Compare commits

...

15 Commits

Author SHA1 Message Date
Phil Wang
faebf4c8b8 from my vision transformer experience, dimension of attention head of 32 is sufficient for image feature maps 2022-04-20 11:40:32 -07:00
Phil Wang
b8e8d3c164 thoughts 2022-04-20 11:34:51 -07:00
Phil Wang
8e2416b49b commit to generalizing latent diffusion to one model 2022-04-20 11:27:42 -07:00
Phil Wang
f37c26e856 cleanup and DRY a little 2022-04-20 10:56:32 -07:00
Phil Wang
27a33e1b20 complete contextmanager method for keeping only one unet in GPU during training or inference 2022-04-20 10:46:13 -07:00
Phil Wang
6f941a219a give time tokens a surface area of 2 tokens as default, make it so researcher can customize which unet actually is conditioned on image embeddings and/or text encodings 2022-04-20 10:04:47 -07:00
Phil Wang
ddde8ca1bf fix cosine bbeta schedule, thanks to @Zhengxinyang 2022-04-19 20:54:28 -07:00
Phil Wang
c26b77ad20 todo 2022-04-19 13:07:32 -07:00
Phil Wang
c5b4aab8e5 intent 2022-04-19 11:00:05 -07:00
Phil Wang
a35c309b5f add sparse attention layers in between convnext blocks in unet (grid like attention, used in mobilevit, maxvit [bytedance ai], as well as a growing number of attention-based GANs) 2022-04-19 09:49:03 -07:00
Phil Wang
55bdcb98b9 scaffold for latent diffusion 2022-04-19 09:26:58 -07:00
Phil Wang
82328f16cd same for text encodings for decoder ddpm training 2022-04-18 14:41:02 -07:00
Phil Wang
6fee4fce6e also allow for image embedding to be passed into the diffusion model, in the case one wants to generate image embedding once and then train multiple unets in one iteration 2022-04-18 14:00:38 -07:00
Phil Wang
a54e309269 prioritize todos, play project management 2022-04-18 13:28:01 -07:00
Phil Wang
c6bfd7fdc8 readme 2022-04-18 12:43:10 -07:00
5 changed files with 133 additions and 49 deletions

