item() - self.update_after_step - 1, min_value = 0)
value = 1 - (1 + epoch / self.inv_gamma) ** - self.power
if epoch <= 0:
return 0.
return clamp(value, min_value = self.min_value, max_value = self.beta)
self.ema_model.state_dict(self.online_model.state_dict())
def update(self):
step = self.step.item()
self.step += 1
if (step % self.update_every) != 0:
if (self.step % self.update_every) != 0:
return
if step <= self.update_after_step:
if self.step <= self.update_after_step:
self.copy_params_from_model_to_ema()
return
if not self.initted.item():
if not self.initted:
self.copy_params_from_model_to_ema()
self.initted.data.copy_(torch.Tensor([True]))
self.update_moving_average(self.ema_model, self.online_model)
@torch.no_grad()
def update_moving_average(self, ma_model, current_model):
current_decay = self.get_current_decay()
def calculate_ema(beta, old, new):
if not exists(old):
return new
return old * beta + (1 - beta) * new
for current_params, ma_params in zip(list(current_model.parameters()), list(ma_model.parameters())):
difference = ma_params.data - current_params.data
difference.mul_(1.0 - current_decay)
ma_params.sub_(difference)
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = calculate_ema(self.beta, old_weight, up_weight)
for current_buffer, ma_buffer in zip(list(current_model.buffers()), list(ma_model.buffers())):
difference = ma_buffer - current_buffer
difference.mul_(1.0 - current_decay)
ma_buffer.sub_(difference)
for current_buffer, ma_buffer in zip(current_model.buffers(), ma_model.buffers()):
new_buffer_value = calculate_ema(self.beta, ma_buffer, current_buffer)
ma_buffer.copy_(new_buffer_value)
def __call__(self, *args, **kwargs):
return self.ema_model(*args, **kwargs)
@@ -302,7 +255,6 @@ class DiffusionPriorTrainer(nn.Module):
eps = 1e-6,
max_grad_norm = None,
amp = False,
group_wd_params = True,
**kwargs
):
super().__init__()
@@ -328,7 +280,6 @@ class DiffusionPriorTrainer(nn.Module):
lr = lr,
wd = wd,
eps = eps,
group_wd_params = group_wd_params,
**kwargs
)
@@ -336,50 +287,7 @@ class DiffusionPriorTrainer(nn.Module):
self.max_grad_norm = max_grad_norm
self.register_buffer('step', torch.tensor([0]))
def save(self, path, overwrite = True, **kwargs):
path = Path(path)
assert not (path.exists() and not overwrite)
path.parent.mkdir(parents = True, exist_ok = True)
save_obj = dict(
scaler = self.scaler.state_dict(),
optimizer = self.optimizer.state_dict(),
model = self.diffusion_prior.state_dict(),
version = __version__,
step = self.step.item(),
**kwargs
)
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_diffusion_prior.state_dict()}
torch.save(save_obj, str(path))
def load(self, path, only_model = False, strict = True):
path = Path(path)
assert path.exists()
loaded_obj = torch.load(str(path))
if version.parse(__version__) != loaded_obj['version']:
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {__version__}')
self.diffusion_prior.load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
if only_model:
return loaded_obj
self.scaler.load_state_dict(loaded_obj['scaler'])
self.optimizer.load_state_dict(loaded_obj['optimizer'])
if self.use_ema:
assert 'ema' in loaded_obj
self.ema_diffusion_prior.load_state_dict(loaded_obj['ema'], strict = strict)
return loaded_obj
self.register_buffer('step', torch.tensor([0.]))
def update(self):
if exists(self.max_grad_norm):
@@ -460,7 +368,6 @@ class DecoderTrainer(nn.Module):
eps = 1e-8,
max_grad_norm = 0.5,
amp = False,
group_wd_params = True,
**kwargs
):
super().__init__()
@@ -486,7 +393,6 @@ class DecoderTrainer(nn.Module):
lr = unet_lr,
wd = unet_wd,
eps = unet_eps,
group_wd_params = group_wd_params,
**kwargs
)
@@ -504,60 +410,6 @@ class DecoderTrainer(nn.Module):
self.register_buffer('step', torch.tensor([0.]))
def save(self, path, overwrite = True, **kwargs):
path = Path(path)
assert not (path.exists() and not overwrite)
path.parent.mkdir(parents = True, exist_ok = True)
save_obj = dict(
model = self.decoder.state_dict(),
version = __version__,
step = self.step.item(),
**kwargs
)
for ind in range(0, self.num_unets):
scaler_key = f'scaler{ind}'
optimizer_key = f'scaler{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()}
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
torch.save(save_obj, str(path))
def load(self, path, only_model = False, strict = True):
path = Path(path)
assert path.exists()
loaded_obj = torch.load(str(path))
if version.parse(__version__) != loaded_obj['version']:
print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {__version__}')
self.decoder.load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
if only_model:
return loaded_obj
for ind in range(0, self.num_unets):
scaler_key = f'scaler{ind}'
optimizer_key = f'scaler{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
scaler.load_state_dict(loaded_obj[scaler_key])
optimizer.load_state_dict(loaded_obj[optimizer_key])
if self.use_ema:
assert 'ema' in loaded_obj
self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict)
return loaded_obj
@property
def unets(self):
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])

