Compare commits

...

3 Commits
1.5.0 ... 1.6.1

Author SHA1 Message Date
Phil Wang
9440411954 make self conditioning technique work with diffusion prior 2022-08-12 12:20:51 -07:00
Phil Wang
981d407792 comment 2022-08-12 11:41:23 -07:00
Phil Wang
7c5477b26d bet on the new self-conditioning technique out of geoffrey hintons group 2022-08-12 11:36:08 -07:00
3 changed files with 129 additions and 35 deletions

View File

@@ -1253,4 +1253,15 @@ For detailed information on training the diffusion prior, please refer to the [d
}
```
```bibtex
@misc{chen2022analog,
title = {Analog Bits: Generating Discrete Data using Diffusion Models with Self-Conditioning},
author = {Ting Chen and Ruixiang Zhang and Geoffrey Hinton},
year = {2022},
eprint = {2208.04202},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -870,7 +870,7 @@ class Attention(nn.Module):
# attention
attn = sim.softmax(dim = -1)
attn = sim.softmax(dim = -1, dtype = torch.float32)
attn = self.dropout(attn)
# aggregate values
@@ -937,9 +937,12 @@ class DiffusionPriorNetwork(nn.Module):
num_image_embeds = 1,
num_text_embeds = 1,
max_text_len = 256,
self_cond = False,
**kwargs
):
super().__init__()
self.dim = dim
self.num_time_embeds = num_time_embeds
self.num_image_embeds = num_image_embeds
self.num_text_embeds = num_text_embeds
@@ -967,6 +970,10 @@ class DiffusionPriorNetwork(nn.Module):
self.max_text_len = max_text_len
self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, dim))
# whether to use self conditioning, Hinton's group's new ddpm technique
self.self_cond = self_cond
def forward_with_cond_scale(
self,
*args,
@@ -988,12 +995,19 @@ class DiffusionPriorNetwork(nn.Module):
*,
text_embed,
text_encodings = None,
self_cond = None,
cond_drop_prob = 0.
):
batch, dim, device, dtype = *image_embed.shape, image_embed.device, image_embed.dtype
num_time_embeds, num_image_embeds, num_text_embeds = self.num_time_embeds, self.num_image_embeds, self.num_text_embeds
# setup self conditioning
self_cond = None
if self.self_cond:
self_cond = default(self_cond, lambda: torch.zeros(batch, 1, self.dim, device = device, dtype = dtype))
# in section 2.2, last paragraph
# "... consisting of encoded text, CLIP text embedding, diffusion timestep embedding, noised CLIP image embedding, final embedding for prediction"
@@ -1043,13 +1057,16 @@ class DiffusionPriorNetwork(nn.Module):
# whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different)
# but let's just do it right
attend_padding = 1 + num_time_embeds + num_image_embeds # 1 for learned queries + number of image embeds + time embeds
attend_padding = 1 + num_time_embeds + num_image_embeds + int(self.self_cond) # 1 for learned queries + number of image embeds + time embeds
mask = F.pad(mask, (0, attend_padding), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query
time_embed = self.to_time_embeds(diffusion_timesteps)
learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch)
if self.self_cond:
learned_queries = torch.cat((image_embed, self_cond), dim = -2)
tokens = torch.cat((
text_encodings,
text_embed,
@@ -1151,45 +1168,50 @@ class DiffusionPrior(nn.Module):
def l2norm_clamp_embed(self, image_embed):
return l2norm(image_embed) * self.image_embed_scale
def p_mean_variance(self, x, t, text_cond, clip_denoised = False, cond_scale = 1.):
def p_mean_variance(self, x, t, text_cond, self_cond = None, clip_denoised = False, cond_scale = 1.):
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the model was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
pred = self.net.forward_with_cond_scale(x, t, cond_scale = cond_scale, **text_cond)
pred = self.net.forward_with_cond_scale(x, t, cond_scale = cond_scale, self_cond = self_cond, **text_cond)
if self.predict_x_start:
x_recon = pred
x_start = pred
else:
x_recon = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
x_start = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised and not self.predict_x_start:
x_recon.clamp_(-1., 1.)
x_start.clamp_(-1., 1.)
if self.predict_x_start and self.sampling_clamp_l2norm:
x_recon = l2norm(x_recon) * self.image_embed_scale
x_start = l2norm(x_start) * self.image_embed_scale
model_mean, posterior_variance, posterior_log_variance = self.noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
model_mean, posterior_variance, posterior_log_variance = self.noise_scheduler.q_posterior(x_start=x_start, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance, x_start
@torch.no_grad()
def p_sample(self, x, t, text_cond = None, clip_denoised = True, cond_scale = 1.):
