Compare commits

...

6 Commits

4 changed files with 75 additions and 31 deletions

View File

@@ -410,9 +410,9 @@ Offer training wrappers
- [x] figure out all the current bag of tricks needed to make DDPMs great (starting with the blur trick mentioned in paper) - [x] figure out all the current bag of tricks needed to make DDPMs great (starting with the blur trick mentioned in paper)
- [x] build the cascading ddpm by having Decoder class manage multiple unets at different resolutions - [x] build the cascading ddpm by having Decoder class manage multiple unets at different resolutions
- [x] add efficient attention in unet - [x] add efficient attention in unet
- [ ] be able to finely customize what to condition on (text, image embed) for specific unet in the cascade (super resolution ddpms near the end may not need too much conditioning) - [x] be able to finely customize what to condition on (text, image embed) for specific unet in the cascade (super resolution ddpms near the end may not need too much conditioning)
- [ ] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately) - [x] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
- [ ] build out latent diffusion architecture in separate file, as it is not faithful to dalle-2 (but offer it as as setting) - [ ] build out latent diffusion architecture, make it completely optional (additional autoencoder + some regularizations [kl and vq regs]) (figure out if latent diffusion + cascading ddpm can be used in conjunction)
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet - [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
- [ ] train on a toy task, offer in colab - [ ] train on a toy task, offer in colab

View File

@@ -6,4 +6,4 @@ def main():
@click.command() @click.command()
@click.argument('text') @click.argument('text')
def dream(text): def dream(text):
return image return 'not ready yet'

