Compare commits

...

13 Commits
1.4.4 ... 1.8.2

5 changed files with 354 additions and 73 deletions

View File

@@ -627,6 +627,18 @@ images = dalle2(
# save your image (in this example, of size 256x256) # save your image (in this example, of size 256x256)
``` ```
Alternatively, you can also use <a href="https://github.com/mlfoundations/open_clip">Open Clip</a>
```bash
$ pip install open-clip-torch
```
```python
from dalle2_pytorch import OpenClipAdapter
clip = OpenClipAdapter()
```
Now you'll just have to worry about training the Prior and the Decoder! Now you'll just have to worry about training the Prior and the Decoder!
## Inpainting ## Inpainting
@@ -1241,4 +1253,25 @@ For detailed information on training the diffusion prior, please refer to the [d
} }
``` ```
```bibtex
@misc{chen2022analog,
title = {Analog Bits: Generating Discrete Data using Diffusion Models with Self-Conditioning},
author = {Ting Chen and Ruixiang Zhang and Geoffrey Hinton},
year = {2022},
eprint = {2208.04202},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```bibtex
@article{Qiao2019WeightS,
title = {Weight Standardization},
author = {Siyuan Qiao and Huiyu Wang and Chenxi Liu and Wei Shen and Alan Loddon Yuille},
journal = {ArXiv},
year = {2019},
volume = {abs/1903.10520}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a> *Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -8,6 +8,7 @@ from pathlib import Path
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from torch import nn, einsum from torch import nn, einsum
import torchvision.transforms as T import torchvision.transforms as T
@@ -37,6 +38,8 @@ from coca_pytorch import CoCa
NAT = 1. / math.log(2.) NAT = 1. / math.log(2.)
UnetOutput = namedtuple('UnetOutput', ['pred', 'var_interp_frac_unnormalized'])
# helper functions # helper functions
def exists(val): def exists(val):
@@ -108,6 +111,28 @@ def pad_tuple_to_length(t, length, fillvalue = None):
return t return t
return (*t, *((fillvalue,) * remain_length)) return (*t, *((fillvalue,) * remain_length))
# checkpointing helper function
def make_checkpointable(fn, **kwargs):
if isinstance(fn, nn.ModuleList):
return [maybe(make_checkpointable)(el, **kwargs) for el in fn]
condition = kwargs.pop('condition', None)
if exists(condition) and not condition(fn):
return fn
@wraps(fn)
def inner(*args):
input_needs_grad = any([isinstance(el, torch.Tensor) and el.requires_grad for el in args])
if not input_needs_grad:
return fn(*args)
return checkpoint(fn, *args)
return inner
# for controlling freezing of CLIP # for controlling freezing of CLIP
def set_module_requires_grad_(module, requires_grad): def set_module_requires_grad_(module, requires_grad):
@@ -339,6 +364,75 @@ class OpenAIClipAdapter(BaseClipAdapter):
image_embed = self.clip.encode_image(image) image_embed = self.clip.encode_image(image)
return EmbeddedImage(l2norm(image_embed.float()), None) return EmbeddedImage(l2norm(image_embed.float()), None)
class OpenClipAdapter(BaseClipAdapter):
def __init__(
self,
name = 'ViT-B/32',
pretrained = 'laion400m_e32'
):
import open_clip
clip, _, preprocess = open_clip.create_model_and_transforms(name, pretrained = pretrained)
super().__init__(clip)
self.eos_id = 49407
text_attention_final = self.find_layer('ln_final')
self.handle = text_attention_final.register_forward_hook(self._hook)
self.clip_normalize = preprocess.transforms[-1]
self.cleared = False
def find_layer(self, layer):
modules = dict([*self.clip.named_modules()])
return modules.get(layer, None)
def clear(self):
if self.cleared:
return
self.handle()
def _hook(self, _, inputs, outputs):
self.text_encodings = outputs
@property
def dim_latent(self):
return 512
@property
def image_size(self):
return self.clip.visual.image_size
@property
def image_channels(self):
return 3
@property
def max_text_len(self):
return self.clip.context_length
@torch.no_grad()
def embed_text(self, text):
text = text[..., :self.max_text_len]
is_eos_id = (text == self.eos_id)
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
assert not self.cleared
text_embed = self.clip.encode_text(text)
text_encodings = self.text_encodings
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
del self.text_encodings
return EmbeddedText(l2norm(text_embed.float()), text_encodings.float())
@torch.no_grad()
def embed_image(self, image):
assert not self.cleared
image = self.validate_and_resize_image(image)
image = self.clip_normalize(image)
image_embed = self.clip.encode_image(image)
return EmbeddedImage(l2norm(image_embed.float()), None)
# classifier free guidance functions # classifier free guidance functions
def prob_mask_like(shape, prob, device): def prob_mask_like(shape, prob, device):
@@ -778,7 +872,7 @@ class Attention(nn.Module):
# attention # attention
attn = sim.softmax(dim = -1) attn = sim.softmax(dim = -1, dtype = torch.float32)
attn = self.dropout(attn) attn = self.dropout(attn)
# aggregate values # aggregate values
@@ -845,9 +939,12 @@ class DiffusionPriorNetwork(nn.Module):
num_image_embeds = 1, num_image_embeds = 1,
num_text_embeds = 1, num_text_embeds = 1,
max_text_len = 256, max_text_len = 256,
self_cond = False,
**kwargs **kwargs
): ):
super().__init__() super().__init__()
self.dim = dim
self.num_time_embeds = num_time_embeds self.num_time_embeds = num_time_embeds
self.num_image_embeds = num_image_embeds self.num_image_embeds = num_image_embeds
self.num_text_embeds = num_text_embeds self.num_text_embeds = num_text_embeds
@@ -875,6 +972,10 @@ class DiffusionPriorNetwork(nn.Module):
self.max_text_len = max_text_len self.max_text_len = max_text_len
self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, dim)) self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, dim))
# whether to use self conditioning, Hinton's group's new ddpm technique
self.self_cond = self_cond
def forward_with_cond_scale( def forward_with_cond_scale(
self, self,
*args, *args,
@@ -896,12 +997,19 @@ class DiffusionPriorNetwork(nn.Module):
*, *,
text_embed, text_embed,
text_encodings = None, text_encodings = None,
self_cond = None,
cond_drop_prob = 0. cond_drop_prob = 0.
