Compare commits

..

10 Commits
0.4.0 ... 0.4.8

10 changed files with 284 additions and 74 deletions

View File

@@ -1077,6 +1077,8 @@ This library would not have gotten to this working state without the help of
- [x] cross embed layers for downsampling, as an option
- [x] use an experimental tracker agnostic setup, as done <a href="https://github.com/lucidrains/tf-bind-transformer#simple-trainer-class-for-fine-tuning">here</a>
- [x] use pydantic for config drive training
- [x] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
- [x] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] train on a toy task, offer in colab
@@ -1086,12 +1088,9 @@ This library would not have gotten to this working state without the help of
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
- [ ] decoder needs one day worth of refactor for tech debt
- [ ] allow for unet to be able to condition non-cross attention style as well
- [ ] for all model classes with hyperparameters that changes the network architecture, make it requirement that they must expose a config property, and write a simple function that asserts that it restores the object correctly
- [ ] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
## Citations

View File

@@ -6,9 +6,10 @@ For more complex configuration, we provide the option of using a configuration f
The decoder trainer has 7 main configuration options. A full example of their use can be found in the [example decoder configuration](train_decoder_config.example.json).
**<ins>Unets</ins>:**
**<ins>Unet</ins>:**
This is a single unet config, which belongs as an array nested under the decoder config as a list of `unets`
Each member of this array defines a single unet that will be added to the decoder.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `dim` | Yes | N/A | The starting channels of the unet. |
@@ -22,6 +23,7 @@ Any parameter from the `Unet` constructor can also be given here.
Defines the configuration options for the decoder model. The unets defined above will automatically be inserted.
| Option | Required | Default | Description |
| ------ | -------- | ------- | ----------- |
| `unets` | Yes | N/A | A list of unets, using the configuration above |
| `image_sizes` | Yes | N/A | The resolution of the image after each upsampling step. The length of this array should be the number of unets defined. |
| `image_size` | Yes | N/A | Not used. Can be any number. |
| `timesteps` | No | `1000` | The number of diffusion timesteps used for generation. |

View File

@@ -0,0 +1,99 @@
{
"decoder": {
"unets": [
{
"dim": 128,
"image_embed_dim": 768,
"cond_dim": 64,
"channels": 3,
"dim_mults": [1, 2, 4, 8],
"attn_dim_head": 32,
"attn_heads": 16
}
],
"image_sizes": [64],
"channels": 3,
"timesteps": 1000,
"loss_type": "l2",
"beta_schedule": "cosine",
"learned_variance": true
},
"data": {
"webdataset_base_url": "pipe:s3cmd get s3://bucket/path/{}.tar -",
"embeddings_url": "s3://bucket/embeddings/path/",
"num_workers": 4,
"batch_size": 64,
"start_shard": 0,
"end_shard": 9999999,
"shard_width": 6,
"index_width": 4,
"splits": {
"train": 0.75,
"val": 0.15,
"test": 0.1
},
"shuffle_train": true,
"resample_train": false,
"preprocessing": {
"RandomResizedCrop": {
"size": [128, 128],
"scale": [0.75, 1.0],
"ratio": [1.0, 1.0]
},
"ToTensor": true
}
},
"train": {
"epochs": 20,
"lr": 1e-4,
"wd": 0.01,
"max_grad_norm": 0.5,
"save_every_n_samples": 100000,
"n_sample_images": 6,
"device": "cuda:0",
"epoch_samples": null,
"validation_samples": null,
"use_ema": true,
"ema_beta": 0.99,
"amp": false,
"save_all": false,
"save_latest": true,
"save_best": true,
"unet_training_mask": [true]
},
"evaluate": {
"n_evaluation_samples": 1000,
"FID": {
"feature": 64
},
"IS": {
"feature": 64,
"splits": 10
},
"KID": {
"feature": 64,
"subset_size": 10
},
"LPIPS": {
"net_type": "vgg",
"reduction": "mean"
}
},
"tracker": {
"tracker_type": "console",
"data_path": "./models",
"wandb_entity": "",
"wandb_project": "",
"verbose": false
},
"load": {
"source": null,
"run_path": "",
"file_path": "",
"resume": false
}
}

