mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
27a33e1b20 | ||
|
|
6f941a219a | ||
|
|
ddde8ca1bf | ||
|
|
c26b77ad20 | ||
|
|
c5b4aab8e5 |
@@ -14,7 +14,7 @@ It may also explore an extension of using <a href="https://huggingface.co/spaces
|
||||
|
||||
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication
|
||||
|
||||
There was enough interest for a Jax version. It will be completed after the Pytorch version shows signs of life on my toy tasks. <a href="https://github.com/lucidrains/dalle2-jax">Placeholder repository</a>
|
||||
There was enough interest for a Jax version. It will be completed after the Pytorch version shows signs of life on my toy tasks. <a href="https://github.com/lucidrains/dalle2-jax">Placeholder repository</a>. I will also eventually extend this to <a href="https://github.com/lucidrains/dalle2-video">text to video</a>, once the repository is in a good place.
|
||||
|
||||
## Install
|
||||
|
||||
@@ -410,7 +410,8 @@ Offer training wrappers
|
||||
- [x] figure out all the current bag of tricks needed to make DDPMs great (starting with the blur trick mentioned in paper)
|
||||
- [x] build the cascading ddpm by having Decoder class manage multiple unets at different resolutions
|
||||
- [x] add efficient attention in unet
|
||||
- [ ] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
|
||||
- [x] be able to finely customize what to condition on (text, image embed) for specific unet in the cascade (super resolution ddpms near the end may not need too much conditioning)
|
||||
- [x] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
|
||||
- [ ] build out latent diffusion architecture in separate file, as it is not faithful to dalle-2 (but offer it as as setting)
|
||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
|
||||
- [ ] train on a toy task, offer in colab
|
||||
|
||||
@@ -6,4 +6,4 @@ def main():
|
||||
@click.command()
|
||||
@click.argument('text')
|
||||
def dream(text):
|
||||
return image
|
||||
return 'not ready yet'
|
||||
|
||||
@@ -2,6 +2,7 @@ import math
|
||||
from tqdm import tqdm
|
||||
from inspect import isfunction
|
||||
from functools import partial
|
||||
from contextlib import contextmanager
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
@@ -105,8 +106,8 @@ def cosine_beta_schedule(timesteps, s = 0.008):
|
||||
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
||||
"""
|
||||
steps = timesteps + 1
|
||||
x = torch.linspace(0, steps, steps)
|
||||
alphas_cumprod = torch.cos(((x / steps) + s) / (1 + s) * torch.pi * 0.5) ** 2
|
||||
x = torch.linspace(0, timesteps, steps)
|
||||
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
|
||||
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
||||
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
||||
return torch.clip(betas, 0, 0.999)
|
||||
@@ -820,6 +821,7 @@ class Unet(nn.Module):
|
||||
image_embed_dim,
|
||||
cond_dim = None,
|
||||
num_image_tokens = 4,
|
||||
num_time_tokens = 2,
|
||||
out_dim = None,
|
||||
dim_mults=(1, 2, 4, 8),
|
||||
channels = 3,
|
||||
@@ -830,6 +832,8 @@ class Unet(nn.Module):
|
||||
sparse_attn = False,
|
||||
sparse_attn_window = 8, # window size for sparse attention
|
||||
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
||||
cond_on_text_encodings = False,
|
||||
cond_on_image_embeds = False,
|
||||
):
|
||||
super().__init__()
|
||||
# save locals to take care of some hyperparameters for cascading DDPM
|
||||
@@ -862,8 +866,8 @@ class Unet(nn.Module):
|
||||
SinusoidalPosEmb(dim),
|
||||
nn.Linear(dim, dim * 4),
|
||||
nn.GELU(),
|
||||
nn.Linear(dim * 4, cond_dim),
|
||||
Rearrange('b d -> b 1 d')
|
||||
nn.Linear(dim * 4, cond_dim * num_time_tokens),