View File

@@ -14,7 +14,7 @@ It may also explore an extension of using <a href="https://huggingface.co/spaces
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication
There was enough interest for a Jax version. It will be completed after the Pytorch version shows signs of life on my toy tasks. <a href="https://github.com/lucidrains/dalle2-jax">Placeholder repository</a>
There was enough interest for a Jax version. It will be completed after the Pytorch version shows signs of life on my toy tasks. <a href="https://github.com/lucidrains/dalle2-jax">Placeholder repository</a>. I will also eventually extend this to <a href="https://github.com/lucidrains/dalle2-video">text to video</a>, once the repository is in a good place.
## Install
@@ -197,10 +197,10 @@ clip = CLIP(
dim_image = 512,
dim_latent = 512,
num_text_tokens = 49408,
text_enc_depth = 1,
text_enc_depth = 6,
text_seq_len = 256,
text_heads = 8,
visual_enc_depth = 1,
visual_enc_depth = 6,
visual_image_size = 256,
visual_patch_size = 32,
visual_heads = 8
@@ -209,14 +209,15 @@ clip = CLIP(
# 2 unets for the decoder (a la cascading DDPM)
unet1 = Unet(
dim = 16,
dim = 32,
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults = (1, 2, 4, 8)
).cuda()
unet2 = Unet(
dim = 16,
dim = 32,
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
@@ -228,8 +229,8 @@ unet2 = Unet(
decoder = Decoder(
clip = clip,
unet = (unet1, unet2), # insert both unets in order of low resolution to highest resolution (you can have as many stages as you want here)
image_sizes = (256, 512), # resolutions, 256 for first unet, 512 for second
timesteps = 100,
image_sizes = (256, 512), # resolutions, 256 for first unet, 512 for second. these must be unique and in ascending order (matches with the unets passed in)
timesteps = 1000,
cond_drop_prob = 0.2
).cuda()
@@ -256,7 +257,7 @@ mock_image_embed = torch.randn(1, 512).cuda()
images = decoder.sample(mock_image_embed) # (1, 3, 512, 512)
```
Finally, to generate the DALL-E2 images from text. Insert the trained `DiffusionPrior` as well as the `Decoder` (which both contains `CLIP`, a unet, and a causal transformer)
Finally, to generate the DALL-E2 images from text. Insert the trained `DiffusionPrior` as well as the `Decoder` (which wraps `CLIP`, the causal transformer, and unet(s))
```python
from dalle2_pytorch import DALLE2
@@ -408,15 +409,12 @@ Offer training wrappers
- [x] augment unet so that it can also be conditioned on text encodings (although in paper they hinted this didn't make much a difference)
- [x] figure out all the current bag of tricks needed to make DDPMs great (starting with the blur trick mentioned in paper)
- [x] build the cascading ddpm by having Decoder class manage multiple unets at different resolutions
- [ ] use an image resolution cutoff and do cross attention conditioning only if resources allow, and MLP + sum conditioning on rest
- [ ] make unet more configurable
- [ ] figure out some factory methods to make cascading unet instantiations less error-prone
- [ ] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
- [ ] become an expert with unets, port learnings over to https://github.com/lucidrains/x-unet
- [x] add efficient attention in unet
- [x] be able to finely customize what to condition on (text, image embed) for specific unet in the cascade (super resolution ddpms near the end may not need too much conditioning)
- [x] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
- [ ] build out latent diffusion architecture, make it completely optional (additional autoencoder + some regularizations [kl and vq regs]) (figure out if latent diffusion + cascading ddpm can be used in conjunction)
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
- [ ] train on a toy task, offer in colab
- [ ] add attention to unet - apply some personal tricks with efficient attention - use the sparse attention mechanism from https://github.com/lucidrains/vit-pytorch#maxvit
- [ ] build out latent diffusion architecture in separate file, as it is not faithful to dalle-2 (but offer it as as setting)
- [ ] consider U2-net for decoder https://arxiv.org/abs/2005.09007 (also in separate file as experimental) build out https://github.com/lucidrains/x-unet
## Citations
@@ -465,4 +463,12 @@ Offer training wrappers
}
```
```bibtex
@inproceedings{Tu2022MaxViTMV,
title = {MaxViT: Multi-Axis Vision Transformer},
author = {Zhe-Wei Tu and Hossein Talebi and Han Zhang and Feng Yang and Peyman Milanfar and Alan Conrad Bovik and Yinxiao Li},
year = {2022}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - Yang Song's <a href="https://arxiv.org/abs/2011.13456">paper</a>

View File

@@ -6,4 +6,4 @@ def main():
@click.command()
@click.argument('text')
def dream(text):
return image
return 'not ready yet'