View File

@@ -1712,7 +1712,7 @@ class Decoder(BaseGaussianDiffusion):
self.unconditional = unconditional
assert not (condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
assert self.unconditional or (exists(clip) ^ exists(image_size)), 'either CLIP is supplied, or you must give the image_size and channels (usually 3 for RGB)'
assert self.unconditional or (exists(clip) ^ (exists(image_size) or exists(image_sizes))), 'either CLIP is supplied, or you must give the image_size and channels (usually 3 for RGB)'
self.clip = None
if exists(clip):
@@ -1728,7 +1728,7 @@ class Decoder(BaseGaussianDiffusion):
self.clip_image_size = clip.image_size
self.channels = clip.image_channels
else:
self.clip_image_size = image_size
self.clip_image_size = default(image_size, lambda: image_sizes[-1])
self.channels = channels
self.condition_on_text_encodings = condition_on_text_encodings

View File

@@ -1,16 +1,26 @@
import json
from torchvision import transforms as T
from pydantic import BaseModel, validator
from pydantic import BaseModel, validator, root_validator
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
from dalle2_pytorch.dalle2_pytorch import Unet, Decoder
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def ListOrTuple(inner_type):
return Union[List[inner_type], Tuple[inner_type]]
# pydantic classes
class UnetConfig(BaseModel):
dim: int
dim_mults: List[int]
dim_mults: ListOrTuple(int)
image_embed_dim: int = None
cond_dim: int = None
channels: int = 3
@@ -21,14 +31,21 @@ class UnetConfig(BaseModel):
extra = "allow"
class DecoderConfig(BaseModel):
unets: Union[List[UnetConfig], Tuple[UnetConfig]]
image_size: int = None
image_sizes: Union[List[int], Tuple[int]] = None
image_sizes: ListOrTuple(int) = None
channels: int = 3
timesteps: int = 1000
loss_type: str = 'l2'
beta_schedule: str = 'cosine'
learned_variance: bool = True
def create(self):
decoder_kwargs = self.dict()
unet_configs = decoder_kwargs.pop('unets')
unets = [Unet(**config) for config in unet_configs]
return Decoder(unets, **decoder_kwargs)
@validator('image_sizes')
def check_image_sizes(cls, image_sizes, values):
if exists(values.get('image_size')) ^ exists(image_sizes):
@@ -38,6 +55,17 @@ class DecoderConfig(BaseModel):
class Config:
extra = "allow"
class TrainSplitConfig(BaseModel):
train: float = 0.75
val: float = 0.15
test: float = 0.1
@root_validator
def validate_all(cls, fields):
if sum([*fields.values()]) != 1.:
raise ValueError(f'{fields.keys()} must sum to 1.0')
return fields
class DecoderDataConfig(BaseModel):
webdataset_base_url: str # path to a webdataset with jpg images
embeddings_url: str # path to .npy files with embeddings
@@ -47,32 +75,44 @@ class DecoderDataConfig(BaseModel):
end_shard: int = 9999999
shard_width: int = 6
index_width: int = 4
splits: Dict[str, float] = {
'train': 0.75,
'val': 0.15,
'test': 0.1
}
splits: TrainSplitConfig
shuffle_train: bool = True
resample_train: bool = False
preprocessing: Dict[str, Any] = {'ToTensor': True}
@property
def img_preproc(self):
def _get_transformation(transformation_name, **kwargs):
if transformation_name == "RandomResizedCrop":
return T.RandomResizedCrop(**kwargs)
elif transformation_name == "RandomHorizontalFlip":
return T.RandomHorizontalFlip()
elif transformation_name == "ToTensor":
return T.ToTensor()
transforms = []
for transform_name, transform_kwargs_or_bool in self.preprocessing.items():
transform_kwargs = {} if not isinstance(transform_kwargs_or_bool, dict) else transform_kwargs_or_bool
transforms.append(_get_transformation(transform_name, **transform_kwargs))
return T.Compose(transforms)
class DecoderTrainConfig(BaseModel):
epochs: int = 20
lr: float = 1e-4
wd: float = 0.01
max_grad_norm: float = 0.5
save_every_n_samples: int = 100000
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
device: str = 'cuda:0'
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
validation_samples: int = None # Same as above but for validation.
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
validation_samples: int = None # Same as above but for validation.
use_ema: bool = True
ema_beta: float = 0.99
amp: bool = False
save_all: bool = False # Whether to preserve all checkpoints
save_latest: bool = True # Whether to always save the latest checkpoint
save_best: bool = True # Whether to save the best checkpoint
unet_training_mask: List[bool] = None # If None, use all unets
save_all: bool = False # Whether to preserve all checkpoints
save_latest: bool = True # Whether to always save the latest checkpoint
save_best: bool = True # Whether to save the best checkpoint
unet_training_mask: ListOrTuple(bool) = None # If None, use all unets
class DecoderEvaluateConfig(BaseModel):
n_evaluation_samples: int = 1000
@@ -96,7 +136,6 @@ class DecoderLoadConfig(BaseModel):
resume: bool = False # If using wandb, whether to resume the run
class TrainDecoderConfig(BaseModel):
unets: List[UnetConfig]
decoder: DecoderConfig
data: DecoderDataConfig
train: DecoderTrainConfig
@@ -104,18 +143,8 @@ class TrainDecoderConfig(BaseModel):
tracker: TrackerConfig
load: DecoderLoadConfig
@property
def img_preproc(self):
def _get_transformation(transformation_name, **kwargs):
if transformation_name == "RandomResizedCrop":
return T.RandomResizedCrop(**kwargs)
elif transformation_name == "RandomHorizontalFlip":
return T.RandomHorizontalFlip()
elif transformation_name == "ToTensor":
return T.ToTensor()
transforms = []
for transform_name, transform_kwargs_or_bool in self.data.preprocessing.items():
transform_kwargs = {} if not isinstance(transform_kwargs_or_bool, dict) else transform_kwargs_or_bool
transforms.append(_get_transformation(transform_name, **transform_kwargs))
return T.Compose(transforms)
@classmethod
def from_json_path(cls, json_path):
with open(json_path) as f:
config = json.load(f)
return cls(**config)