def p_sample(self, x, t, text_cond = None, self_cond = None, clip_denoised = True, cond_scale = 1.):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised, cond_scale = cond_scale)
model_mean, _, model_log_variance, x_start = self.p_mean_variance(x = x, t = t, text_cond = text_cond, self_cond = self_cond, clip_denoised = clip_denoised, cond_scale = cond_scale)
noise = torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
pred = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
return pred, x_start
@torch.no_grad()
def p_sample_loop_ddpm(self, shape, text_cond, cond_scale = 1.):
batch, device = shape[0], self.device
image_embed = torch.randn(shape, device = device)
x_start = None # for self-conditioning
if self.init_image_embed_l2norm:
image_embed = l2norm(image_embed) * self.image_embed_scale
for i in tqdm(reversed(range(0, self.noise_scheduler.num_timesteps)), desc='sampling loop time step', total=self.noise_scheduler.num_timesteps):
times = torch.full((batch,), i, device = device, dtype = torch.long)
image_embed = self.p_sample(image_embed, times, text_cond = text_cond, cond_scale = cond_scale)
self_cond = x_start if self.net.self_cond else None
image_embed, x_start = self.p_sample(image_embed, times, text_cond = text_cond, self_cond = self_cond, cond_scale = cond_scale)
if self.sampling_final_clamp_l2norm and self.predict_x_start:
image_embed = self.l2norm_clamp_embed(image_embed)
@@ -1207,6 +1229,8 @@ class DiffusionPrior(nn.Module):
image_embed = torch.randn(shape, device = device)
x_start = None # for self-conditioning
if self.init_image_embed_l2norm:
image_embed = l2norm(image_embed) * self.image_embed_scale
@@ -1216,7 +1240,9 @@ class DiffusionPrior(nn.Module):
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
pred = self.net.forward_with_cond_scale(image_embed, time_cond, cond_scale = cond_scale, **text_cond)
self_cond = x_start if self.net.self_cond else None
pred = self.net.forward_with_cond_scale(image_embed, time_cond, self_cond = self_cond, cond_scale = cond_scale, **text_cond)
if self.predict_x_start:
x_start = pred
@@ -1260,9 +1286,15 @@ class DiffusionPrior(nn.Module):
image_embed_noisy = self.noise_scheduler.q_sample(x_start = image_embed, t = times, noise = noise)
self_cond = None
if self.net.self_cond and random.random() < 0.5:
with torch.no_grad():
self_cond = self.net(image_embed_noisy, times, **text_cond).detach()
pred = self.net(
image_embed_noisy,
times,
self_cond = self_cond,
cond_drop_prob = self.cond_drop_prob,
**text_cond
)
@@ -1571,7 +1603,7 @@ class CrossAttention(nn.Module):
mask = rearrange(mask, 'b j -> b 1 1 j')
sim = sim.masked_fill(~mask, max_neg_value)
attn = sim.softmax(dim = -1)
attn = sim.softmax(dim = -1, dtype = torch.float32)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
@@ -1700,6 +1732,7 @@ class Unet(nn.Module):
attn_heads = 16,
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
self_cond = False, # set this to True to use the self-conditioning technique from - https://arxiv.org/abs/2208.04202
sparse_attn = False,
cosine_sim_cross_attn = False,
cosine_sim_self_attn = False,
@@ -1735,12 +1768,21 @@ class Unet(nn.Module):
self.lowres_cond = lowres_cond
# whether to do self conditioning
self.self_cond = self_cond
# determine dimensions
self.channels = channels
self.channels_out = default(channels_out, channels)
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
# initial number of channels depends on
# (1) low resolution conditioning from cascading ddpm paper, conditioned on previous unet output in the cascade
# (2) self conditioning (bit diffusion paper)
init_channels = channels * (1 + int(lowres_cond) + int(self_cond))
init_dim = default(init_dim, dim)
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1) if init_cross_embed else nn.Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2)
@@ -1994,7 +2036,8 @@ class Unet(nn.Module):
text_cond_drop_prob = 0.,
blur_sigma = None,
blur_kernel_size = None,
disable_checkpoint = False
disable_checkpoint = False,
self_cond = None
):
batch_size, device = x.shape[0], x.device
@@ -2002,6 +2045,14 @@ class Unet(nn.Module):
assert not (self.lowres_cond and not exists(lowres_cond_img)), 'low resolution conditioning image must be present'
# concat self conditioning, if needed
if self.self_cond:
self_cond = default(self_cond, lambda: torch.zeros_like(x))
x = torch.cat((x, self_cond), dim = 1)
# concat low resolution conditioning
if exists(lowres_cond_img):
x = torch.cat((x, lowres_cond_img), dim = 1)
