Compare commits

...

8 Commits
1.6.4 ... 1.8.3

Author SHA1 Message Date
Phil Wang
3df86acc8b make it work for @ethancohen123 2022-08-19 11:25:34 -07:00
Phil Wang
de5e628773 cite einops 2022-08-17 08:58:41 -07:00
Phil Wang
1b4046b039 gratitude 2022-08-17 08:57:33 -07:00
Phil Wang
27f19ba7fa make sure diffusion prior trainer can operate with no warmup 2022-08-15 14:27:40 -07:00
Phil Wang
8f38339c2b give diffusion prior trainer cosine annealing lr too 2022-08-15 07:38:01 -07:00
Phil Wang
6b9b4b9e5e add cosine annealing lr schedule 2022-08-15 07:29:56 -07:00
Phil Wang
44e09d5a4d add weight standardization behind feature flag, which may potentially work well with group norm 2022-08-14 11:34:45 -07:00
Phil Wang
34806663e3 make it so diffusion prior p_sample_loop returns unnormalized image embeddings 2022-08-13 10:03:40 -07:00
4 changed files with 101 additions and 23 deletions

View File

@@ -49,6 +49,7 @@ This library would not have gotten to this working state without the help of
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
- <a href="https://huggingface.co">🤗 Huggingface</a> and in particular <a href="https://github.com/sgugger">Sylvain</a> for the <a href="https://github.com/huggingface/accelerate">Accelerate</a> library
- <a href="https://github.com/arogozhnikov">Alex</a> for <a href="https://github.com/arogozhnikov/einops">einops</a>, indispensable tool for tensor manipulation
... and many others. Thank you! 🙏
@@ -1264,4 +1265,24 @@ For detailed information on training the diffusion prior, please refer to the [d
}
```
```bibtex
@article{Qiao2019WeightS,
title = {Weight Standardization},
author = {Siyuan Qiao and Huiyu Wang and Chenxi Liu and Wei Shen and Alan Loddon Yuille},
journal = {ArXiv},
year = {2019},
volume = {abs/1903.10520}
}
```
```bibtex
@inproceedings{rogozhnikov2022einops,
title = {Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation},
author = {Alex Rogozhnikov},
booktitle = {International Conference on Learning Representations},
year = {2022},
url = {https://openreview.net/forum?id=oapKSVM2bcj}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -250,9 +250,13 @@ class XClipAdapter(BaseClipAdapter):
text = text[..., :self.max_text_len]
text_mask = text != 0
encoder_output = self.clip.text_transformer(text)
text_cls, text_encodings = encoder_output[:, 0], encoder_output[:, 1:]
text_cls, text_encodings = (encoder_output[:, 0], encoder_output[:, 1:]) if encoder_output.ndim == 3 else (encoder_output, None)
text_embed = self.clip.to_text_latent(text_cls)
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
if exists(text_encodings):
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
return EmbeddedText(l2norm(text_embed), text_encodings)
@torch.no_grad()
@@ -1279,9 +1283,12 @@ class DiffusionPrior(nn.Module):
is_ddim = timesteps < self.noise_scheduler.num_timesteps
if not is_ddim:
return self.p_sample_loop_ddpm(*args, **kwargs)
normalized_image_embed = self.p_sample_loop_ddpm(*args, **kwargs)
