mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-13 03:54:35 +01:00
Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
271a376eaf | ||
|
|
e527002472 | ||
|
|
c12e067178 | ||
|
|
c6629c431a | ||
|
|
7ac2fc79f2 |
@@ -1077,6 +1077,7 @@ This library would not have gotten to this working state without the help of
|
||||
- [x] cross embed layers for downsampling, as an option
|
||||
- [x] use an experimental tracker agnostic setup, as done <a href="https://github.com/lucidrains/tf-bind-transformer#simple-trainer-class-for-fine-tuning">here</a>
|
||||
- [x] use pydantic for config drive training
|
||||
- [x] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
|
||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
|
||||
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
|
||||
- [ ] train on a toy task, offer in colab
|
||||
@@ -1091,7 +1092,6 @@ This library would not have gotten to this working state without the help of
|
||||
- [ ] decoder needs one day worth of refactor for tech debt
|
||||
- [ ] allow for unet to be able to condition non-cross attention style as well
|
||||
- [ ] for all model classes with hyperparameters that changes the network architecture, make it requirement that they must expose a config property, and write a simple function that asserts that it restores the object correctly
|
||||
- [ ] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
|
||||
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
|
||||
|
||||
## Citations
|
||||
|
||||
99
configs/train_decoder_config.example.json
Normal file
99
configs/train_decoder_config.example.json
Normal file
@@ -0,0 +1,99 @@
|
||||
{
|
||||
"unets": [
|
||||
{
|
||||
"dim": 128,
|
||||
"image_embed_dim": 768,
|
||||
"cond_dim": 64,
|
||||
"channels": 3,
|
||||
"dim_mults": [1, 2, 4, 8],
|
||||
"attn_dim_head": 32,
|
||||
"attn_heads": 16
|
||||
}
|
||||
],
|
||||
"decoder": {
|
||||
"image_sizes": [64],
|
||||
"channels": 3,
|
||||
"timesteps": 1000,
|
||||
"loss_type": "l2",
|
||||
"beta_schedule": "cosine",
|
||||
"learned_variance": true
|
||||
},
|
||||
"data": {
|
||||
"webdataset_base_url": "pipe:s3cmd get s3://bucket/path/{}.tar -",
|
||||
"embeddings_url": "s3://bucket/embeddings/path/",
|
||||
"num_workers": 4,
|
||||
"batch_size": 64,
|
||||
"start_shard": 0,
|
||||
"end_shard": 9999999,
|
||||
"shard_width": 6,
|
||||
"index_width": 4,
|
||||
"splits": {
|
||||
"train": 0.75,
|
||||
"val": 0.15,
|
||||
"test": 0.1
|
||||
},
|
||||
"shuffle_train": true,
|
||||
"resample_train": false,
|
||||
"preprocessing": {
|
||||
"RandomResizedCrop": {
|
||||
"size": [128, 128],
|
||||
"scale": [0.75, 1.0],
|
||||
"ratio": [1.0, 1.0]
|
||||
},
|
||||
"ToTensor": true
|
||||
}
|
||||
},
|
||||
"train": {
|
||||
"epochs": 20,
|
||||
"lr": 1e-4,
|
||||
"wd": 0.01,
|
||||
"max_grad_norm": 0.5,
|
||||
"save_every_n_samples": 100000,
|
||||
"n_sample_images": 6,
|
||||
"device": "cuda:0",
|
||||
"epoch_samples": null,
|
||||
"validation_samples": null,
|
||||
"use_ema": true,
|
||||
"ema_beta": 0.99,
|
||||
"amp": false,
|
||||
"save_all": false,
|
||||
"save_latest": true,
|
||||
"save_best": true,
|
||||
"unet_training_mask": [true]
|
||||
},
|
||||
"evaluate": {
|
||||
"n_evaluation_samples": 1000,
|
||||
"FID": {
|
||||
"feature": 64
|
||||
},
|
||||
"IS": {
|
||||
"feature": 64,
|
||||
"splits": 10
|
||||
},
|
||||
"KID": {
|
||||
"feature": 64,
|
||||
"subset_size": 10
|
||||
},
|
||||
"LPIPS": {
|
||||
"net_type": "vgg",
|
||||
"reduction": "mean"
|
||||
}
|
||||
},
|
||||
"tracker": {
|
||||
"tracker_type": "console",
|
||||
"data_path": "./models",
|
||||
|
||||
"wandb_entity": "",
|
||||
"wandb_project": "",
|
||||
|
||||
"verbose": false
|
||||
},
|
||||
"load": {
|
||||
"source": null,
|
||||
|
||||
"run_path": "",
|
||||
"file_path": "",
|
||||
|
||||
"resume": false
|
||||
}
|
||||
}
|
||||
@@ -1,5 +1,6 @@
|
||||
import json