|
||||
Rearrange('b (r d) -> b r d', r = num_time_tokens)
|
||||
)
|
||||
|
||||
self.image_to_cond = nn.Sequential(
|
||||
@@ -873,6 +877,12 @@ class Unet(nn.Module):
|
||||
|
||||
self.text_to_cond = nn.LazyLinear(cond_dim)
|
||||
|
||||
# finer control over whether to condition on image embeddings and text encodings
|
||||
# so one can have the latter unets in the cascading DDPMs only focus on super-resoluting
|
||||
|
||||
self.cond_on_text_encodings = cond_on_text_encodings
|
||||
self.cond_on_image_embeds = cond_on_image_embeds
|
||||
|
||||
# for classifier free guidance
|
||||
|
||||
self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim))
|
||||
@@ -982,17 +992,22 @@ class Unet(nn.Module):
|
||||
# mask out image embedding depending on condition dropout
|
||||
# for classifier free guidance
|
||||
|
||||
image_tokens = self.image_to_cond(image_embed)
|
||||
image_tokens = None
|
||||
|
||||
image_tokens = torch.where(
|
||||
cond_prob_mask,
|
||||
image_tokens,
|
||||
self.null_image_embed
|
||||
)
|
||||
if self.cond_on_image_embeds:
|
||||
image_tokens = self.image_to_cond(image_embed)
|
||||
|
||||
image_tokens = torch.where(
|
||||
cond_prob_mask,
|
||||
image_tokens,
|
||||
self.null_image_embed
|
||||
)
|
||||
|
||||
# take care of text encodings (optional)
|
||||
|
||||
if exists(text_encodings):
|
||||
text_tokens = None
|
||||
|
||||
if exists(text_encodings) and self.cond_on_text_encodings:
|
||||
text_tokens = self.text_to_cond(text_encodings)
|
||||
text_tokens = torch.where(
|
||||
cond_prob_mask,
|
||||
@@ -1002,12 +1017,15 @@ class Unet(nn.Module):
|
||||
|
||||
# main conditioning tokens (c)
|
||||
|
||||
c = torch.cat((time_tokens, image_tokens), dim = -2)
|
||||
c = time_tokens
|
||||
|
||||
if exists(image_tokens):
|
||||
c = torch.cat((c, image_tokens), dim = -2)
|
||||
|
||||
# text and image conditioning tokens (mid_c)
|
||||
# to save on compute, only do cross attention based conditioning on the inner most layers of the Unet
|
||||
|
||||
mid_c = c if not exists(text_encodings) else torch.cat((c, text_tokens), dim = -2)
|
||||
mid_c = c if not exists(text_tokens) else torch.cat((c, text_tokens), dim = -2)
|
||||
|
||||
# go through the layers of the unet, down and up
|
||||
|
||||
@@ -1124,6 +1142,20 @@ class Decoder(nn.Module):
|
||||
self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
|
||||
self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
|
||||
|
||||
@contextmanager
|
||||
def one_unet_in_gpu(self, unet_number):
|
||||
assert 0 < unet_number <= len(self.unets)
|
||||
index = unet_number - 1
|
||||
self.cuda()
|
||||
self.unets.cpu()
|
||||
|
||||
unet = self.unets[index]
|
||||
unet.cuda()
|
||||
|
||||
yield
|
||||
|
||||
self.unets.cpu()
|
||||
|
||||
def get_text_encodings(self, text):
|
||||
text_encodings = self.clip.text_transformer(text)
|
||||
return text_encodings[:, 1:]
|
||||
@@ -1228,9 +1260,11 @@ class Decoder(nn.Module):
|
||||
text_encodings = self.get_text_encodings(text) if exists(text) else None
|
||||
|
||||
img = None
|
||||
for unet, image_size in tqdm(zip(self.unets, self.image_sizes)):
|
||||
shape = (batch_size, channels, image_size, image_size)
|
||||
img = self.p_sample_loop(unet, shape, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = img)
|
||||
|
||||
for ind, (unet, image_size) in tqdm(enumerate(zip(self.unets, self.image_sizes))):
|
||||
with self.one_unet_in_gpu(ind + 1):
|
||||
shape = (batch_size, channels, image_size, image_size)
|
||||
img = self.p_sample_loop(unet, shape, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = img)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
Reference in New Issue
Block a user