View File

@@ -2,6 +2,7 @@ import math
from tqdm import tqdm
from inspect import isfunction
from functools import partial
from contextlib import contextmanager
import torch
import torch.nn.functional as F
@@ -105,8 +106,8 @@ def cosine_beta_schedule(timesteps, s = 0.008):
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = torch.linspace(0, steps, steps)
alphas_cumprod = torch.cos(((x / steps) + s) / (1 + s) * torch.pi * 0.5) ** 2
x = torch.linspace(0, timesteps, steps)
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0, 0.999)
@@ -463,11 +464,11 @@ class DiffusionPrior(nn.Module):
net,
*,
clip,
timesteps=1000,
cond_drop_prob=0.2,
loss_type="l1",
predict_x0=True,
beta_schedule="cosine",
timesteps = 1000,
cond_drop_prob = 0.2,
loss_type = "l1",
predict_x0 = True,
beta_schedule = "cosine",
):
super().__init__()
assert isinstance(clip, CLIP)
@@ -798,6 +799,20 @@ class CrossAttention(nn.Module):
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class GridAttention(nn.Module):
def __init__(self, *args, window_size = 8, **kwargs):
super().__init__()
self.window_size = window_size
self.attn = Attention(*args, **kwargs)
def forward(self, x):
h, w = x.shape[-2:]
wsz = self.window_size
x = rearrange(x, 'b c (w1 h) (w2 w) -> (b h w) (w1 w2) c', w1 = wsz, w2 = wsz)
out = self.attn(x)
out = rearrange(out, '(b h w) (w1 w2) c -> b c (w1 h) (w2 w)', w1 = wsz, w2 = wsz, h = h // wsz, w = w // wsz)
return out
class Unet(nn.Module):
def __init__(
self,
@@ -806,14 +821,21 @@ class Unet(nn.Module):
image_embed_dim,
cond_dim = None,
num_image_tokens = 4,
num_time_tokens = 2,
out_dim = None,
dim_mults=(1, 2, 4, 8),
channels = 3,
attn_dim_head = 32,
attn_heads = 8,
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
lowres_cond_upsample_mode = 'bilinear',
blur_sigma = 0.1,
blur_kernel_size = 3,
sparse_attn = False,
sparse_attn_window = 8, # window size for sparse attention
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
cond_on_text_encodings = False,
cond_on_image_embeds = False,
):
super().__init__()
# save locals to take care of some hyperparameters for cascading DDPM
@@ -846,8 +868,8 @@ class Unet(nn.Module):
SinusoidalPosEmb(dim),
nn.Linear(dim, dim * 4),
nn.GELU(),
nn.Linear(dim * 4, cond_dim),
Rearrange('b d -> b 1 d')
nn.Linear(dim * 4, cond_dim * num_time_tokens),
Rearrange('b (r d) -> b r d', r = num_time_tokens)
)
self.image_to_cond = nn.Sequential(
@@ -857,11 +879,21 @@ class Unet(nn.Module):
self.text_to_cond = nn.LazyLinear(cond_dim)
# finer control over whether to condition on image embeddings and text encodings
# so one can have the latter unets in the cascading DDPMs only focus on super-resoluting
self.cond_on_text_encodings = cond_on_text_encodings
self.cond_on_image_embeds = cond_on_image_embeds
# for classifier free guidance
self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim))
self.null_text_embed = nn.Parameter(torch.randn(1, 1, cond_dim))
# attention related params
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
# layers
self.downs = nn.ModuleList([])
@@ -875,6 +907,7 @@ class Unet(nn.Module):
self.downs.append(nn.ModuleList([
ConvNextBlock(dim_in, dim_out, norm = ind != 0),
Residual(GridAttention(dim_out, window_size = sparse_attn_window, **attn_kwargs)) if sparse_attn else nn.Identity(),
ConvNextBlock(dim_out, dim_out, cond_dim = layer_cond_dim),
Downsample(dim_out) if not is_last else nn.Identity()
]))
@@ -882,7 +915,7 @@ class Unet(nn.Module):
mid_dim = dims[-1]
self.mid_block1 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim)
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim))) if attend_at_middle else None
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim, **attn_kwargs))) if attend_at_middle else None
self.mid_block2 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim)
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
@@ -891,6 +924,7 @@ class Unet(nn.Module):
self.ups.append(nn.ModuleList([
ConvNextBlock(dim_out * 2, dim_in, cond_dim = layer_cond_dim),
Residual(GridAttention(dim_in, window_size = sparse_attn_window, **attn_kwargs)) if sparse_attn else nn.Identity(),
ConvNextBlock(dim_in, dim_in, cond_dim = layer_cond_dim),
Upsample(dim_in)
]))
@@ -964,17 +998,22 @@ class Unet(nn.Module):