): ):
batch, dim, device, dtype = *image_embed.shape, image_embed.device, image_embed.dtype batch, dim, device, dtype = *image_embed.shape, image_embed.device, image_embed.dtype
num_time_embeds, num_image_embeds, num_text_embeds = self.num_time_embeds, self.num_image_embeds, self.num_text_embeds num_time_embeds, num_image_embeds, num_text_embeds = self.num_time_embeds, self.num_image_embeds, self.num_text_embeds
# setup self conditioning
if self.self_cond:
self_cond = default(self_cond, lambda: torch.zeros(batch, self.dim, device = device, dtype = dtype))
self_cond = rearrange(self_cond, 'b d -> b 1 d')
# in section 2.2, last paragraph # in section 2.2, last paragraph
# "... consisting of encoded text, CLIP text embedding, diffusion timestep embedding, noised CLIP image embedding, final embedding for prediction" # "... consisting of encoded text, CLIP text embedding, diffusion timestep embedding, noised CLIP image embedding, final embedding for prediction"
@@ -951,13 +1059,16 @@ class DiffusionPriorNetwork(nn.Module):
# whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different) # whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different)
# but let's just do it right # but let's just do it right
attend_padding = 1 + num_time_embeds + num_image_embeds # 1 for learned queries + number of image embeds + time embeds attend_padding = 1 + num_time_embeds + num_image_embeds + int(self.self_cond) # 1 for learned queries + number of image embeds + time embeds
mask = F.pad(mask, (0, attend_padding), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query mask = F.pad(mask, (0, attend_padding), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query
time_embed = self.to_time_embeds(diffusion_timesteps) time_embed = self.to_time_embeds(diffusion_timesteps)
learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch) learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch)
if self.self_cond:
learned_queries = torch.cat((image_embed, self_cond), dim = -2)
tokens = torch.cat(( tokens = torch.cat((
text_encodings, text_encodings,
text_embed, text_embed,
@@ -1059,45 +1170,50 @@ class DiffusionPrior(nn.Module):
def l2norm_clamp_embed(self, image_embed): def l2norm_clamp_embed(self, image_embed):
return l2norm(image_embed) * self.image_embed_scale return l2norm(image_embed) * self.image_embed_scale
def p_mean_variance(self, x, t, text_cond, clip_denoised = False, cond_scale = 1.): def p_mean_variance(self, x, t, text_cond, self_cond = None, clip_denoised = False, cond_scale = 1.):
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the model was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)' assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the model was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
pred = self.net.forward_with_cond_scale(x, t, cond_scale = cond_scale, **text_cond) pred = self.net.forward_with_cond_scale(x, t, cond_scale = cond_scale, self_cond = self_cond, **text_cond)
if self.predict_x_start: if self.predict_x_start:
x_recon = pred x_start = pred
else: else:
x_recon = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred) x_start = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised and not self.predict_x_start: if clip_denoised and not self.predict_x_start:
x_recon.clamp_(-1., 1.) x_start.clamp_(-1., 1.)