View File

@@ -1,5 +1,6 @@
import time
import copy
from pathlib import Path
from math import ceil
from functools import partial, wraps
from collections.abc import Iterable
@@ -55,6 +56,10 @@ def num_to_groups(num, divisor):
arr.append(remainder)
return arr
def get_pkg_version():
from pkg_resources import get_distribution
return get_distribution('dalle2_pytorch').version
# decorators
def cast_torch_tensor(fn):
@@ -128,12 +133,6 @@ def split_args_and_kwargs(*args, split_size = None, **kwargs):
chunk_size_frac = chunk_size / batch_size
yield chunk_size_frac, (chunked_args, chunked_kwargs)
# print helpers
def print_ribbon(s, symbol = '=', repeat = 40):
flank = symbol * repeat
return f'{flank} {s} {flank}'
# saving and loading functions
# for diffusion prior
@@ -191,7 +190,7 @@ class EMA(nn.Module):
self.update_after_step = update_after_step // update_every # only start EMA after this step number, starting at 0
self.register_buffer('initted', torch.Tensor([False]))
self.register_buffer('step', torch.tensor([0.]))
self.register_buffer('step', torch.tensor([0]))
def restore_ema_model_device(self):
device = self.initted.device
@@ -287,7 +286,47 @@ class DiffusionPriorTrainer(nn.Module):
self.max_grad_norm = max_grad_norm
self.register_buffer('step', torch.tensor([0.]))
self.register_buffer('step', torch.tensor([0]))
def save(self, path, overwrite = True):
path = Path(path)
assert not (path.exists() and not overwrite)
path.parent.mkdir(parents = True, exist_ok = True)
save_obj = dict(
scaler = self.scaler.state_dict(),
optimizer = self.optimizer.state_dict(),
model = self.diffusion_prior.state_dict(),
version = get_pkg_version(),
step = self.step.item()
)
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_diffusion_prior.state_dict()}
torch.save(save_obj, str(path))
def load(self, path, only_model = False, strict = True):
path = Path(path)
assert path.exists()
loaded_obj = torch.load(str(path))
if get_pkg_version() != loaded_obj['version']:
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {get_pkg_version()}')
self.diffusion_prior.load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
if only_model:
return
self.scaler.load_state_dict(loaded_obj['scaler'])
self.optimizer.load_state_dict(loaded_obj['optimizer'])
if self.use_ema:
assert 'ema' in loaded_obj
self.ema_diffusion_prior.load_state_dict(loaded_obj['ema'], strict = strict)
def update(self):
if exists(self.max_grad_norm):
@@ -410,6 +449,57 @@ class DecoderTrainer(nn.Module):
self.register_buffer('step', torch.tensor([0.]))
def save(self, path, overwrite = True):
path = Path(path)
assert not (path.exists() and not overwrite)
path.parent.mkdir(parents = True, exist_ok = True)
save_obj = dict(
model = self.decoder.state_dict(),
version = get_pkg_version(),
step = self.step.item()
)
for ind in range(0, self.num_unets):
scaler_key = f'scaler{ind}'
optimizer_key = f'scaler{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()}
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
torch.save(save_obj, str(path))
def load(self, path, only_model = False, strict = True):
path = Path(path)
assert path.exists()
loaded_obj = torch.load(str(path))
if get_pkg_version() != loaded_obj['version']:
print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {get_pkg_version()}')
self.decoder.load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
if only_model:
return
for ind in range(0, self.num_unets):
scaler_key = f'scaler{ind}'
optimizer_key = f'scaler{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
scaler.load_state_dict(loaded_obj[scaler_key])
optimizer.load_state_dict(loaded_obj[optimizer_key])
if self.use_ema:
assert 'ema' in loaded_obj
self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict)
@property
def unets(self):
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])