else:
normalized_image_embed = self.p_sample_loop_ddim(*args, **kwargs, timesteps = timesteps)
return self.p_sample_loop_ddim(*args, **kwargs, timesteps = timesteps)
image_embed = normalized_image_embed / self.image_embed_scale
return image_embed
def p_losses(self, image_embed, times, text_cond, noise = None):
noise = default(noise, lambda: torch.randn_like(image_embed))
@@ -1350,8 +1357,6 @@ class DiffusionPrior(nn.Module):
# retrieve original unscaled image embed
image_embeds /= self.image_embed_scale
text_embeds = text_cond['text_embed']
text_embeds = rearrange(text_embeds, '(b r) d -> b r d', r = num_samples_per_batch)
@@ -1450,6 +1455,26 @@ def Downsample(dim, *, dim_out = None):
dim_out = default(dim_out, dim)
return nn.Conv2d(dim, dim_out, 4, 2, 1)
class WeightStandardizedConv2d(nn.Conv2d):
"""
https://arxiv.org/abs/1903.10520
weight standardization purportedly works synergistically with group normalization
"""
def forward(self, x):
eps = 1e-5 if x.dtype == torch.float32 else 1e-3
weight = self.weight
flattened_weights = rearrange(weight, 'o ... -> o (...)')
mean = reduce(weight, 'o ... -> o 1 1 1', 'mean')
var = torch.var(flattened_weights, dim = -1, unbiased = False)
var = rearrange(var, 'o -> o 1 1 1')
weight = (weight - mean) * (var + eps).rsqrt()
return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
@@ -1468,10 +1493,13 @@ class Block(nn.Module):
self,
dim,
dim_out,
groups = 8
groups = 8,
weight_standardization = False
):
super().__init__()
self.project = nn.Conv2d(dim, dim_out, 3, padding = 1)
conv_klass = nn.Conv2d if not weight_standardization else WeightStandardizedConv2d
self.project = conv_klass(dim, dim_out, 3, padding = 1)
self.norm = nn.GroupNorm(groups, dim_out)
self.act = nn.SiLU()
@@ -1495,6 +1523,7 @@ class ResnetBlock(nn.Module):
cond_dim = None,
time_cond_dim = None,
groups = 8,
weight_standardization = False,
cosine_sim_cross_attn = False
):
super().__init__()
@@ -1520,8 +1549,8 @@ class ResnetBlock(nn.Module):
)
)
self.block1 = Block(dim, dim_out, groups = groups)
self.block2 = Block(dim_out, dim_out, groups = groups)
self.block1 = Block(dim, dim_out, groups = groups, weight_standardization = weight_standardization)
self.block2 = Block(dim_out, dim_out, groups = groups, weight_standardization = weight_standardization)
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
def forward(self, x, time_emb = None, cond = None):
@@ -1746,6 +1775,7 @@ class Unet(nn.Module):
init_dim = None,
init_conv_kernel_size = 7,
resnet_groups = 8,
resnet_weight_standardization = False,
num_resnet_blocks = 2,
init_cross_embed = True,
init_cross_embed_kernel_sizes = (3, 7, 15),
@@ -1893,7 +1923,7 @@ class Unet(nn.Module):
# prepare resnet klass
resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn)
resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn, weight_standardization = resnet_weight_standardization)
# give memory efficient unet an initial resnet block