if self.predict_x_start and self.sampling_clamp_l2norm: if self.predict_x_start and self.sampling_clamp_l2norm:
x_recon = l2norm(x_recon) * self.image_embed_scale x_start = l2norm(x_start) * self.image_embed_scale
model_mean, posterior_variance, posterior_log_variance = self.noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t) model_mean, posterior_variance, posterior_log_variance = self.noise_scheduler.q_posterior(x_start=x_start, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance return model_mean, posterior_variance, posterior_log_variance, x_start
@torch.no_grad() @torch.no_grad()
def p_sample(self, x, t, text_cond = None, clip_denoised = True, cond_scale = 1.): def p_sample(self, x, t, text_cond = None, self_cond = None, clip_denoised = True, cond_scale = 1.):
b, *_, device = *x.shape, x.device b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised, cond_scale = cond_scale) model_mean, _, model_log_variance, x_start = self.p_mean_variance(x = x, t = t, text_cond = text_cond, self_cond = self_cond, clip_denoised = clip_denoised, cond_scale = cond_scale)
noise = torch.randn_like(x) noise = torch.randn_like(x)
# no noise when t == 0 # no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise pred = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
return pred, x_start
@torch.no_grad() @torch.no_grad()
def p_sample_loop_ddpm(self, shape, text_cond, cond_scale = 1.): def p_sample_loop_ddpm(self, shape, text_cond, cond_scale = 1.):
batch, device = shape[0], self.device batch, device = shape[0], self.device
image_embed = torch.randn(shape, device = device) image_embed = torch.randn(shape, device = device)
x_start = None # for self-conditioning
if self.init_image_embed_l2norm: if self.init_image_embed_l2norm:
image_embed = l2norm(image_embed) * self.image_embed_scale image_embed = l2norm(image_embed) * self.image_embed_scale
for i in tqdm(reversed(range(0, self.noise_scheduler.num_timesteps)), desc='sampling loop time step', total=self.noise_scheduler.num_timesteps): for i in tqdm(reversed(range(0, self.noise_scheduler.num_timesteps)), desc='sampling loop time step', total=self.noise_scheduler.num_timesteps):
times = torch.full((batch,), i, device = device, dtype = torch.long) times = torch.full((batch,), i, device = device, dtype = torch.long)
image_embed = self.p_sample(image_embed, times, text_cond = text_cond, cond_scale = cond_scale)
self_cond = x_start if self.net.self_cond else None
image_embed, x_start = self.p_sample(image_embed, times, text_cond = text_cond, self_cond = self_cond, cond_scale = cond_scale)
if self.sampling_final_clamp_l2norm and self.predict_x_start: if self.sampling_final_clamp_l2norm and self.predict_x_start:
image_embed = self.l2norm_clamp_embed(image_embed) image_embed = self.l2norm_clamp_embed(image_embed)
@@ -1115,6 +1231,8 @@ class DiffusionPrior(nn.Module):
image_embed = torch.randn(shape, device = device) image_embed = torch.randn(shape, device = device)
x_start = None # for self-conditioning
if self.init_image_embed_l2norm: if self.init_image_embed_l2norm:
image_embed = l2norm(image_embed) * self.image_embed_scale image_embed = l2norm(image_embed) * self.image_embed_scale
@@ -1124,7 +1242,9 @@ class DiffusionPrior(nn.Module):
time_cond = torch.full((batch,), time, device = device, dtype = torch.long) time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
pred = self.net.forward_with_cond_scale(image_embed, time_cond, cond_scale = cond_scale, **text_cond) self_cond = x_start if self.net.self_cond else None
pred = self.net.forward_with_cond_scale(image_embed, time_cond, self_cond = self_cond, cond_scale = cond_scale, **text_cond)
if self.predict_x_start: if self.predict_x_start:
x_start = pred x_start = pred
@@ -1159,18 +1279,27 @@ class DiffusionPrior(nn.Module):
is_ddim = timesteps < self.noise_scheduler.num_timesteps is_ddim = timesteps < self.noise_scheduler.num_timesteps
if not is_ddim: if not is_ddim:
return self.p_sample_loop_ddpm(*args, **kwargs) normalized_image_embed = self.p_sample_loop_ddpm(*args, **kwargs)
else:
normalized_image_embed = self.p_sample_loop_ddim(*args, **kwargs, timesteps = timesteps)
return self.p_sample_loop_ddim(*args, **kwargs, timesteps = timesteps) image_embed = normalized_image_embed / self.image_embed_scale
return image_embed
def p_losses(self, image_embed, times, text_cond, noise = None): def p_losses(self, image_embed, times, text_cond, noise = None):
noise = default(noise, lambda: torch.randn_like(image_embed)) noise = default(noise, lambda: torch.randn_like(image_embed))
image_embed_noisy = self.noise_scheduler.q_sample(x_start = image_embed, t = times, noise = noise) image_embed_noisy = self.noise_scheduler.q_sample(x_start = image_embed, t = times, noise = noise)
self_cond = None
if self.net.self_cond and random.random() < 0.5:
with torch.no_grad():
self_cond = self.net(image_embed_noisy, times, **text_cond).detach()
pred = self.net( pred = self.net(
image_embed_noisy, image_embed_noisy,
times, times,
self_cond = self_cond,
cond_drop_prob = self.cond_drop_prob, cond_drop_prob = self.cond_drop_prob,
**text_cond **text_cond
) )
@@ -1224,8 +1353,6 @@ class DiffusionPrior(nn.Module):
# retrieve original unscaled image embed # retrieve original unscaled image embed
image_embeds /= self.image_embed_scale
text_embeds = text_cond['text_embed'] text_embeds = text_cond['text_embed']
text_embeds = rearrange(text_embeds, '(b r) d -> b r d', r = num_samples_per_batch) text_embeds = rearrange(text_embeds, '(b r) d -> b r d', r = num_samples_per_batch)
@@ -1324,6 +1451,26 @@ def Downsample(dim, *, dim_out = None):
dim_out = default(dim_out, dim) dim_out = default(dim_out, dim)
return nn.Conv2d(dim, dim_out, 4, 2, 1) return nn.Conv2d(dim, dim_out, 4, 2, 1)
class WeightStandardizedConv2d(nn.Conv2d):
"""
https://arxiv.org/abs/1903.10520
weight standardization purportedly works synergistically with group normalization
"""
def forward(self, x):
eps = 1e-5 if x.dtype == torch.float32 else 1e-3
weight = self.weight
flattened_weights = rearrange(weight, 'o ... -> o (...)')
