mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
7 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
be3bb868bf | ||
|
|
451de34871 | ||
|
|
f22e8c8741 | ||
|
|
87432e93ad | ||
|
|
d167378401 | ||
|
|
2d67d5821e | ||
|
|
748c7fe7af |
12
README.md
12
README.md
@@ -627,6 +627,18 @@ images = dalle2(
|
||||
# save your image (in this example, of size 256x256)
|
||||
```
|
||||
|
||||
Alternatively, you can also use <a href="https://github.com/mlfoundations/open_clip">Open Clip</a>
|
||||
|
||||
```bash
|
||||
$ pip install open-clip-torch
|
||||
```
|
||||
|
||||
```python
|
||||
from dalle2_pytorch import OpenClipAdapter
|
||||
|
||||
clip = OpenClipAdapter()
|
||||
```
|
||||
|
||||
Now you'll just have to worry about training the Prior and the Decoder!
|
||||
|
||||
## Inpainting
|
||||
|
||||
@@ -8,6 +8,7 @@ from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
from torch import nn, einsum
|
||||
import torchvision.transforms as T
|
||||
|
||||
@@ -108,6 +109,28 @@ def pad_tuple_to_length(t, length, fillvalue = None):
|
||||
return t
|
||||
return (*t, *((fillvalue,) * remain_length))
|
||||
|
||||
# checkpointing helper function
|
||||
|
||||
def make_checkpointable(fn, **kwargs):
|
||||
if isinstance(fn, nn.ModuleList):
|
||||
return [maybe(make_checkpointable)(el, **kwargs) for el in fn]
|
||||
|
||||
condition = kwargs.pop('condition', None)
|
||||
|
||||
if exists(condition) and not condition(fn):
|
||||
return fn
|
||||
|
||||
@wraps(fn)
|
||||
def inner(*args):
|
||||
input_needs_grad = any([isinstance(el, torch.Tensor) and el.requires_grad for el in args])
|
||||
|
||||
if not input_needs_grad:
|
||||
return fn(*args)
|
||||
|
||||
return checkpoint(fn, *args)
|
||||
|
||||
return inner
|
||||
|
||||
# for controlling freezing of CLIP
|
||||
|
||||
def set_module_requires_grad_(module, requires_grad):
|
||||
@@ -339,6 +362,75 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
||||
image_embed = self.clip.encode_image(image)
|
||||
return EmbeddedImage(l2norm(image_embed.float()), None)
|
||||
|
||||
class OpenClipAdapter(BaseClipAdapter):
|
||||
def __init__(
|
||||
self,
|
||||
name = 'ViT-B/32',
|
||||
pretrained = 'laion400m_e32'
|
||||
):
|
||||
import open_clip
|
||||
clip, _, preprocess = open_clip.create_model_and_transforms(name, pretrained = pretrained)
|
||||
|
||||
super().__init__(clip)
|
||||
self.eos_id = 49407
|
||||
|
||||
text_attention_final = self.find_layer('ln_final')
|
||||
self.handle = text_attention_final.register_forward_hook(self._hook)
|
||||
self.clip_normalize = preprocess.transforms[-1]
|
||||
self.cleared = False
|
||||
|
||||
def find_layer(self, layer):
|
||||
modules = dict([*self.clip.named_modules()])
|
||||
return modules.get(layer, None)
|
||||
|
||||
def clear(self):
|
||||
if self.cleared:
|
||||
return
|
||||
|
||||
self.handle()
|
||||
|
||||
def _hook(self, _, inputs, outputs):
|
||||
self.text_encodings = outputs
|
||||
|
||||
@property
|
||||
def dim_latent(self):
|
||||
return 512
|
||||
|
||||
@property
|
||||
def image_size(self):
|
||||
return self.clip.visual.image_size
|
||||
|
||||
@property
|
||||
def image_channels(self):
|
||||
return 3
|
||||
|
||||
@property
|
||||
def max_text_len(self):
|
||||
return self.clip.context_length
|
||||
|
||||
@torch.no_grad()
|
||||
def embed_text(self, text):
|
||||
text = text[..., :self.max_text_len]
|
||||
|
||||
is_eos_id = (text == self.eos_id)
|
||||
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
|
||||
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
|
||||
assert not self.cleared
|
||||
|
||||
text_embed = self.clip.encode_text(text)
|
||||
text_encodings = self.text_encodings
|
||||
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
|
||||
del self.text_encodings
|
||||
return EmbeddedText(l2norm(text_embed.float()), text_encodings.float())
|
||||
|
||||
@torch.no_grad()
|
||||
def embed_image(self, image):
|
||||
assert not self.cleared
|
||||
image = self.validate_and_resize_image(image)
|
||||
image = self.clip_normalize(image)
|
||||
image_embed = self.clip.encode_image(image)
|