View File

@@ -1,5 +1,7 @@
import time
# time helpers
class Timer:
def __init__(self):
self.reset()
@@ -9,3 +11,9 @@ class Timer:
def elapsed(self):
return time.time() - self.last_time
# print helpers
def print_ribbon(s, symbol = '=', repeat = 40):
flank = symbol * repeat
return f'{flank} {s} {flank}'

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.4.0',
version = '0.4.8',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',

View File

@@ -1,11 +1,10 @@
from dalle2_pytorch import Unet, Decoder
from dalle2_pytorch.trainer import DecoderTrainer, print_ribbon
from dalle2_pytorch.trainer import DecoderTrainer
from dalle2_pytorch.dataloaders import create_image_embedding_dataloader
from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker
from dalle2_pytorch.train_configs import TrainDecoderConfig
from dalle2_pytorch.utils import Timer
from dalle2_pytorch.utils import Timer, print_ribbon
import json
import torchvision
import torch
from torchmetrics.image.fid import FrechetInceptionDistance
@@ -86,20 +85,6 @@ def create_dataloaders(
"test_sampling": test_sampling_dataloader
}
def create_decoder(device, decoder_config, unets_config):
"""Creates a sample decoder"""
unets = [Unet(**config.dict()) for config in unets_config]
decoder = Decoder(
unet=unets,
**decoder_config.dict()
)
decoder.to(device=device)
return decoder
def get_dataset_keys(dataloader):
"""
It is sometimes neccesary to get the keys the dataloader is returning. Since the dataset is burried in the dataloader, we need to do a process to recover it.
@@ -421,15 +406,15 @@ def initialize_training(config):
dataloaders = create_dataloaders (
available_shards=all_shards,
img_preproc = config.img_preproc,
train_prop = config.data["splits"]["train"],
val_prop = config.data["splits"]["val"],
test_prop = config.data["splits"]["test"],
img_preproc = config.data.img_preproc,
train_prop = config.data.splits.train,
val_prop = config.data.splits.val,
test_prop = config.data.splits.test,
n_sample_images=config.train.n_sample_images,
**config.data.dict()
)
decoder = create_decoder(device, config.decoder, config.unets)
decoder = config.decoder.create().to(device = device)
num_parameters = sum(p.numel() for p in decoder.parameters())
print(print_ribbon("Loaded Config", repeat=40))
print(f"Number of parameters: {num_parameters}")
@@ -449,9 +434,7 @@ def initialize_training(config):
@click.option("--config_file", default="./train_decoder_config.json", help="Path to config file")
def main(config_file):
print("Recalling config from {}".format(config_file))
with open(config_file) as f:
config = json.load(f)
config = TrainDecoderConfig(**config)
config = TrainDecoderConfig.from_json_path(config_file)
initialize_training(config)

View File

@@ -9,10 +9,10 @@ from torch import nn
from dalle2_pytorch.dataloaders import make_splits
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork, OpenAIClipAdapter
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model, print_ribbon
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model
from dalle2_pytorch.trackers import ConsoleTracker, WandbTracker
from dalle2_pytorch.utils import Timer
from dalle2_pytorch.utils import Timer, print_ribbon
from embedding_reader import EmbeddingReader