@@ -2571,23 +2622,23 @@ class Decoder(nn.Module):
x = x.clamp(-s, s) / s
return x
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None):
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, self_cond = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None):
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level))
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level))
if learned_variance:
pred, var_interp_frac_unnormalized = pred.chunk(2, dim = 1)
if predict_x_start:
x_recon = pred
x_start = pred
else:
x_recon = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
x_start = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised:
x_recon = self.dynamic_threshold(x_recon)
x_start = self.dynamic_threshold(x_start)
model_mean, posterior_variance, posterior_log_variance = noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t)
model_mean, posterior_variance, posterior_log_variance = noise_scheduler.q_posterior(x_start=x_start, x_t=x, t=t)
if learned_variance:
# if learned variance, posterio variance and posterior log variance are predicted by the network
@@ -2603,16 +2654,17 @@ class Decoder(nn.Module):
posterior_log_variance = var_interp_frac * max_log + (1 - var_interp_frac) * min_log
posterior_variance = posterior_log_variance.exp()
return model_mean, posterior_variance, posterior_log_variance
return model_mean, posterior_variance, posterior_log_variance, x_start
@torch.no_grad()
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None):
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, self_cond = None, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level)
model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level)
noise = torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
pred = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
return pred, x_start
@torch.no_grad()
def p_sample_loop_ddpm(
@@ -2638,6 +2690,8 @@ class Decoder(nn.Module):
b = shape[0]
img = torch.randn(shape, device = device)
x_start = None # for self-conditioning
is_inpaint = exists(inpaint_image)
resample_times = inpaint_resample_times if is_inpaint else 1
@@ -2665,13 +2719,16 @@ class Decoder(nn.Module):
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times)
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
img = self.p_sample(
self_cond = x_start if unet.self_cond else None
img, x_start = self.p_sample(
unet,
img,
times,
image_embed = image_embed,
text_encodings = text_encodings,
cond_scale = cond_scale,
self_cond = self_cond,
lowres_cond_img = lowres_cond_img,
lowres_noise_level = lowres_noise_level,
predict_x_start = predict_x_start,
@@ -2730,6 +2787,8 @@ class Decoder(nn.Module):
img = torch.randn(shape, device = device)
x_start = None # for self-conditioning
if not is_latent_diffusion:
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
@@ -2750,7 +2809,9 @@ class Decoder(nn.Module):
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond)
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
self_cond = x_start if unet.self_cond else None
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, self_cond = self_cond, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
if learned_variance:
pred, _ = pred.chunk(2, dim = 1)
@@ -2810,13 +2871,35 @@ class Decoder(nn.Module):
x_noisy = noise_scheduler.q_sample(x_start = x_start, t = times, noise = noise)
model_output = unet(
x_noisy,
times,
# unet kwargs
unet_kwargs = dict(
image_embed = image_embed,
text_encodings = text_encodings,
lowres_cond_img = lowres_cond_img,
lowres_noise_level = lowres_noise_level,
)
# self conditioning
self_cond = None
if unet.self_cond and random.random() < 0.5:
with torch.no_grad():
self_cond = unet(x_noisy, times, **unet_kwargs)
if learned_variance:
self_cond, _ = self_cond.chunk(2, dim = 1)
self_cond = self_cond.detach()
# forward to get model prediction
model_output = unet(
x_noisy,
times,
**unet_kwargs,
self_cond = self_cond,
image_cond_drop_prob = self.image_cond_drop_prob,
text_cond_drop_prob = self.text_cond_drop_prob,
)
@@ -2847,7 +2930,7 @@ class Decoder(nn.Module):
# if learning the variance, also include the extra weight kl loss
true_mean, _, true_log_variance_clipped = noise_scheduler.q_posterior(x_start = x_start, x_t = x_noisy, t = times)
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
model_mean, _, model_log_variance, _ = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
# kl loss with detached model predicted mean, for stability reasons as in paper

View File

@@ -1 +1 @@
__version__ = '1.5.0'
__version__ = '1.6.1'