||||
return EmbeddedImage(l2norm(image_embed.float()), None)
|
||||
|
||||
# classifier free guidance functions
|
||||
|
||||
def prob_mask_like(shape, prob, device):
|
||||
@@ -547,34 +639,40 @@ class NoiseScheduler(nn.Module):
|
||||
# diffusion prior
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, dim, eps = 1e-5, stable = False):
|
||||
def __init__(self, dim, eps = 1e-5, fp16_eps = 1e-3, stable = False):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.fp16_eps = fp16_eps
|
||||
self.stable = stable
|
||||
self.g = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
eps = self.eps if x.dtype == torch.float32 else self.fp16_eps
|
||||
|
||||
if self.stable:
|
||||
x = x / x.amax(dim = -1, keepdim = True).detach()
|
||||
|
||||
var = torch.var(x, dim = -1, unbiased = False, keepdim = True)
|
||||
mean = torch.mean(x, dim = -1, keepdim = True)
|
||||
return (x - mean) * (var + self.eps).rsqrt() * self.g
|
||||
return (x - mean) * (var + eps).rsqrt() * self.g
|
||||
|
||||
class ChanLayerNorm(nn.Module):
|
||||
def __init__(self, dim, eps = 1e-5, stable = False):
|
||||
def __init__(self, dim, eps = 1e-5, fp16_eps = 1e-3, stable = False):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.fp16_eps = fp16_eps
|
||||
self.stable = stable
|
||||
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
|
||||
|
||||
def forward(self, x):
|
||||
eps = self.eps if x.dtype == torch.float32 else self.fp16_eps
|
||||
|
||||
if self.stable:
|
||||
x = x / x.amax(dim = 1, keepdim = True).detach()
|
||||
|
||||
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
|
||||
mean = torch.mean(x, dim = 1, keepdim = True)
|
||||
return (x - mean) * (var + self.eps).rsqrt() * self.g
|
||||
return (x - mean) * (var + eps).rsqrt() * self.g
|
||||
|
||||
class Residual(nn.Module):
|
||||
def __init__(self, fn):
|
||||
@@ -695,11 +793,12 @@ class Attention(nn.Module):
|
||||
dropout = 0.,
|
||||
causal = False,
|
||||
rotary_emb = None,
|
||||
pb_relax_alpha = 128
|
||||
cosine_sim = True,
|
||||
cosine_sim_scale = 16
|
||||
):
|
||||
super().__init__()
|
||||
self.pb_relax_alpha = pb_relax_alpha
|
||||
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1)
|
||||
self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
|
||||
self.cosine_sim = cosine_sim
|
||||
|
||||
self.heads = heads
|
||||
inner_dim = dim_head * heads
|
||||
@@ -739,6 +838,13 @@ class Attention(nn.Module):
|
||||
k = torch.cat((nk, k), dim = -2)
|
||||
v = torch.cat((nv, v), dim = -2)
|
||||
|
||||
# whether to use cosine sim
|
||||
|
||||
if self.cosine_sim:
|
||||
q, k = map(l2norm, (q, k))
|
||||
|
||||
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
|
||||
|
||||
# calculate query / key similarities
|
||||
|
||||
sim = einsum('b h i d, b j d -> b h i j', q, k)
|
||||
@@ -764,9 +870,6 @@ class Attention(nn.Module):
|
||||
|
||||
# attention
|
||||
|
||||
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
||||
sim = sim * self.pb_relax_alpha
|
||||
|
||||
attn = sim.softmax(dim = -1)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
@@ -1357,7 +1460,8 @@ class ResnetBlock(nn.Module):
|
||||
*,
|
||||
cond_dim = None,
|
||||
time_cond_dim = None,
|
||||
groups = 8
|
||||
groups = 8,
|
||||
cosine_sim_cross_attn = False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -1377,7 +1481,8 @@ class ResnetBlock(nn.Module):
|
||||
'b (h w) c',
|
||||
CrossAttention(
|
||||
dim = dim_out,
|
||||
context_dim = cond_dim
|
||||
context_dim = cond_dim,
|
||||
cosine_sim = cosine_sim_cross_attn
|
||||
)
|
||||
)
|
||||
|
||||
@@ -1412,11 +1517,12 @@ class CrossAttention(nn.Module):
|
||||
heads = 8,
|
||||
dropout = 0.,
|
||||
norm_context = False,
|
||||
pb_relax_alpha = 32 ** 2
|
||||
cosine_sim = False,
|
||||
cosine_sim_scale = 16
|
||||
):
|
||||
super().__init__()
|
||||
self.pb_relax_alpha = pb_relax_alpha
|
||||
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1)
|
||||
self.cosine_sim = cosine_sim
|
||||
self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
|
||||
self.heads = heads
|
||||
inner_dim = dim_head * heads
|
||||
|
||||