View File

@@ -1,7 +1,5 @@
import time
# time helpers
class Timer:
def __init__(self):
self.reset()
@@ -11,19 +9,3 @@ class Timer:
def elapsed(self):
return time.time() - self.last_time
# print helpers
def print_ribbon(s, symbol = '=', repeat = 40):
flank = symbol * repeat
return f'{flank} {s} {flank}'
# import helpers
def import_or_print_error(pkg_name, err_str = None):
try:
return importlib.import_module(pkg_name)
except ModuleNotFoundError as e:
if exists(err_str):
print(err_str)
exit()

View File

@@ -1 +0,0 @@
__version__ = '0.8.0'

View File

@@ -1,5 +1,4 @@
from setuptools import setup, find_packages
exec(open('dalle2_pytorch/version.py').read())
setup(
name = 'dalle2-pytorch',
@@ -11,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = __version__,
version = '0.3.8',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',
@@ -32,9 +31,7 @@ setup(
'embedding-reader',
'kornia>=0.5.4',
'numpy',
'packaging',
'pillow',
'pydantic',
'resize-right>=0.0.2',
'rotary-embedding-torch',
'torch>=1.10',
@@ -42,6 +39,7 @@ setup(
'tqdm',
'vector-quantize-pytorch',
'x-clip>=0.4.4',
'youtokentome',
'webdataset>=0.2.5',
'fsspec>=2022.1.0',
'torchmetrics[image]>=0.8.0'

