Compare commits

..

4 Commits

Author SHA1 Message Date
Phil Wang
0d82dff9c5 in ddim, noise should be predicted after x0 is maybe clipped, thanks to @lukovnikov for pointing this out in another repository 2022-09-01 09:40:47 -07:00
Phil Wang
8bbc956ff1 fix bug with misnamed variable in diffusion prior network 2022-08-31 17:19:05 -07:00
Phil Wang
22019fddeb todo 2022-08-31 13:36:05 -07:00
Phil Wang
6fb7e91343 fix ddim to use alpha_cumprod 2022-08-31 07:40:46 -07:00
3 changed files with 31 additions and 8 deletions

View File

@@ -1126,6 +1126,7 @@ For detailed information on training the diffusion prior, please refer to the [d
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
- [x] add the final combination of upsample feature maps, used in unet squared, seems to have an effect in local experiments
- [ ] consider elucidated dalle2 https://arxiv.org/abs/2206.00364
- [ ] add simple outpainting, text-guided 2x size the image for starters
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
## Citations

View File

@@ -1070,7 +1070,7 @@ class DiffusionPriorNetwork(nn.Module):
null_text_embeds = self.null_text_embeds.to(text_embed.dtype)
text_embeds = torch.where(
text_embed = torch.where(
text_keep_mask,
text_embed,
null_text_embeds
@@ -1259,7 +1259,7 @@ class DiffusionPrior(nn.Module):
def p_sample_loop_ddim(self, shape, text_cond, *, timesteps, eta = 1., cond_scale = 1.):
batch, device, alphas, total_timesteps = shape[0], self.device, self.noise_scheduler.alphas_cumprod_prev, self.noise_scheduler.num_timesteps
times = torch.linspace(0., total_timesteps, steps = timesteps + 2)[:-1]
times = torch.linspace(-1., total_timesteps, steps = timesteps + 1)[:-1]
times = list(reversed(times.int().tolist()))
time_pairs = list(zip(times[:-1], times[1:]))
@@ -1281,12 +1281,14 @@ class DiffusionPrior(nn.Module):
pred = self.net.forward_with_cond_scale(image_embed, time_cond, self_cond = self_cond, cond_scale = cond_scale, **text_cond)
# derive x0
if self.predict_x_start:
x_start = pred
pred_noise = self.noise_scheduler.predict_noise_from_start(image_embed, t = time_cond, x0 = pred)
else:
x_start = self.noise_scheduler.predict_start_from_noise(image_embed, t = time_cond, noise = pred)
pred_noise = pred
x_start = self.noise_scheduler.predict_start_from_noise(image_embed, t = time_cond, noise = pred_noise)
# clip x0 before maybe predicting noise
if not self.predict_x_start:
x_start.clamp_(-1., 1.)
@@ -1294,6 +1296,17 @@ class DiffusionPrior(nn.Module):
if self.predict_x_start and self.sampling_clamp_l2norm:
x_start = self.l2norm_clamp_embed(x_start)
# predict noise
if self.predict_x_start:
pred_noise = self.noise_scheduler.predict_noise_from_start(image_embed, t = time_cond, x0 = x_start)
else:
pred_noise = pred
if time_next < 0:
image_embed = x_start
continue
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
noise = torch.randn_like(image_embed) if time_next > 0 else 0.
@@ -2893,16 +2906,25 @@ class Decoder(nn.Module):
pred, _ = self.parse_unet_output(learned_variance, unet_output)
# predict x0
if predict_x_start:
x_start = pred
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
else:
x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred)
pred_noise = pred
# maybe clip x0
if clip_denoised:
x_start = self.dynamic_threshold(x_start)
# predict noise
if predict_x_start:
pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = pred)
else:
pred_noise = pred
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
noise = torch.randn_like(img) if not is_last_timestep else 0.

View File

@@ -1 +1 @@
__version__ = '1.10.2'
__version__ = '1.10.5'