|
||||
from torchvision import transforms as T
|
||||
from pydantic import BaseModel, validator
|
||||
from pydantic import BaseModel, validator, root_validator
|
||||
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
|
||||
|
||||
def exists(val):
|
||||
@@ -38,6 +39,17 @@ class DecoderConfig(BaseModel):
|
||||
class Config:
|
||||
extra = "allow"
|
||||
|
||||
class TrainSplitConfig(BaseModel):
|
||||
train: float = 0.75
|
||||
val: float = 0.15
|
||||
test: float = 0.1
|
||||
|
||||
@root_validator
|
||||
def validate_all(cls, fields):
|
||||
if sum([*fields.values()]) != 1.:
|
||||
raise ValueError(f'{fields.keys()} must sum to 1.0')
|
||||
return fields
|
||||
|
||||
class DecoderDataConfig(BaseModel):
|
||||
webdataset_base_url: str # path to a webdataset with jpg images
|
||||
embeddings_url: str # path to .npy files with embeddings
|
||||
@@ -47,11 +59,7 @@ class DecoderDataConfig(BaseModel):
|
||||
end_shard: int = 9999999
|
||||
shard_width: int = 6
|
||||
index_width: int = 4
|
||||
splits: Dict[str, float] = {
|
||||
'train': 0.75,
|
||||
'val': 0.15,
|
||||
'test': 0.1
|
||||
}
|
||||
splits: TrainSplitConfig
|
||||
shuffle_train: bool = True
|
||||
resample_train: bool = False
|
||||
preprocessing: Dict[str, Any] = {'ToTensor': True}
|
||||
@@ -104,6 +112,12 @@ class TrainDecoderConfig(BaseModel):
|
||||
tracker: TrackerConfig
|
||||
load: DecoderLoadConfig
|
||||
|
||||
@classmethod
|
||||
def from_json_path(cls, json_path):
|
||||
with open(json_path) as f:
|
||||
config = json.load(f)
|
||||
return cls(**config)
|
||||
|
||||
@property
|
||||
def img_preproc(self):
|
||||
def _get_transformation(transformation_name, **kwargs):
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import time
|
||||
import copy
|
||||
from pathlib import Path
|
||||
from math import ceil
|
||||
from functools import partial, wraps
|
||||
from collections.abc import Iterable
|
||||
@@ -55,6 +56,10 @@ def num_to_groups(num, divisor):
|
||||
arr.append(remainder)
|
||||
return arr
|
||||
|
||||
def get_pkg_version():
|
||||
from pkg_resources import get_distribution
|
||||
return get_distribution('dalle2_pytorch').version
|
||||
|
||||
# decorators
|
||||
|
||||
def cast_torch_tensor(fn):
|
||||
@@ -289,6 +294,44 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
self.register_buffer('step', torch.tensor([0.]))
|
||||
|
||||
def save(self, path, overwrite = True):
|
||||
path = Path(path)
|
||||
assert not (path.exists() and not overwrite)
|
||||
path.parent.mkdir(parents = True, exist_ok = True)
|
||||
|
||||
save_obj = dict(
|
||||
scaler = self.scaler.state_dict(),
|
||||
optimizer = self.optimizer.state_dict(),
|
||||
model = self.diffusion_prior.state_dict(),
|
||||
version = get_pkg_version()
|
||||
)
|
||||
|
||||
if self.use_ema:
|
||||
save_obj = {**save_obj, 'ema': self.ema_diffusion_prior.state_dict()}
|
||||
|
||||
torch.save(save_obj, str(path))
|
||||
|
||||
def load(self, path, only_model = False, strict = True):
|
||||
path = Path(path)
|
||||
assert path.exists()
|
||||
|
||||
loaded_obj = torch.load(str(path))
|
||||
|
||||
if get_pkg_version() != loaded_obj['version']:
|
||||
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {get_pkg_version()}')
|
||||
|
||||
self.diffusion_prior.load_state_dict(loaded_obj['model'], strict = strict)
|
||||
|
||||
if only_model:
|
||||
return
|
||||
|
||||
self.scaler.load_state_dict(loaded_obj['scaler'])
|
||||
self.optimizer.load_state_dict(loaded_obj['optimizer'])
|
||||
|
||||
if self.use_ema:
|
||||
assert 'ema' in loaded_obj
|
||||
self.ema_diffusion_prior.load_state_dict(loaded_obj['ema'], strict = strict)
|
||||
|
||||
def update(self):
|
||||
if exists(self.max_grad_norm):
|
||||
self.scaler.unscale_(self.optimizer)
|
||||
@@ -410,6 +453,44 @@ class DecoderTrainer(nn.Module):
|
||||
|
||||
self.register_buffer('step', torch.tensor([0.]))