# mask out image embedding depending on condition dropout
# for classifier free guidance
image_tokens = self.image_to_cond(image_embed)
image_tokens = None
image_tokens = torch.where(
cond_prob_mask,
image_tokens,
self.null_image_embed
)
if self.cond_on_image_embeds:
image_tokens = self.image_to_cond(image_embed)
image_tokens = torch.where(
cond_prob_mask,
image_tokens,
self.null_image_embed
)
# take care of text encodings (optional)
if exists(text_encodings):
text_tokens = None
if exists(text_encodings) and self.cond_on_text_encodings:
text_tokens = self.text_to_cond(text_encodings)
text_tokens = torch.where(
cond_prob_mask,
@@ -984,19 +1023,23 @@ class Unet(nn.Module):
# main conditioning tokens (c)
c = torch.cat((time_tokens, image_tokens), dim = -2)
c = time_tokens
if exists(image_tokens):
c = torch.cat((c, image_tokens), dim = -2)
# text and image conditioning tokens (mid_c)
# to save on compute, only do cross attention based conditioning on the inner most layers of the Unet
mid_c = c if not exists(text_encodings) else torch.cat((c, text_tokens), dim = -2)
mid_c = c if not exists(text_tokens) else torch.cat((c, text_tokens), dim = -2)
# go through the layers of the unet, down and up
hiddens = []
for convnext, convnext2, downsample in self.downs:
for convnext, sparse_attn, convnext2, downsample in self.downs:
x = convnext(x, c)
x = sparse_attn(x)
x = convnext2(x, c)
hiddens.append(x)
x = downsample(x)
@@ -1008,9 +1051,10 @@ class Unet(nn.Module):
x = self.mid_block2(x, mid_c)
for convnext, convnext2, upsample in self.ups:
for convnext, sparse_attn, convnext2, upsample in self.ups:
x = torch.cat((x, hiddens.pop()), dim=1)
x = convnext(x, c)
x = sparse_attn(x)
x = convnext2(x, c)
x = upsample(x)
@@ -1104,6 +1148,25 @@ class Decoder(nn.Module):
self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
def get_unet(self, unet_number):
assert 0 < unet_number <= len(self.unets)
index = unet_number - 1
return self.unets[index]
@contextmanager
def one_unet_in_gpu(self, unet_number = None, unet = None):
assert exists(unet_number) ^ exists(unet)
if exists(unet_number):
unet = self.get_unet(unet_number)
self.cuda()
self.unets.cpu()
unet.cuda()
yield
unet.cpu()
def get_text_encodings(self, text):
text_encodings = self.clip.text_transformer(text)
return text_encodings[:, 1:]
@@ -1208,20 +1271,21 @@ class Decoder(nn.Module):
text_encodings = self.get_text_encodings(text) if exists(text) else None
img = None
for unet, image_size in tqdm(zip(self.unets, self.image_sizes)):
shape = (batch_size, channels, image_size, image_size)
img = self.p_sample_loop(unet, shape, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = img)
with self.one_unet_in_gpu(unet = unet):
shape = (batch_size, channels, image_size, image_size)
img = self.p_sample_loop(unet, shape, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = img)
return img
def forward(self, image, text = None, unet_number = None):
def forward(self, image, text = None, image_embed = None, text_encodings = None, unet_number = None):
assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)'
unet_number = default(unet_number, 1)
assert 1 <= unet_number <= len(self.unets)
index = unet_number - 1
unet = self.unets[index]
target_image_size = self.image_sizes[index]
unet = self.get_unet(unet_number)
target_image_size = self.image_sizes[unet_number - 1]
b, c, h, w, device, = *image.shape, image.device
@@ -1230,10 +1294,12 @@ class Decoder(nn.Module):
times = torch.randint(0, self.num_timesteps, (b,), device = device, dtype = torch.long)
image_embed = self.get_image_embed(image)
text_encodings = self.get_text_encodings(text) if exists(text) else None
if not exists(image_embed):
image_embed = self.get_image_embed(image)
lowres_cond_img = image if index > 0 else None
text_encodings = self.get_text_encodings(text) if exists(text) and not exists(text_encodings) else None
lowres_cond_img = image if unet_number > 1 else None
ddpm_image = resize_image_to(image, target_image_size)
return self.p_losses(unet, ddpm_image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img)

View File

@@ -0,0 +1,12 @@
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange
class LatentDiffusion(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.22',
version = '0.0.31',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',