Compare commits

..

1 Commits
1.2.1 ... 1.0.4

Author SHA1 Message Date
Phil Wang
9008531d62 fix repaint 2022-07-24 15:22:59 -07:00
4 changed files with 11 additions and 66 deletions

View File

@@ -371,7 +371,6 @@ loss.backward()
unet1 = Unet(
dim = 128,
image_embed_dim = 512,
text_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8),
@@ -1113,8 +1112,7 @@ For detailed information on training the diffusion prior, please refer to the [d
- [x] allow for unet to be able to condition non-cross attention style as well
- [x] speed up inference, read up on papers (ddim)
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
- [x] add the final combination of upsample feature maps, used in unet squared, seems to have an effect in local experiments
- [ ] consider elucidated dalle2 https://arxiv.org/abs/2206.00364
- [ ] try out the nested unet from https://arxiv.org/abs/2005.09007 after hearing several positive testimonies from researchers, for segmentation anyhow
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
## Citations

View File

@@ -1503,7 +1503,6 @@ class LinearAttention(nn.Module):
k = k.softmax(dim = -2)
q = q * self.scale
v = v / (x * y)
context = einsum('b n d, b n e -> b d e', k, v)
out = einsum('b n d, b d e -> b n e', q, context)
@@ -1539,38 +1538,6 @@ class CrossEmbedLayer(nn.Module):
fmaps = tuple(map(lambda conv: conv(x), self.convs))
return torch.cat(fmaps, dim = 1)
class UpsampleCombiner(nn.Module):
def __init__(
self,
dim,
*,
enabled = False,
dim_ins = tuple(),
dim_outs = tuple()
):
super().__init__()
assert len(dim_ins) == len(dim_outs)
self.enabled = enabled
if not self.enabled:
self.dim_out = dim
return
self.fmap_convs = nn.ModuleList([Block(dim_in, dim_out) for dim_in, dim_out in zip(dim_ins, dim_outs)])
self.dim_out = dim + (sum(dim_outs) if len(dim_outs) > 0 else 0)
def forward(self, x, fmaps = None):
target_size = x.shape[-1]
fmaps = default(fmaps, tuple())
if not self.enabled or len(fmaps) == 0 or len(self.fmap_convs) == 0:
return x
fmaps = [resize_image_to(fmap, target_size) for fmap in fmaps]
outs = [conv(fmap) for fmap, conv in zip(fmaps, self.fmap_convs)]
return torch.cat((x, *outs), dim = 1)
class Unet(nn.Module):
def __init__(
self,
@@ -1608,7 +1575,6 @@ class Unet(nn.Module):
scale_skip_connection = False,
pixel_shuffle_upsample = True,
final_conv_kernel_size = 1,
combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper
**kwargs
):
super().__init__()
@@ -1744,8 +1710,7 @@ class Unet(nn.Module):
self.ups = nn.ModuleList([])
num_resolutions = len(in_out)
skip_connect_dims = [] # keeping track of skip connection dimensions
upsample_combiner_dims = [] # keeping track of dimensions for final upsample feature map combiner
skip_connect_dims = [] # keeping track of skip connection dimensions
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(in_out, resnet_groups, num_resnet_blocks, self_attn)):
is_first = ind == 0
@@ -1787,8 +1752,6 @@ class Unet(nn.Module):
elif sparse_attn:
attention = Residual(LinearAttention(dim_out, **attn_kwargs))
upsample_combiner_dims.append(dim_out)
self.ups.append(nn.ModuleList([
ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
@@ -1796,18 +1759,7 @@ class Unet(nn.Module):
upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity()
]))
# whether to combine outputs from all upsample blocks for final resnet block
self.upsample_combiner = UpsampleCombiner(
dim = dim,
enabled = combine_upsample_fmaps,
dim_ins = upsample_combiner_dims,
dim_outs = (dim,) * len(upsample_combiner_dims)
)
# a final resnet block
self.final_resnet_block = ResnetBlock(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
self.final_resnet_block = ResnetBlock(dim * 2, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
out_dim_in = dim + (channels if lowres_cond else 0)
@@ -2001,8 +1953,7 @@ class Unet(nn.Module):
# go through the layers of the unet, down and up
down_hiddens = []
up_hiddens = []
hiddens = []
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in self.downs:
if exists(pre_downsample):
@@ -2012,10 +1963,10 @@ class Unet(nn.Module):
for resnet_block in resnet_blocks:
x = resnet_block(x, t, c)
down_hiddens.append(x.contiguous())
hiddens.append(x)
x = attn(x)
down_hiddens.append(x.contiguous())
hiddens.append(x.contiguous())
if exists(post_downsample):
x = post_downsample(x)
@@ -2027,7 +1978,7 @@ class Unet(nn.Module):
x = self.mid_block2(x, t, mid_c)
connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1)
connect_skip = lambda fmap: torch.cat((fmap, hiddens.pop() * self.skip_connect_scale), dim = 1)
for init_block, resnet_blocks, attn, upsample in self.ups:
x = connect_skip(x)
@@ -2038,12 +1989,8 @@ class Unet(nn.Module):
x = resnet_block(x, t, c)
x = attn(x)
up_hiddens.append(x.contiguous())
x = upsample(x)
x = self.upsample_combiner(x, up_hiddens)
x = torch.cat((x, r), dim = 1)
x = self.final_resnet_block(x, t)
@@ -2642,7 +2589,7 @@ class Decoder(nn.Module):
if is_inpaint and not (is_last_timestep or is_last_resample_step):
# in repaint, you renoise and resample up to 10 times every step
time_next_cond = torch.full((batch,), time_next, device = device, dtype = torch.long)
img = noise_scheduler.q_sample_from_to(img, time_next_cond, time_cond)
img = noise_scheduler.q_sample_from_to(img, time_cond, time_next_cond)
if exists(inpaint_image):
img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask)
@@ -2938,7 +2885,7 @@ class DALLE2(nn.Module):
image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale)
text_cond = text if self.decoder_need_text_cond else None
images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale)
images = self.decoder.sample(image_embed, text = text_cond, cond_scale = cond_scale)
if return_pil_images:
images = list(map(self.to_pil, images.unbind(dim = 0)))

View File

@@ -300,7 +300,7 @@ class DiffusionPriorTrainer(nn.Module):
# all processes need to load checkpoint. no restriction here
if isinstance(path_or_state, str):
path = Path(path_or_state)
path = Path(path)
assert path.exists()
loaded_obj = torch.load(str(path), map_location=self.device)

View File

@@ -1 +1 @@
__version__ = '1.2.1'
__version__ = '1.0.4'