View File

@@ -9,7 +9,7 @@ from collections.abc import Iterable
import torch
import torch.nn.functional as F
from torch import nn
from torch.optim.lr_scheduler import LambdaLR
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR
from torch.cuda.amp import autocast, GradScaler
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
@@ -181,7 +181,8 @@ class DiffusionPriorTrainer(nn.Module):
eps = 1e-6,
max_grad_norm = None,
group_wd_params = True,
warmup_steps = 1,
warmup_steps = None,
cosine_decay_max_steps = None,
**kwargs
):
super().__init__()
@@ -233,8 +234,11 @@ class DiffusionPriorTrainer(nn.Module):
**self.optim_kwargs,
**kwargs
)
self.scheduler = LambdaLR(self.optimizer, lr_lambda = lambda _: 1.0)
if exists(cosine_decay_max_steps):
self.scheduler = CosineAnnealingLR(optimizer, T_max = cosine_decay_max_steps)
else:
self.scheduler = LambdaLR(self.optimizer, lr_lambda = lambda _: 1.0)
self.warmup_scheduler = warmup.LinearWarmup(self.optimizer, warmup_period = warmup_steps) if exists(warmup_steps) else None
@@ -271,6 +275,7 @@ class DiffusionPriorTrainer(nn.Module):
# FIXME: LambdaLR can't be saved due to pickling issues
save_obj = dict(
optimizer = self.optimizer.state_dict(),
scheduler = self.scheduler.state_dict(),
warmup_scheduler = self.warmup_scheduler,
model = self.accelerator.unwrap_model(self.diffusion_prior).state_dict(),
version = version.parse(__version__),
@@ -317,7 +322,9 @@ class DiffusionPriorTrainer(nn.Module):
# unwrap the model when loading from checkpoint
self.accelerator.unwrap_model(self.diffusion_prior).load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step, device=self.device) * loaded_obj['step'].to(self.device))
self.optimizer.load_state_dict(loaded_obj['optimizer'])
self.scheduler.load_state_dict(loaded_obj['scheduler'])
# set warmupstep
if exists(self.warmup_scheduler):
@@ -350,7 +357,8 @@ class DiffusionPriorTrainer(nn.Module):
# accelerator will ocassionally skip optimizer steps in a "dynamic loss scaling strategy"
if not self.accelerator.optimizer_step_was_skipped:
with self.warmup_scheduler.dampening():
sched_context = self.warmup_scheduler.dampening if exists(self.warmup_scheduler) else nullcontext
with sched_context():
self.scheduler.step()
if self.use_ema:
@@ -433,6 +441,7 @@ class DecoderTrainer(nn.Module):
wd = 1e-2,
eps = 1e-8,
warmup_steps = None,
cosine_decay_max_steps = None,
max_grad_norm = 0.5,
amp = False,
group_wd_params = True,
@@ -454,7 +463,7 @@ class DecoderTrainer(nn.Module):
# be able to finely customize learning rate, weight decay
# per unet
lr, wd, eps, warmup_steps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps, warmup_steps))
lr, wd, eps, warmup_steps, cosine_decay_max_steps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps, warmup_steps, cosine_decay_max_steps))
assert all([unet_lr <= 1e-2 for unet_lr in lr]), 'your learning rate is too high, recommend sticking with 1e-4, at most 5e-4'
@@ -462,7 +471,7 @@ class DecoderTrainer(nn.Module):
schedulers = []
warmup_schedulers = []
for unet, unet_lr, unet_wd, unet_eps, unet_warmup_steps in zip(decoder.unets, lr, wd, eps, warmup_steps):
for unet, unet_lr, unet_wd, unet_eps, unet_warmup_steps, unet_cosine_decay_max_steps in zip(decoder.unets, lr, wd, eps, warmup_steps, cosine_decay_max_steps):
if isinstance(unet, nn.Identity):
optimizers.append(None)
schedulers.append(None)
@@ -478,7 +487,11 @@ class DecoderTrainer(nn.Module):
)
optimizers.append(optimizer)
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
if exists(unet_cosine_decay_max_steps):
scheduler = CosineAnnealingLR(optimizer, T_max = unet_cosine_decay_max_steps)
else:
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps) if exists(unet_warmup_steps) else None
warmup_schedulers.append(warmup_scheduler)
@@ -558,9 +571,15 @@ class DecoderTrainer(nn.Module):
for ind in range(0, self.num_unets):
optimizer_key = f'optim{ind}'
scheduler_key = f'sched{ind}'
optimizer = getattr(self, optimizer_key)
state_dict = optimizer.state_dict() if optimizer is not None else None
save_obj = {**save_obj, optimizer_key: state_dict}
scheduler = getattr(self, scheduler_key)
optimizer_state_dict = optimizer.state_dict() if exists(optimizer) else None
scheduler_state_dict = scheduler.state_dict() if exists(scheduler) else None
save_obj = {**save_obj, optimizer_key: optimizer_state_dict, scheduler_key: scheduler_state_dict}
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
@@ -581,10 +600,18 @@ class DecoderTrainer(nn.Module):
optimizer_key = f'optim{ind}'
optimizer = getattr(self, optimizer_key)
scheduler_key = f'sched{ind}'
scheduler = getattr(self, scheduler_key)
warmup_scheduler = self.warmup_schedulers[ind]
if optimizer is not None:
if exists(optimizer):
optimizer.load_state_dict(loaded_obj[optimizer_key])
if exists(scheduler):
scheduler.load_state_dict(loaded_obj[scheduler_key])
if exists(warmup_scheduler):
warmup_scheduler.last_step = last_step

View File

@@ -1 +1 @@
__version__ = '1.6.4'
__version__ = '1.8.3'