mean = reduce(weight, 'o ... -> o 1 1 1', 'mean')
var = torch.var(flattened_weights, dim = -1, unbiased = False)
var = rearrange(var, 'o -> o 1 1 1')
weight = (weight - mean) * (var + eps).rsqrt()
return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
class SinusoidalPosEmb(nn.Module): class SinusoidalPosEmb(nn.Module):
def __init__(self, dim): def __init__(self, dim):
super().__init__() super().__init__()
@@ -1342,10 +1489,13 @@ class Block(nn.Module):
self, self,
dim, dim,
dim_out, dim_out,
groups = 8 groups = 8,
weight_standardization = False
): ):
super().__init__() super().__init__()
self.project = nn.Conv2d(dim, dim_out, 3, padding = 1) conv_klass = nn.Conv2d if not weight_standardization else WeightStandardizedConv2d
self.project = conv_klass(dim, dim_out, 3, padding = 1)
self.norm = nn.GroupNorm(groups, dim_out) self.norm = nn.GroupNorm(groups, dim_out)
self.act = nn.SiLU() self.act = nn.SiLU()
@@ -1369,6 +1519,7 @@ class ResnetBlock(nn.Module):
cond_dim = None, cond_dim = None,
time_cond_dim = None, time_cond_dim = None,
groups = 8, groups = 8,
weight_standardization = False,
cosine_sim_cross_attn = False cosine_sim_cross_attn = False
): ):
super().__init__() super().__init__()
@@ -1394,8 +1545,8 @@ class ResnetBlock(nn.Module):
) )
) )
self.block1 = Block(dim, dim_out, groups = groups) self.block1 = Block(dim, dim_out, groups = groups, weight_standardization = weight_standardization)
self.block2 = Block(dim_out, dim_out, groups = groups) self.block2 = Block(dim_out, dim_out, groups = groups, weight_standardization = weight_standardization)
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
def forward(self, x, time_emb = None, cond = None): def forward(self, x, time_emb = None, cond = None):
@@ -1479,7 +1630,7 @@ class CrossAttention(nn.Module):
mask = rearrange(mask, 'b j -> b 1 1 j') mask = rearrange(mask, 'b j -> b 1 1 j')
sim = sim.masked_fill(~mask, max_neg_value) sim = sim.masked_fill(~mask, max_neg_value)
attn = sim.softmax(dim = -1) attn = sim.softmax(dim = -1, dtype = torch.float32)
out = einsum('b h i j, b h j d -> b h i d', attn, v) out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)') out = rearrange(out, 'b h n d -> b n (h d)')
@@ -1608,6 +1759,7 @@ class Unet(nn.Module):
attn_heads = 16, attn_heads = 16,
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/ lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
self_cond = False, # set this to True to use the self-conditioning technique from - https://arxiv.org/abs/2208.04202
sparse_attn = False, sparse_attn = False,
cosine_sim_cross_attn = False, cosine_sim_cross_attn = False,
cosine_sim_self_attn = False, cosine_sim_self_attn = False,
@@ -1619,6 +1771,7 @@ class Unet(nn.Module):
init_dim = None, init_dim = None,
init_conv_kernel_size = 7, init_conv_kernel_size = 7,
resnet_groups = 8, resnet_groups = 8,
resnet_weight_standardization = False,
num_resnet_blocks = 2, num_resnet_blocks = 2,
init_cross_embed = True, init_cross_embed = True,
init_cross_embed_kernel_sizes = (3, 7, 15), init_cross_embed_kernel_sizes = (3, 7, 15),
@@ -1629,6 +1782,7 @@ class Unet(nn.Module):
pixel_shuffle_upsample = True, pixel_shuffle_upsample = True,
final_conv_kernel_size = 1, final_conv_kernel_size = 1,
combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper
checkpoint_during_training = False,
**kwargs **kwargs
): ):
super().__init__() super().__init__()
@@ -1642,12 +1796,21 @@ class Unet(nn.Module):
self.lowres_cond = lowres_cond self.lowres_cond = lowres_cond
# whether to do self conditioning
self.self_cond = self_cond
# determine dimensions # determine dimensions
self.channels = channels self.channels = channels
self.channels_out = default(channels_out, channels) self.channels_out = default(channels_out, channels)
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis # initial number of channels depends on
# (1) low resolution conditioning from cascading ddpm paper, conditioned on previous unet output in the cascade
# (2) self conditioning (bit diffusion paper)
init_channels = channels * (1 + int(lowres_cond) + int(self_cond))
init_dim = default(init_dim, dim) init_dim = default(init_dim, dim)
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1) if init_cross_embed else nn.Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2) self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1) if init_cross_embed else nn.Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2)
@@ -1756,7 +1919,7 @@ class Unet(nn.Module):
# prepare resnet klass # prepare resnet klass
resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn) resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn, weight_standardization = resnet_weight_standardization)
