mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
faebf4c8b8 | ||
|
|
b8e8d3c164 | ||
|
|
8e2416b49b | ||
|
|
f37c26e856 | ||
|
|
27a33e1b20 |
@@ -411,8 +411,8 @@ Offer training wrappers
|
||||
- [x] build the cascading ddpm by having Decoder class manage multiple unets at different resolutions
|
||||
- [x] add efficient attention in unet
|
||||
- [x] be able to finely customize what to condition on (text, image embed) for specific unet in the cascade (super resolution ddpms near the end may not need too much conditioning)
|
||||
- [ ] build out latent diffusion architecture in separate file, as it is not faithful to dalle-2 (but offer it as as setting)
|
||||
- [ ] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
|
||||
- [x] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
|
||||
- [ ] build out latent diffusion architecture, make it completely optional (additional autoencoder + some regularizations [kl and vq regs]) (figure out if latent diffusion + cascading ddpm can be used in conjunction)
|
||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
|
||||
- [ ] train on a toy task, offer in colab
|
||||
|
||||
|
||||
@@ -2,6 +2,7 @@ import math
|
||||
from tqdm import tqdm
|
||||
from inspect import isfunction
|
||||
from functools import partial
|
||||
from contextlib import contextmanager
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
@@ -463,11 +464,11 @@ class DiffusionPrior(nn.Module):
|
||||
net,
|
||||
*,
|
||||
clip,
|
||||
timesteps=1000,
|
||||
cond_drop_prob=0.2,
|
||||
loss_type="l1",
|
||||
predict_x0=True,
|
||||
beta_schedule="cosine",
|
||||
timesteps = 1000,
|
||||
cond_drop_prob = 0.2,
|
||||
loss_type = "l1",
|
||||
predict_x0 = True,
|
||||
beta_schedule = "cosine",
|
||||
):
|
||||
super().__init__()
|
||||
assert isinstance(clip, CLIP)
|
||||
@@ -824,6 +825,8 @@ class Unet(nn.Module):
|
||||
out_dim = None,
|
||||
dim_mults=(1, 2, 4, 8),
|
||||
channels = 3,
|
||||
attn_dim_head = 32,
|
||||
attn_heads = 8,
|
||||
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
|
||||
lowres_cond_upsample_mode = 'bilinear',
|
||||
blur_sigma = 0.1,
|
||||
@@ -887,6 +890,10 @@ class Unet(nn.Module):
|
||||
self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim))
|
||||
self.null_text_embed = nn.Parameter(torch.randn(1, 1, cond_dim))
|
||||
|
||||
# attention related params
|
||||
|
||||
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
|
||||
|
||||
# layers
|
||||
|
||||
self.downs = nn.ModuleList([])
|
||||
@@ -900,7 +907,7 @@ class Unet(nn.Module):
|
||||
|
||||
self.downs.append(nn.ModuleList([
|
||||
ConvNextBlock(dim_in, dim_out, norm = ind != 0),
|
||||
Residual(GridAttention(dim_out, window_size = sparse_attn_window)) if sparse_attn else nn.Identity(),
|
||||
Residual(GridAttention(dim_out, window_size = sparse_attn_window, **attn_kwargs)) if sparse_attn else nn.Identity(),
|
||||
ConvNextBlock(dim_out, dim_out, cond_dim = layer_cond_dim),
|
||||
Downsample(dim_out) if not is_last else nn.Identity()
|
||||
]))
|
||||
@@ -908,7 +915,7 @@ class Unet(nn.Module):
|
||||
mid_dim = dims[-1]
|
||||
|
||||
self.mid_block1 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim)
|
||||
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim))) if attend_at_middle else None
|
||||
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim, **attn_kwargs))) if attend_at_middle else None
|
||||
self.mid_block2 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim)
|
||||
|
||||
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
|
||||
@@ -917,7 +924,7 @@ class Unet(nn.Module):
|
||||
|
||||
self.ups.append(nn.ModuleList([
|
||||
ConvNextBlock(dim_out * 2, dim_in, cond_dim = layer_cond_dim),
|
||||
Residual(GridAttention(dim_in, window_size = sparse_attn_window)) if sparse_attn else nn.Identity(),
|
||||
Residual(GridAttention(dim_in, window_size = sparse_attn_window, **attn_kwargs)) if sparse_attn else nn.Identity(),
|
||||
ConvNextBlock(dim_in, dim_in, cond_dim = layer_cond_dim),
|
||||
Upsample(dim_in)
|
||||
]))
|
||||
@@ -1141,6 +1148,25 @@ class Decoder(nn.Module):
|
||||
self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
|
||||
self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
|
||||
|
||||
def get_unet(self, unet_number):
|
||||
assert 0 < unet_number <= len(self.unets)
|
||||
index = unet_number - 1
|
||||
return self.unets[index]
|
||||
|
||||
@contextmanager
|
||||
def one_unet_in_gpu(self, unet_number = None, unet = None):
|
||||
assert exists(unet_number) ^ exists(unet)
|
||||
|
||||
if exists(unet_number):
|
||||
unet = self.get_unet(unet_number)
|
||||
|
||||
self.cuda()
|
||||
self.unets.cpu()
|
||||
|
||||
unet.cuda()
|
||||
yield
|
||||
unet.cpu()
|
||||
|
||||
def get_text_encodings(self, text):
|
||||
text_encodings = self.clip.text_transformer(text)
|
||||
return text_encodings[:, 1:]
|
||||
@@ -1245,20 +1271,21 @@ class Decoder(nn.Module):
|
||||
text_encodings = self.get_text_encodings(text) if exists(text) else None
|
||||
|
||||
img = None
|
||||
|
||||
for unet, image_size in tqdm(zip(self.unets, self.image_sizes)):
|
||||
shape = (batch_size, channels, image_size, image_size)
|
||||
img = self.p_sample_loop(unet, shape, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = img)
|
||||
with self.one_unet_in_gpu(unet = unet):
|
||||
shape = (batch_size, channels, image_size, image_size)
|
||||
img = self.p_sample_loop(unet, shape, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = img)
|
||||
|
||||
return img
|
||||
|
||||
def forward(self, image, text = None, image_embed = None, text_encodings = None, unet_number = None):
|
||||
assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)'
|
||||
unet_number = default(unet_number, 1)
|
||||
assert 1 <= unet_number <= len(self.unets)
|
||||
|
||||
index = unet_number - 1
|
||||
unet = self.unets[index]
|
||||
target_image_size = self.image_sizes[index]
|
||||
unet = self.get_unet(unet_number)
|
||||
|
||||
target_image_size = self.image_sizes[unet_number - 1]
|
||||
|
||||
b, c, h, w, device, = *image.shape, image.device
|
||||
|
||||
@@ -1272,7 +1299,7 @@ class Decoder(nn.Module):
|
||||
|
||||
text_encodings = self.get_text_encodings(text) if exists(text) and not exists(text_encodings) else None
|
||||
|
||||
lowres_cond_img = image if index > 0 else None
|
||||
lowres_cond_img = image if unet_number > 1 else None
|
||||
ddpm_image = resize_image_to(image, target_image_size)
|
||||
return self.p_losses(unet, ddpm_image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user