View File

@@ -2,6 +2,7 @@ import math
from tqdm import tqdm from tqdm import tqdm
from inspect import isfunction from inspect import isfunction
from functools import partial from functools import partial
from contextlib import contextmanager
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
@@ -463,11 +464,11 @@ class DiffusionPrior(nn.Module):
net, net,
*, *,
clip, clip,
timesteps=1000, timesteps = 1000,
cond_drop_prob=0.2, cond_drop_prob = 0.2,
loss_type="l1", loss_type = "l1",
predict_x0=True, predict_x0 = True,
beta_schedule="cosine", beta_schedule = "cosine",
): ):
super().__init__() super().__init__()
assert isinstance(clip, CLIP) assert isinstance(clip, CLIP)
@@ -820,9 +821,12 @@ class Unet(nn.Module):
image_embed_dim, image_embed_dim,
cond_dim = None, cond_dim = None,
num_image_tokens = 4, num_image_tokens = 4,
num_time_tokens = 2,
out_dim = None, out_dim = None,
dim_mults=(1, 2, 4, 8), dim_mults=(1, 2, 4, 8),
channels = 3, channels = 3,
attn_dim_head = 32,
attn_heads = 8,
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/ lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
lowres_cond_upsample_mode = 'bilinear', lowres_cond_upsample_mode = 'bilinear',
blur_sigma = 0.1, blur_sigma = 0.1,
@@ -830,6 +834,8 @@ class Unet(nn.Module):
sparse_attn = False, sparse_attn = False,
sparse_attn_window = 8, # window size for sparse attention sparse_attn_window = 8, # window size for sparse attention
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention) attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
cond_on_text_encodings = False,
cond_on_image_embeds = False,
): ):
super().__init__() super().__init__()
# save locals to take care of some hyperparameters for cascading DDPM # save locals to take care of some hyperparameters for cascading DDPM
@@ -862,8 +868,8 @@ class Unet(nn.Module):
SinusoidalPosEmb(dim), SinusoidalPosEmb(dim),
nn.Linear(dim, dim * 4), nn.Linear(dim, dim * 4),
nn.GELU(), nn.GELU(),
nn.Linear(dim * 4, cond_dim), nn.Linear(dim * 4, cond_dim * num_time_tokens),
Rearrange('b d -> b 1 d') Rearrange('b (r d) -> b r d', r = num_time_tokens)
) )
self.image_to_cond = nn.Sequential( self.image_to_cond = nn.Sequential(
@@ -873,11 +879,21 @@ class Unet(nn.Module):
self.text_to_cond = nn.LazyLinear(cond_dim) self.text_to_cond = nn.LazyLinear(cond_dim)
# finer control over whether to condition on image embeddings and text encodings
# so one can have the latter unets in the cascading DDPMs only focus on super-resoluting
self.cond_on_text_encodings = cond_on_text_encodings
self.cond_on_image_embeds = cond_on_image_embeds
# for classifier free guidance # for classifier free guidance
self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim)) self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim))
self.null_text_embed = nn.Parameter(torch.randn(1, 1, cond_dim)) self.null_text_embed = nn.Parameter(torch.randn(1, 1, cond_dim))
# attention related params
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
# layers # layers
self.downs = nn.ModuleList([]) self.downs = nn.ModuleList([])
@@ -891,7 +907,7 @@ class Unet(nn.Module):
self.downs.append(nn.ModuleList([ self.downs.append(nn.ModuleList([
ConvNextBlock(dim_in, dim_out, norm = ind != 0), ConvNextBlock(dim_in, dim_out, norm = ind != 0),
Residual(GridAttention(dim_out, window_size = sparse_attn_window)) if sparse_attn else nn.Identity(), Residual(GridAttention(dim_out, window_size = sparse_attn_window, **attn_kwargs)) if sparse_attn else nn.Identity(),
ConvNextBlock(dim_out, dim_out, cond_dim = layer_cond_dim), ConvNextBlock(dim_out, dim_out, cond_dim = layer_cond_dim),
Downsample(dim_out) if not is_last else nn.Identity() Downsample(dim_out) if not is_last else nn.Identity()
])) ]))
@@ -899,7 +915,7 @@ class Unet(nn.Module):
mid_dim = dims[-1] mid_dim = dims[-1]
self.mid_block1 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim) self.mid_block1 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim)
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim))) if attend_at_middle else None self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim, **attn_kwargs))) if attend_at_middle else None
self.mid_block2 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim) self.mid_block2 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim)
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])): for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
@@ -908,7 +924,7 @@ class Unet(nn.Module):
self.ups.append(nn.ModuleList([ self.ups.append(nn.ModuleList([
ConvNextBlock(dim_out * 2, dim_in, cond_dim = layer_cond_dim), ConvNextBlock(dim_out * 2, dim_in, cond_dim = layer_cond_dim),
Residual(GridAttention(dim_in, window_size = sparse_attn_window)) if sparse_attn else nn.Identity(), Residual(GridAttention(dim_in, window_size = sparse_attn_window, **attn_kwargs)) if sparse_attn else nn.Identity(),
ConvNextBlock(dim_in, dim_in, cond_dim = layer_cond_dim), ConvNextBlock(dim_in, dim_in, cond_dim = layer_cond_dim),
Upsample(dim_in) Upsample(dim_in)
])) ]))
@@ -982,17 +998,22 @@ class Unet(nn.Module):
# mask out image embedding depending on condition dropout # mask out image embedding depending on condition dropout
# for classifier free guidance # for classifier free guidance
image_tokens = self.image_to_cond(image_embed) image_tokens = None
image_tokens = torch.where( if self.cond_on_image_embeds:
cond_prob_mask, image_tokens = self.image_to_cond(image_embed)
image_tokens,
self.null_image_embed image_tokens = torch.where(
) cond_prob_mask,
image_tokens,
self.null_image_embed
)
# take care of text encodings (optional) # take care of text encodings (optional)
if exists(text_encodings): text_tokens = None
if exists(text_encodings) and self.cond_on_text_encodings:
text_tokens = self.text_to_cond(text_encodings) text_tokens = self.text_to_cond(text_encodings)
text_tokens = torch.where( text_tokens = torch.where(
cond_prob_mask, cond_prob_mask,
@@ -1002,12 +1023,15 @@ class Unet(nn.Module):
# main conditioning tokens (c) # main conditioning tokens (c)
c = torch.cat((time_tokens, image_tokens), dim = -2) c = time_tokens
if exists(image_tokens):
c = torch.cat((c, image_tokens), dim = -2)
# text and image conditioning tokens (mid_c) # text and image conditioning tokens (mid_c)
# to save on compute, only do cross attention based conditioning on the inner most layers of the Unet # to save on compute, only do cross attention based conditioning on the inner most layers of the Unet
mid_c = c if not exists(text_encodings) else torch.cat((c, text_tokens), dim = -2) mid_c = c if not exists(text_tokens) else torch.cat((c, text_tokens), dim = -2)
# go through the layers of the unet, down and up # go through the layers of the unet, down and up
@@ -1124,6 +1148,25 @@ class Decoder(nn.Module):
self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)) self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod)) self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
def get_unet(self, unet_number):
assert 0 < unet_number <= len(self.unets)
index = unet_number - 1
return self.unets[index]
@contextmanager
def one_unet_in_gpu(self, unet_number = None, unet = None):
assert exists(unet_number) ^ exists(unet)
if exists(unet_number):
unet = self.get_unet(unet_number)
self.cuda()
self.unets.cpu()
unet.cuda()
yield
unet.cpu()
def get_text_encodings(self, text): def get_text_encodings(self, text):
text_encodings = self.clip.text_transformer(text) text_encodings = self.clip.text_transformer(text)
return text_encodings[:, 1:] return text_encodings[:, 1:]
@@ -1228,20 +1271,21 @@ class Decoder(nn.Module):
text_encodings = self.get_text_encodings(text) if exists(text) else None text_encodings = self.get_text_encodings(text) if exists(text) else None
img = None img = None
for unet, image_size in tqdm(zip(self.unets, self.image_sizes)): for unet, image_size in tqdm(zip(self.unets, self.image_sizes)):
shape = (batch_size, channels, image_size, image_size) with self.one_unet_in_gpu(unet = unet):
img = self.p_sample_loop(unet, shape, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = img) shape = (batch_size, channels, image_size, image_size)
img = self.p_sample_loop(unet, shape, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = img)
return img return img
def forward(self, image, text = None, image_embed = None, text_encodings = None, unet_number = None): def forward(self, image, text = None, image_embed = None, text_encodings = None, unet_number = None):
assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)' assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)'
unet_number = default(unet_number, 1) unet_number = default(unet_number, 1)
assert 1 <= unet_number <= len(self.unets)
index = unet_number - 1 unet = self.get_unet(unet_number)
unet = self.unets[index]
target_image_size = self.image_sizes[index] target_image_size = self.image_sizes[unet_number - 1]
b, c, h, w, device, = *image.shape, image.device b, c, h, w, device, = *image.shape, image.device
@@ -1255,7 +1299,7 @@ class Decoder(nn.Module):
text_encodings = self.get_text_encodings(text) if exists(text) and not exists(text_encodings) else None text_encodings = self.get_text_encodings(text) if exists(text) and not exists(text_encodings) else None
lowres_cond_img = image if index > 0 else None lowres_cond_img = image if unet_number > 1 else None
ddpm_image = resize_image_to(image, target_image_size) ddpm_image = resize_image_to(image, target_image_size)
return self.p_losses(unet, ddpm_image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img) return self.p_losses(unet, ddpm_image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img)

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream' 'dream = dalle2_pytorch.cli:dream'
], ],
}, },
version = '0.0.26', version = '0.0.31',
license='MIT', license='MIT',
description = 'DALL-E 2', description = 'DALL-E 2',
author = 'Phil Wang', author = 'Phil Wang',