# give memory efficient unet an initial resnet block # give memory efficient unet an initial resnet block
@@ -1839,6 +2002,10 @@ class Unet(nn.Module):
zero_init_(self.to_out) # since both OpenAI and @crowsonkb are doing it zero_init_(self.to_out) # since both OpenAI and @crowsonkb are doing it
# whether to checkpoint during training
self.checkpoint_during_training = checkpoint_during_training
# if the current settings for the unet are not correct # if the current settings for the unet are not correct
# for cascading DDPM, then reinit the unet with the right settings # for cascading DDPM, then reinit the unet with the right settings
def cast_model_parameters( def cast_model_parameters(
@@ -1896,7 +2063,9 @@ class Unet(nn.Module):
image_cond_drop_prob = 0., image_cond_drop_prob = 0.,
text_cond_drop_prob = 0., text_cond_drop_prob = 0.,
blur_sigma = None, blur_sigma = None,
blur_kernel_size = None blur_kernel_size = None,
disable_checkpoint = False,
self_cond = None
): ):
batch_size, device = x.shape[0], x.device batch_size, device = x.shape[0], x.device
@@ -1904,6 +2073,14 @@ class Unet(nn.Module):
assert not (self.lowres_cond and not exists(lowres_cond_img)), 'low resolution conditioning image must be present' assert not (self.lowres_cond and not exists(lowres_cond_img)), 'low resolution conditioning image must be present'
# concat self conditioning, if needed
if self.self_cond:
self_cond = default(self_cond, lambda: torch.zeros_like(x))
x = torch.cat((x, self_cond), dim = 1)
# concat low resolution conditioning
if exists(lowres_cond_img): if exists(lowres_cond_img):
x = torch.cat((x, lowres_cond_img), dim = 1) x = torch.cat((x, lowres_cond_img), dim = 1)
@@ -2018,17 +2195,29 @@ class Unet(nn.Module):
c = self.norm_cond(c) c = self.norm_cond(c)
mid_c = self.norm_mid_cond(mid_c) mid_c = self.norm_mid_cond(mid_c)
# gradient checkpointing
can_checkpoint = self.training and self.checkpoint_during_training and not disable_checkpoint
apply_checkpoint_fn = make_checkpointable if can_checkpoint else identity
# make checkpointable modules
init_resnet_block, mid_block1, mid_attn, mid_block2, final_resnet_block = [maybe(apply_checkpoint_fn)(module) for module in (self.init_resnet_block, self.mid_block1, self.mid_attn, self.mid_block2, self.final_resnet_block)]
can_checkpoint_cond = lambda m: isinstance(m, ResnetBlock)
downs, ups = [maybe(apply_checkpoint_fn)(m, condition = can_checkpoint_cond) for m in (self.downs, self.ups)]
# initial resnet block # initial resnet block
if exists(self.init_resnet_block): if exists(init_resnet_block):
x = self.init_resnet_block(x, t) x = init_resnet_block(x, t)
# go through the layers of the unet, down and up # go through the layers of the unet, down and up
down_hiddens = [] down_hiddens = []
up_hiddens = [] up_hiddens = []
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in self.downs: for pre_downsample, init_block, resnet_blocks, attn, post_downsample in downs:
if exists(pre_downsample): if exists(pre_downsample):
x = pre_downsample(x) x = pre_downsample(x)
@@ -2044,16 +2233,16 @@ class Unet(nn.Module):
if exists(post_downsample): if exists(post_downsample):
x = post_downsample(x) x = post_downsample(x)
x = self.mid_block1(x, t, mid_c) x = mid_block1(x, t, mid_c)
if exists(self.mid_attn): if exists(mid_attn):
x = self.mid_attn(x) x = mid_attn(x)
x = self.mid_block2(x, t, mid_c) x = mid_block2(x, t, mid_c)
connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1) connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1)
for init_block, resnet_blocks, attn, upsample in self.ups: for init_block, resnet_blocks, attn, upsample in ups:
x = connect_skip(x) x = connect_skip(x)
x = init_block(x, t, c) x = init_block(x, t, c)
@@ -2070,7 +2259,7 @@ class Unet(nn.Module):
x = torch.cat((x, r), dim = 1) x = torch.cat((x, r), dim = 1)
x = self.final_resnet_block(x, t) x = final_resnet_block(x, t)
if exists(lowres_cond_img): if exists(lowres_cond_img):
x = torch.cat((x, lowres_cond_img), dim = 1) x = torch.cat((x, lowres_cond_img), dim = 1)
@@ -2423,6 +2612,14 @@ class Decoder(nn.Module):
index = unet_number - 1 index = unet_number - 1
return self.unets[index] return self.unets[index]
def parse_unet_output(self, learned_variance, output):
var_interp_frac_unnormalized = None
if learned_variance:
output, var_interp_frac_unnormalized = output.chunk(2, dim = 1)
return UnetOutput(output, var_interp_frac_unnormalized)
@contextmanager @contextmanager
def one_unet_in_gpu(self, unet_number = None, unet = None): def one_unet_in_gpu(self, unet_number = None, unet = None):
assert exists(unet_number) ^ exists(unet) assert exists(unet_number) ^ exists(unet)
@@ -2461,23 +2658,22 @@ class Decoder(nn.Module):
x = x.clamp(-s, s) / s x = x.clamp(-s, s) / s
return x return x