|
||||
|
||||
def save(self, path, overwrite = True):
|
||||
path = Path(path)
|
||||
assert not (path.exists() and not overwrite)
|
||||
path.parent.mkdir(parents = True, exist_ok = True)
|
||||
|
||||
save_obj = dict(
|
||||
scaler = self.scaler.state_dict(),
|
||||
optimizer = self.optimizer.state_dict(),
|
||||
model = self.decoder.state_dict(),
|
||||
version = get_pkg_version()
|
||||
)
|
||||
|
||||
if self.use_ema:
|
||||
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
|
||||
|
||||
torch.save(save_obj, str(path))
|
||||
|
||||
def load(self, path, only_model = False, strict = True):
|
||||
path = Path(path)
|
||||
assert path.exists()
|
||||
|
||||
loaded_obj = torch.load(str(path))
|
||||
|
||||
if get_pkg_version() != loaded_obj['version']:
|
||||
print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {get_pkg_version()}')
|
||||
|
||||
self.decoder.load_state_dict(loaded_obj['model'], strict = strict)
|
||||
|
||||
if only_model:
|
||||
return
|
||||
|
||||
self.scaler.load_state_dict(loaded_obj['scaler'])
|
||||
self.optimizer.load_state_dict(loaded_obj['optimizer'])
|
||||
|
||||
if self.use_ema:
|
||||
assert 'ema' in loaded_obj
|
||||
self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict)
|
||||
|
||||
@property
|
||||
def unets(self):
|
||||
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
|
||||
|
||||
2
setup.py
2
setup.py
@@ -10,7 +10,7 @@ setup(
|
||||
'dream = dalle2_pytorch.cli:dream'
|
||||
],
|
||||
},
|
||||
version = '0.4.0',
|
||||
version = '0.4.3',
|
||||
license='MIT',
|
||||
description = 'DALL-E 2',
|
||||
author = 'Phil Wang',
|
||||
|
||||
@@ -5,7 +5,6 @@ from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker
|
||||
from dalle2_pytorch.train_configs import TrainDecoderConfig
|
||||
from dalle2_pytorch.utils import Timer
|
||||
|
||||
import json
|
||||
import torchvision
|
||||
import torch
|
||||
from torchmetrics.image.fid import FrechetInceptionDistance
|
||||
@@ -422,9 +421,9 @@ def initialize_training(config):
|
||||
dataloaders = create_dataloaders (
|
||||
available_shards=all_shards,
|
||||
img_preproc = config.img_preproc,
|
||||
train_prop = config.data["splits"]["train"],
|
||||
val_prop = config.data["splits"]["val"],
|
||||
test_prop = config.data["splits"]["test"],
|
||||
train_prop = config.data.splits.train,
|
||||
val_prop = config.data.splits.val,
|
||||
test_prop = config.data.splits.test,
|
||||
n_sample_images=config.train.n_sample_images,
|
||||
**config.data.dict()
|
||||
)
|
||||
@@ -449,9 +448,7 @@ def initialize_training(config):
|
||||
@click.option("--config_file", default="./train_decoder_config.json", help="Path to config file")
|
||||
def main(config_file):
|
||||
print("Recalling config from {}".format(config_file))
|
||||
with open(config_file) as f:
|
||||
config = json.load(f)
|
||||
config = TrainDecoderConfig(**config)
|
||||
config = TrainDecoderConfig.from_json_path(config_file)
|
||||
initialize_training(config)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user