View File

@@ -1,11 +1,11 @@
from dalle2_pytorch import Unet, Decoder
from dalle2_pytorch.trainer import DecoderTrainer
from dalle2_pytorch.trainer import DecoderTrainer, print_ribbon
from dalle2_pytorch.dataloaders import create_image_embedding_dataloader
from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker
from dalle2_pytorch.train_configs import TrainDecoderConfig
from dalle2_pytorch.utils import Timer, print_ribbon
from dalle2_pytorch.dalle2_pytorch import resize_image_to
from dalle2_pytorch.utils import Timer
import json
import torchvision
import torch
from torchmetrics.image.fid import FrechetInceptionDistance
@@ -86,6 +86,20 @@ def create_dataloaders(
"test_sampling": test_sampling_dataloader
}
def create_decoder(device, decoder_config, unets_config):
"""Creates a sample decoder"""
unets = [Unet(**config) for config in unets_config]
decoder = Decoder(
unet=unets,
**decoder_config
)
decoder.to(device=device)
return decoder
def get_dataset_keys(dataloader):
"""
It is sometimes neccesary to get the keys the dataloader is returning. Since the dataset is burried in the dataloader, we need to do a process to recover it.
@@ -137,24 +151,16 @@ def generate_grid_samples(trainer, examples, text_prepend=""):
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
"""
real_images, generated_images, captions = generate_samples(trainer, examples, text_prepend)
real_image_size = real_images[0].shape[-1]
generated_image_size = generated_images[0].shape[-1]
# training images may be larger than the generated one
if real_image_size > generated_image_size:
real_images = [resize_image_to(image, generated_image_size) for image in real_images]
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
return grid_images, captions
def evaluate_trainer(trainer, dataloader, device, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
def evaluate_trainer(trainer, dataloader, device, n_evalation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
"""
Computes evaluation metrics for the decoder
"""
metrics = {}
# Prepare the data
examples = get_example_data(dataloader, device, n_evaluation_samples)
examples = get_example_data(dataloader, device, n_evalation_samples)
real_images, generated_images, captions = generate_samples(trainer, examples)
real_images = torch.stack(real_images).to(device=device, dtype=torch.float)
generated_images = torch.stack(generated_images).to(device=device, dtype=torch.float)
@@ -211,7 +217,7 @@ def recall_trainer(tracker, trainer, recall_source=None, **load_config):
Loads the model with an appropriate method depending on the tracker
"""
print(print_ribbon(f"Loading model from {recall_source}"))
state_dict = tracker.recall_state_dict(recall_source, **load_config.dict())
state_dict = tracker.recall_state_dict(recall_source, **load_config)
trainer.load_state_dict(state_dict["trainer"])
print("Model loaded")
return state_dict["epoch"], state_dict["step"], state_dict["validation_losses"]
@@ -246,8 +252,8 @@ def train(
start_epoch = 0
validation_losses = []
if exists(load_config) and exists(load_config.source):
start_epoch, start_step, validation_losses = recall_trainer(tracker, trainer, recall_source=load_config.source, **load_config)
if exists(load_config) and exists(load_config["source"]):
start_epoch, start_step, validation_losses = recall_trainer(tracker, trainer, recall_source=load_config["source"], **load_config)
trainer.to(device=inference_device)
if not exists(unet_training_mask):
@@ -265,6 +271,7 @@ def train(
for epoch in range(start_epoch, epochs):
print(print_ribbon(f"Starting epoch {epoch}", repeat=40))
trainer.train()
timer = Timer()
@@ -273,13 +280,11 @@ def train(
last_snapshot = 0
losses = []
for i, (img, emb) in enumerate(dataloaders["train"]):
step += 1
sample += img.shape[0]
img, emb = send_to_device((img, emb))
trainer.train()
for unet in range(1, trainer.num_unets+1):
# Check if this is a unet we are training
if not unet_training_mask[unet-1]: # Unet index is the unet number - 1
@@ -294,7 +299,7 @@ def train(
timer.reset()
last_sample = sample
if i % TRAIN_CALC_LOSS_EVERY_ITERS == 0:
if i % CALC_LOSS_EVERY_ITERS == 0:
average_loss = sum(losses) / len(losses)
log_data = {
"Training loss": average_loss,
@@ -314,12 +319,11 @@ def train(
save_paths.append("latest.pth")
if save_all:
save_paths.append(f"checkpoints/epoch_{epoch}_step_{step}.pth")