@@ -1452,7 +1558,10 @@ class CrossAttention(nn.Module):
|
||||
k = torch.cat((nk, k), dim = -2)
|
||||
v = torch.cat((nv, v), dim = -2)
|
||||
|
||||
q = q * self.scale
|
||||
if self.cosine_sim:
|
||||
q, k = map(l2norm, (q, k))
|
||||
|
||||
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
|
||||
|
||||
sim = einsum('b h i d, b h j d -> b h i j', q, k)
|
||||
max_neg_value = -torch.finfo(sim.dtype).max
|
||||
@@ -1462,9 +1571,6 @@ class CrossAttention(nn.Module):
|
||||
mask = rearrange(mask, 'b j -> b 1 1 j')
|
||||
sim = sim.masked_fill(~mask, max_neg_value)
|
||||
|
||||
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
||||
sim = sim * self.pb_relax_alpha
|
||||
|
||||
attn = sim.softmax(dim = -1)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
@@ -1476,7 +1582,8 @@ class LinearAttention(nn.Module):
|
||||
self,
|
||||
dim,
|
||||
dim_head = 32,
|
||||
heads = 8
|
||||
heads = 8,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
self.scale = dim_head ** -0.5
|
||||
@@ -1494,6 +1601,7 @@ class LinearAttention(nn.Module):
|
||||
|
||||
def forward(self, fmap):
|
||||
h, x, y = self.heads, *fmap.shape[-2:]
|
||||
seq_len = x * y
|
||||
|
||||
fmap = self.norm(fmap)
|
||||
q, k, v = self.to_qkv(fmap).chunk(3, dim = 1)
|
||||
@@ -1503,7 +1611,9 @@ class LinearAttention(nn.Module):
|
||||
k = k.softmax(dim = -2)
|
||||
|
||||
q = q * self.scale
|
||||
v = v / (x * y)
|
||||
v = l2norm(v)
|
||||
|
||||
k, v = map(lambda t: t / math.sqrt(seq_len), (k, v))
|
||||
|
||||
context = einsum('b n d, b n e -> b d e', k, v)
|
||||
out = einsum('b n d, b d e -> b n e', q, context)
|
||||
@@ -1591,6 +1701,8 @@ class Unet(nn.Module):
|
||||
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
|
||||
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
|
||||
sparse_attn = False,
|
||||
cosine_sim_cross_attn = False,
|
||||
cosine_sim_self_attn = False,
|
||||
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
||||
cond_on_text_encodings = False,
|
||||
max_text_len = 256,
|
||||
@@ -1609,6 +1721,7 @@ class Unet(nn.Module):
|
||||
pixel_shuffle_upsample = True,
|
||||
final_conv_kernel_size = 1,
|
||||
combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper
|
||||
checkpoint_during_training = False,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -1711,7 +1824,7 @@ class Unet(nn.Module):
|
||||
|
||||
# attention related params
|
||||
|
||||
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
|
||||
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head, cosine_sim = cosine_sim_self_attn)
|
||||
|
||||
self_attn = cast_tuple(self_attn, num_stages)
|
||||
|
||||
@@ -1734,9 +1847,13 @@ class Unet(nn.Module):
|
||||
|
||||
upsample_klass = NearestUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample
|
||||
|
||||
# prepare resnet klass
|
||||
|
||||
resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn)
|
||||
|
||||
# give memory efficient unet an initial resnet block
|
||||
|
||||
self.init_resnet_block = ResnetBlock(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
|
||||
self.init_resnet_block = resnet_block(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
|
||||
|
||||
# layers
|
||||
|
||||
@@ -1763,17 +1880,17 @@ class Unet(nn.Module):
|
||||
|
||||
self.downs.append(nn.ModuleList([
|
||||
downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None,
|
||||
ResnetBlock(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([ResnetBlock(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
resnet_block(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([resnet_block(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
attention,
|
||||
downsample_klass(dim_layer, dim_out = dim_out) if not is_last and not memory_efficient else nn.Conv2d(dim_layer, dim_out, 1)
|
||||
]))
|
||||
|
||||
mid_dim = dims[-1]
|
||||
|
||||
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
self.mid_block1 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
self.mid_attn = create_self_attn(mid_dim)
|
||||
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
self.mid_block2 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