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None): def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, self_cond = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None):
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)' assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)) model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level))
if learned_variance: pred, var_interp_frac_unnormalized = self.parse_unet_output(learned_variance, model_output)
pred, var_interp_frac_unnormalized = pred.chunk(2, dim = 1)
if predict_x_start: if predict_x_start:
x_recon = pred x_start = pred
else: else:
x_recon = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred) x_start = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised: if clip_denoised:
x_recon = self.dynamic_threshold(x_recon) x_start = self.dynamic_threshold(x_start)
model_mean, posterior_variance, posterior_log_variance = noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t) model_mean, posterior_variance, posterior_log_variance = noise_scheduler.q_posterior(x_start=x_start, x_t=x, t=t)
if learned_variance: if learned_variance:
# if learned variance, posterio variance and posterior log variance are predicted by the network # if learned variance, posterio variance and posterior log variance are predicted by the network
@@ -2493,16 +2689,17 @@ class Decoder(nn.Module):
posterior_log_variance = var_interp_frac * max_log + (1 - var_interp_frac) * min_log posterior_log_variance = var_interp_frac * max_log + (1 - var_interp_frac) * min_log
posterior_variance = posterior_log_variance.exp() posterior_variance = posterior_log_variance.exp()
return model_mean, posterior_variance, posterior_log_variance return model_mean, posterior_variance, posterior_log_variance, x_start
@torch.no_grad() @torch.no_grad()
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None): def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, self_cond = None, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None):
b, *_, device = *x.shape, x.device b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level) model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level)
noise = torch.randn_like(x) noise = torch.randn_like(x)
# no noise when t == 0 # no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise pred = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
return pred, x_start
@torch.no_grad() @torch.no_grad()
def p_sample_loop_ddpm( def p_sample_loop_ddpm(
@@ -2528,6 +2725,8 @@ class Decoder(nn.Module):
b = shape[0] b = shape[0]
img = torch.randn(shape, device = device) img = torch.randn(shape, device = device)
x_start = None # for self-conditioning
is_inpaint = exists(inpaint_image) is_inpaint = exists(inpaint_image)
resample_times = inpaint_resample_times if is_inpaint else 1 resample_times = inpaint_resample_times if is_inpaint else 1
@@ -2555,13 +2754,16 @@ class Decoder(nn.Module):
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times) noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times)
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask) img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
img = self.p_sample( self_cond = x_start if unet.self_cond else None
img, x_start = self.p_sample(
unet, unet,
img, img,
times, times,
image_embed = image_embed, image_embed = image_embed,
text_encodings = text_encodings, text_encodings = text_encodings,
cond_scale = cond_scale, cond_scale = cond_scale,
self_cond = self_cond,
lowres_cond_img = lowres_cond_img, lowres_cond_img = lowres_cond_img,
lowres_noise_level = lowres_noise_level, lowres_noise_level = lowres_noise_level,
predict_x_start = predict_x_start, predict_x_start = predict_x_start,
@@ -2620,6 +2822,8 @@ class Decoder(nn.Module):
img = torch.randn(shape, device = device) img = torch.randn(shape, device = device)
x_start = None # for self-conditioning
if not is_latent_diffusion: if not is_latent_diffusion:
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img) lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
@@ -2640,10 +2844,11 @@ class Decoder(nn.Module):
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond) noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond)
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask) img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level) self_cond = x_start if unet.self_cond else None
if learned_variance: unet_output = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, self_cond = self_cond, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
pred, _ = pred.chunk(2, dim = 1)
pred, _ = self.parse_unet_output(learned_variance, unet_output)
if predict_x_start: if predict_x_start:
x_start = pred x_start = pred