save_trainer(tracker, trainer, epoch, step, validation_losses, save_paths)
if exists(n_sample_images) and n_sample_images > 0:
trainer.eval()
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
trainer.train()
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step)
if exists(epoch_samples) and sample >= epoch_samples:
@@ -331,7 +335,7 @@ def train(
sample = 0
average_loss = 0
timer = Timer()
for i, (img, emb, *_) in enumerate(dataloaders["val"]):
for i, (img, emb, txt) in enumerate(dataloaders["val"]):
sample += img.shape[0]
img, emb = send_to_device((img, emb))
@@ -354,9 +358,10 @@ def train(
tracker.log(log_data, step=step, verbose=True)
# Compute evaluation metrics
trainer.eval()
if exists(evaluate_config):
print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config.dict())
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config)
tracker.log(evaluation, step=step, verbose=True)
# Generate sample images
@@ -380,25 +385,21 @@ def create_tracker(config, tracker_type=None, data_path=None, **kwargs):
"""
Creates a tracker of the specified type and initializes special features based on the full config
"""
tracker_config = config.tracker
tracker_config = config["tracker"]
init_config = {}
if exists(tracker_config.init_config):
init_config["config"] = tracker_config.init_config
init_config["config"] = config.config
if tracker_type == "console":
tracker = ConsoleTracker(**init_config)
elif tracker_type == "wandb":
# We need to initialize the resume state here
load_config = config.load
if load_config.source == "wandb" and load_config.resume:
load_config = config["load"]
if load_config["source"] == "wandb" and load_config["resume"]:
# Then we are resuming the run load_config["run_path"]
run_id = load_config.run_path.split("/")[-1]
run_id = config["resume"]["wandb_run_path"].split("/")[-1]
init_config["id"] = run_id
init_config["resume"] = "must"
init_config["entity"] = tracker_config.wandb_entity
init_config["project"] = tracker_config.wandb_project
init_config["entity"] = tracker_config["wandb_entity"]
init_config["project"] = tracker_config["wandb_project"]
tracker = WandbTracker(data_path)
tracker.init(**init_config)
else:
@@ -407,35 +408,35 @@ def create_tracker(config, tracker_type=None, data_path=None, **kwargs):
def initialize_training(config):
# Create the save path
if "cuda" in config.train.device:
if "cuda" in config["train"]["device"]:
assert torch.cuda.is_available(), "CUDA is not available"
device = torch.device(config.train.device)
device = torch.device(config["train"]["device"])
torch.cuda.set_device(device)
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
all_shards = list(range(config["data"]["start_shard"], config["data"]["end_shard"] + 1))
dataloaders = create_dataloaders (
available_shards=all_shards,
img_preproc = config.data.img_preproc,
train_prop = config.data.splits.train,
val_prop = config.data.splits.val,
test_prop = config.data.splits.test,
n_sample_images=config.train.n_sample_images,
**config.data.dict()
img_preproc = config.get_preprocessing(),
train_prop = config["data"]["splits"]["train"],
val_prop = config["data"]["splits"]["val"],
test_prop = config["data"]["splits"]["test"],
n_sample_images=config["train"]["n_sample_images"],
**config["data"]
)
decoder = config.decoder.create().to(device = device)
decoder = create_decoder(device, config["decoder"], config["unets"])
num_parameters = sum(p.numel() for p in decoder.parameters())
print(print_ribbon("Loaded Config", repeat=40))
print(f"Number of parameters: {num_parameters}")
tracker = create_tracker(config, **config.tracker.dict())
tracker = create_tracker(config, **config["tracker"])
train(dataloaders, decoder,
tracker=tracker,
inference_device=device,
load_config=config.load,
evaluate_config=config.evaluate,
**config.train.dict(),
load_config=config["load"],
evaluate_config=config["evaluate"],
**config["train"],
)
# Create a simple click command line interface to load the config and start the training
@@ -443,7 +444,9 @@ def initialize_training(config):
@click.option("--config_file", default="./train_decoder_config.json", help="Path to config file")
def main(config_file):
print("Recalling config from {}".format(config_file))
config = TrainDecoderConfig.from_json_path(config_file)
with open(config_file) as f:
config = json.load(f)
config = TrainDecoderConfig(config)
initialize_training(config)