|
||||
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks), reversed(self_attn))):
|
||||
is_last = ind >= (len(in_out) - 1)
|
||||
@@ -1790,8 +1907,8 @@ class Unet(nn.Module):
|
||||
upsample_combiner_dims.append(dim_out)
|
||||
|
||||
self.ups.append(nn.ModuleList([
|
||||
ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
||||
nn.ModuleList([resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
attention,
|
||||
upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity()
|
||||
]))
|
||||
@@ -1807,7 +1924,7 @@ class Unet(nn.Module):
|
||||
|
||||
# a final resnet block
|
||||
|
||||
self.final_resnet_block = ResnetBlock(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
||||
self.final_resnet_block = resnet_block(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
||||
|
||||
out_dim_in = dim + (channels if lowres_cond else 0)
|
||||
|
||||
@@ -1815,6 +1932,10 @@ class Unet(nn.Module):
|
||||
|
||||
zero_init_(self.to_out) # since both OpenAI and @crowsonkb are doing it
|
||||
|
||||
# whether to checkpoint during training
|
||||
|
||||
self.checkpoint_during_training = checkpoint_during_training
|
||||
|
||||
# if the current settings for the unet are not correct
|
||||
# for cascading DDPM, then reinit the unet with the right settings
|
||||
def cast_model_parameters(
|
||||
@@ -1872,7 +1993,8 @@ class Unet(nn.Module):
|
||||
image_cond_drop_prob = 0.,
|
||||
text_cond_drop_prob = 0.,
|
||||
blur_sigma = None,
|
||||
blur_kernel_size = None
|
||||
blur_kernel_size = None,
|
||||
disable_checkpoint = False
|
||||
):
|
||||
batch_size, device = x.shape[0], x.device
|
||||
|
||||
@@ -1994,17 +2116,29 @@ class Unet(nn.Module):
|
||||
c = self.norm_cond(c)
|
||||
mid_c = self.norm_mid_cond(mid_c)
|
||||
|
||||
# gradient checkpointing
|
||||
|
||||
can_checkpoint = self.training and self.checkpoint_during_training and not disable_checkpoint
|
||||
apply_checkpoint_fn = make_checkpointable if can_checkpoint else identity
|
||||
|
||||
# make checkpointable modules
|
||||
|
||||
init_resnet_block, mid_block1, mid_attn, mid_block2, final_resnet_block = [maybe(apply_checkpoint_fn)(module) for module in (self.init_resnet_block, self.mid_block1, self.mid_attn, self.mid_block2, self.final_resnet_block)]
|
||||
|
||||
can_checkpoint_cond = lambda m: isinstance(m, ResnetBlock)
|
||||
downs, ups = [maybe(apply_checkpoint_fn)(m, condition = can_checkpoint_cond) for m in (self.downs, self.ups)]
|
||||
|
||||
# initial resnet block
|
||||
|
||||
if exists(self.init_resnet_block):
|
||||
x = self.init_resnet_block(x, t)
|
||||
if exists(init_resnet_block):
|
||||
x = init_resnet_block(x, t)
|
||||
|
||||
# go through the layers of the unet, down and up
|
||||
|
||||
down_hiddens = []
|
||||
up_hiddens = []
|
||||
|
||||
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in self.downs:
|
||||
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in downs:
|
||||
if exists(pre_downsample):
|
||||
x = pre_downsample(x)
|
||||
|
||||
@@ -2020,16 +2154,16 @@ class Unet(nn.Module):
|
||||
if exists(post_downsample):
|
||||
x = post_downsample(x)
|
||||
|
||||
x = self.mid_block1(x, t, mid_c)
|
||||
x = mid_block1(x, t, mid_c)
|
||||
|
||||
if exists(self.mid_attn):
|
||||
x = self.mid_attn(x)
|
||||
if exists(mid_attn):
|
||||
x = mid_attn(x)
|
||||
|
||||
x = self.mid_block2(x, t, mid_c)
|
||||
x = mid_block2(x, t, mid_c)
|
||||
|
||||
connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1)
|
||||
|
||||
for init_block, resnet_blocks, attn, upsample in self.ups:
|
||||
for init_block, resnet_blocks, attn, upsample in ups:
|
||||
x = connect_skip(x)
|
||||
x = init_block(x, t, c)
|
||||
|
||||
@@ -2046,7 +2180,7 @@ class Unet(nn.Module):
|
||||
|
||||
x = torch.cat((x, r), dim = 1)
|
||||
|
||||
x = self.final_resnet_block(x, t)
|
||||
x = final_resnet_block(x, t)
|
||||
|
||||
if exists(lowres_cond_img):
|
||||
x = torch.cat((x, lowres_cond_img), dim = 1)
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '1.2.2'
|
||||
__version__ = '1.5.0'
|
||||
|
||||
Reference in New Issue
Block a user