@@ -2700,21 +2905,37 @@ class Decoder(nn.Module):
x_noisy = noise_scheduler.q_sample(x_start = x_start, t = times, noise = noise) x_noisy = noise_scheduler.q_sample(x_start = x_start, t = times, noise = noise)
model_output = unet( # unet kwargs
x_noisy,
times, unet_kwargs = dict(
image_embed = image_embed, image_embed = image_embed,
text_encodings = text_encodings, text_encodings = text_encodings,
lowres_cond_img = lowres_cond_img, lowres_cond_img = lowres_cond_img,
lowres_noise_level = lowres_noise_level, lowres_noise_level = lowres_noise_level,
)
# self conditioning
self_cond = None
if unet.self_cond and random.random() < 0.5:
with torch.no_grad():
unet_output = unet(x_noisy, times, **unet_kwargs)
self_cond, _ = self.parse_unet_output(learned_variance, unet_output)
self_cond = self_cond.detach()
# forward to get model prediction
unet_output = unet(
x_noisy,
times,
**unet_kwargs,
self_cond = self_cond,
image_cond_drop_prob = self.image_cond_drop_prob, image_cond_drop_prob = self.image_cond_drop_prob,
text_cond_drop_prob = self.text_cond_drop_prob, text_cond_drop_prob = self.text_cond_drop_prob,
) )
if learned_variance: pred, _ = self.parse_unet_output(learned_variance, unet_output)
pred, _ = model_output.chunk(2, dim = 1)
else:
pred = model_output
target = noise if not predict_x_start else x_start target = noise if not predict_x_start else x_start
@@ -2737,7 +2958,7 @@ class Decoder(nn.Module):
# if learning the variance, also include the extra weight kl loss # if learning the variance, also include the extra weight kl loss
true_mean, _, true_log_variance_clipped = noise_scheduler.q_posterior(x_start = x_start, x_t = x_noisy, t = times) true_mean, _, true_log_variance_clipped = noise_scheduler.q_posterior(x_start = x_start, x_t = x_noisy, t = times)
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output) model_mean, _, model_log_variance, _ = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = unet_output)
# kl loss with detached model predicted mean, for stability reasons as in paper # kl loss with detached model predicted mean, for stability reasons as in paper

View File

@@ -9,7 +9,7 @@ from collections.abc import Iterable
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
from torch import nn from torch import nn
from torch.optim.lr_scheduler import LambdaLR from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR
from torch.cuda.amp import autocast, GradScaler from torch.cuda.amp import autocast, GradScaler
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
@@ -181,7 +181,8 @@ class DiffusionPriorTrainer(nn.Module):
eps = 1e-6, eps = 1e-6,
max_grad_norm = None, max_grad_norm = None,
group_wd_params = True, group_wd_params = True,
warmup_steps = 1, warmup_steps = None,
cosine_decay_max_steps = None,
**kwargs **kwargs
): ):
super().__init__() super().__init__()
@@ -234,7 +235,10 @@ class DiffusionPriorTrainer(nn.Module):
**kwargs **kwargs
) )
self.scheduler = LambdaLR(self.optimizer, lr_lambda = lambda _: 1.0) if exists(cosine_decay_max_steps):
self.scheduler = CosineAnnealingLR(optimizer, T_max = cosine_decay_max_steps)
else:
self.scheduler = LambdaLR(self.optimizer, lr_lambda = lambda _: 1.0)
self.warmup_scheduler = warmup.LinearWarmup(self.optimizer, warmup_period = warmup_steps) if exists(warmup_steps) else None self.warmup_scheduler = warmup.LinearWarmup(self.optimizer, warmup_period = warmup_steps) if exists(warmup_steps) else None
@@ -271,6 +275,7 @@ class DiffusionPriorTrainer(nn.Module):
# FIXME: LambdaLR can't be saved due to pickling issues # FIXME: LambdaLR can't be saved due to pickling issues
save_obj = dict( save_obj = dict(
optimizer = self.optimizer.state_dict(), optimizer = self.optimizer.state_dict(),
scheduler = self.scheduler.state_dict(),
warmup_scheduler = self.warmup_scheduler, warmup_scheduler = self.warmup_scheduler,
model = self.accelerator.unwrap_model(self.diffusion_prior).state_dict(), model = self.accelerator.unwrap_model(self.diffusion_prior).state_dict(),
version = version.parse(__version__), version = version.parse(__version__),
@@ -317,7 +322,9 @@ class DiffusionPriorTrainer(nn.Module):
# unwrap the model when loading from checkpoint # unwrap the model when loading from checkpoint
self.accelerator.unwrap_model(self.diffusion_prior).load_state_dict(loaded_obj['model'], strict = strict) self.accelerator.unwrap_model(self.diffusion_prior).load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step, device=self.device) * loaded_obj['step'].to(self.device)) self.step.copy_(torch.ones_like(self.step, device=self.device) * loaded_obj['step'].to(self.device))
self.optimizer.load_state_dict(loaded_obj['optimizer']) self.optimizer.load_state_dict(loaded_obj['optimizer'])
self.scheduler.load_state_dict(loaded_obj['scheduler'])