View File

@@ -7,12 +7,14 @@ import torch
import clip
from torch import nn
from dalle2_pytorch.dataloaders import make_splits, get_reader
from dalle2_pytorch.dataloaders import make_splits
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork, OpenAIClipAdapter
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model, print_ribbon
from dalle2_pytorch.trackers import ConsoleTracker, WandbTracker
from dalle2_pytorch.utils import Timer, print_ribbon
from dalle2_pytorch.utils import Timer
from embedding_reader import EmbeddingReader
from tqdm import tqdm
@@ -29,7 +31,7 @@ def exists(val):
# functions
def eval_model(model, dataloader, text_conditioned, loss_type, device, phase="Validation",):
def eval_model(model, dataloader, text_conditioned, loss_type, phase="Validation"):
model.eval()
with torch.no_grad():
@@ -37,8 +39,6 @@ def eval_model(model, dataloader, text_conditioned, loss_type, device, phase="Va
total_samples = 0.
for image_embeddings, text_data in tqdm(dataloader):
image_embeddings = image_embeddings.to(device)
text_data = text_data.to(device)
batches = image_embeddings.shape[0]
@@ -57,14 +57,12 @@ def eval_model(model, dataloader, text_conditioned, loss_type, device, phase="Va
tracker.log({f'{phase} {loss_type}': avg_loss})
def report_cosine_sims(diffusion_prior, dataloader, text_conditioned, device):
def report_cosine_sims(diffusion_prior, dataloader, text_conditioned):
diffusion_prior.eval()
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
for test_image_embeddings, text_data in tqdm(dataloader):
test_image_embeddings = test_image_embeddings.to(device)
text_data = text_data.to(device)
# we are text conditioned, we produce an embedding from the tokenized text
if text_conditioned:
@@ -242,7 +240,7 @@ def train(
# Training loop
# diffusion prior network
prior_network = DiffusionPriorNetwork(
prior_network = DiffusionPriorNetwork(
dim = image_embed_dim,
depth = dpn_depth,
dim_head = dpn_dim_head,
@@ -251,16 +249,16 @@ def train(
ff_dropout = dropout,
normformer = dp_normformer
)
# Load clip model if text-conditioning
if dp_condition_on_text_encodings:
clip_adapter = OpenAIClipAdapter(clip)
else:
clip_adapter = None
# diffusion prior with text embeddings and image embeddings pre-computed
diffusion_prior = DiffusionPrior(
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip_adapter,
image_embed_dim = image_embed_dim,
@@ -298,46 +296,28 @@ def train(
# Utilize wrapper to abstract away loader logic
print_ribbon("Downloading Embeddings")
reader_args = dict(text_conditioned=dp_condition_on_text_encodings, img_url=image_embed_url)
loader_args = dict(text_conditioned=dp_condition_on_text_encodings, batch_size=batch_size, num_data_points=num_data_points,
train_split=train_percent, eval_split=val_percent, device=device, img_url=image_embed_url)
if dp_condition_on_text_encodings:
reader_args = dict(**reader_args, meta_url=meta_url)
img_reader = get_reader(**reader_args)
train_loader, eval_loader, test_loader = make_splits(
text_conditioned=dp_condition_on_text_encodings,
batch_size=batch_size,
num_data_points=num_data_points,
train_split=train_percent,
eval_split=val_percent,
image_reader=img_reader
)
loader_args = dict(**loader_args, meta_url=meta_url)
else:
reader_args = dict(**reader_args, txt_url=text_embed_url)
img_reader, txt_reader = get_reader(**reader_args)
train_loader, eval_loader, test_loader = make_splits(
text_conditioned=dp_condition_on_text_encodings,
batch_size=batch_size,
num_data_points=num_data_points,
train_split=train_percent,
eval_split=val_percent,
image_reader=img_reader,
text_reader=txt_reader
)
loader_args = dict(**loader_args, txt_url=text_embed_url)
train_loader, eval_loader, test_loader = make_splits(**loader_args)
### Training code ###
step = 1
step = 1
timer = Timer()
epochs = num_epochs
for _ in range(epochs):
for image, text in tqdm(train_loader):
diffusion_prior.train()
image = image.to(device)
text = text.to(device)
input_args = dict(image_embed=image)
if dp_condition_on_text_encodings:
input_args = dict(**input_args, text = text)
@@ -370,9 +350,9 @@ def train(
# Use NUM_TEST_EMBEDDINGS samples from the test set each time
# Get embeddings from the most recently saved model
if(step % REPORT_METRICS_EVERY) == 0:
report_cosine_sims(diffusion_prior, eval_loader, dp_condition_on_text_encodings, device=device)
report_cosine_sims(diffusion_prior, eval_loader, dp_condition_on_text_encodings)
### Evaluate model(validation run) ###
eval_model(diffusion_prior, eval_loader, dp_condition_on_text_encodings, dp_loss_type, phase="Validation", device=device)
eval_model(diffusion_prior, eval_loader, dp_condition_on_text_encodings, dp_loss_type, phase="Validation")
step += 1
trainer.update()