# set warmupstep # set warmupstep
if exists(self.warmup_scheduler): if exists(self.warmup_scheduler):
@@ -350,7 +357,8 @@ class DiffusionPriorTrainer(nn.Module):
# accelerator will ocassionally skip optimizer steps in a "dynamic loss scaling strategy" # accelerator will ocassionally skip optimizer steps in a "dynamic loss scaling strategy"
if not self.accelerator.optimizer_step_was_skipped: if not self.accelerator.optimizer_step_was_skipped:
with self.warmup_scheduler.dampening(): sched_context = self.warmup_scheduler.dampening if exists(self.warmup_scheduler) else nullcontext
with sched_context():
self.scheduler.step() self.scheduler.step()
if self.use_ema: if self.use_ema:
@@ -433,6 +441,7 @@ class DecoderTrainer(nn.Module):
wd = 1e-2, wd = 1e-2,
eps = 1e-8, eps = 1e-8,
warmup_steps = None, warmup_steps = None,
cosine_decay_max_steps = None,
max_grad_norm = 0.5, max_grad_norm = 0.5,
amp = False, amp = False,
group_wd_params = True, group_wd_params = True,
@@ -454,7 +463,7 @@ class DecoderTrainer(nn.Module):
# be able to finely customize learning rate, weight decay # be able to finely customize learning rate, weight decay
# per unet # per unet
lr, wd, eps, warmup_steps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps, warmup_steps)) lr, wd, eps, warmup_steps, cosine_decay_max_steps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps, warmup_steps, cosine_decay_max_steps))
assert all([unet_lr <= 1e-2 for unet_lr in lr]), 'your learning rate is too high, recommend sticking with 1e-4, at most 5e-4' assert all([unet_lr <= 1e-2 for unet_lr in lr]), 'your learning rate is too high, recommend sticking with 1e-4, at most 5e-4'
@@ -462,7 +471,7 @@ class DecoderTrainer(nn.Module):
schedulers = [] schedulers = []
warmup_schedulers = [] warmup_schedulers = []
for unet, unet_lr, unet_wd, unet_eps, unet_warmup_steps in zip(decoder.unets, lr, wd, eps, warmup_steps): for unet, unet_lr, unet_wd, unet_eps, unet_warmup_steps, unet_cosine_decay_max_steps in zip(decoder.unets, lr, wd, eps, warmup_steps, cosine_decay_max_steps):
if isinstance(unet, nn.Identity): if isinstance(unet, nn.Identity):
optimizers.append(None) optimizers.append(None)
schedulers.append(None) schedulers.append(None)
@@ -478,7 +487,11 @@ class DecoderTrainer(nn.Module):
) )
optimizers.append(optimizer) optimizers.append(optimizer)
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
if exists(unet_cosine_decay_max_steps):
scheduler = CosineAnnealingLR(optimizer, T_max = unet_cosine_decay_max_steps)
else:
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps) if exists(unet_warmup_steps) else None warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps) if exists(unet_warmup_steps) else None
warmup_schedulers.append(warmup_scheduler) warmup_schedulers.append(warmup_scheduler)
@@ -558,9 +571,15 @@ class DecoderTrainer(nn.Module):
for ind in range(0, self.num_unets): for ind in range(0, self.num_unets):
optimizer_key = f'optim{ind}' optimizer_key = f'optim{ind}'
scheduler_key = f'sched{ind}'
optimizer = getattr(self, optimizer_key) optimizer = getattr(self, optimizer_key)
state_dict = optimizer.state_dict() if optimizer is not None else None scheduler = getattr(self, scheduler_key)
save_obj = {**save_obj, optimizer_key: state_dict}
optimizer_state_dict = optimizer.state_dict() if exists(optimizer) else None
scheduler_state_dict = scheduler.state_dict() if exists(scheduler) else None
save_obj = {**save_obj, optimizer_key: optimizer_state_dict, scheduler_key: scheduler_state_dict}
if self.use_ema: if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()} save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
@@ -581,10 +600,18 @@ class DecoderTrainer(nn.Module):
optimizer_key = f'optim{ind}' optimizer_key = f'optim{ind}'
optimizer = getattr(self, optimizer_key) optimizer = getattr(self, optimizer_key)
scheduler_key = f'sched{ind}'
scheduler = getattr(self, scheduler_key)
warmup_scheduler = self.warmup_schedulers[ind] warmup_scheduler = self.warmup_schedulers[ind]
if optimizer is not None:
if exists(optimizer):
optimizer.load_state_dict(loaded_obj[optimizer_key]) optimizer.load_state_dict(loaded_obj[optimizer_key])
if exists(scheduler):
scheduler.load_state_dict(loaded_obj[scheduler_key])
if exists(warmup_scheduler): if exists(warmup_scheduler):
warmup_scheduler.last_step = last_step warmup_scheduler.last_step = last_step

View File

@@ -1 +1 @@
__version__ = '1.4.4' __version__ = '1.8.2'

View File

@@ -26,7 +26,7 @@ setup(
install_requires=[ install_requires=[
'accelerate', 'accelerate',
'click', 'click',
'clip-anytorch', 'clip-anytorch>=2.4.0',
'coca-pytorch>=0.0.5', 'coca-pytorch>=0.0.5',
'ema-pytorch>=0.0.7', 'ema-pytorch>=0.0.7',
'einops>=0.4', 'einops>=0.4',