mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 19:44:26 +01:00
Compare commits
3 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ddde8ca1bf | ||
|
|
c26b77ad20 | ||
|
|
c5b4aab8e5 |
@@ -14,7 +14,7 @@ It may also explore an extension of using <a href="https://huggingface.co/spaces
|
||||
|
||||
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication
|
||||
|
||||
There was enough interest for a Jax version. It will be completed after the Pytorch version shows signs of life on my toy tasks. <a href="https://github.com/lucidrains/dalle2-jax">Placeholder repository</a>
|
||||
There was enough interest for a Jax version. It will be completed after the Pytorch version shows signs of life on my toy tasks. <a href="https://github.com/lucidrains/dalle2-jax">Placeholder repository</a>. I will also eventually extend this to <a href="https://github.com/lucidrains/dalle2-video">text to video</a>, once the repository is in a good place.
|
||||
|
||||
## Install
|
||||
|
||||
@@ -410,6 +410,7 @@ Offer training wrappers
|
||||
- [x] figure out all the current bag of tricks needed to make DDPMs great (starting with the blur trick mentioned in paper)
|
||||
- [x] build the cascading ddpm by having Decoder class manage multiple unets at different resolutions
|
||||
- [x] add efficient attention in unet
|
||||
- [ ] be able to finely customize what to condition on (text, image embed) for specific unet in the cascade (super resolution ddpms near the end may not need too much conditioning)
|
||||
- [ ] offload unets not being trained on to CPU for memory efficiency (for training each resolution unets separately)
|
||||
- [ ] build out latent diffusion architecture in separate file, as it is not faithful to dalle-2 (but offer it as as setting)
|
||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet
|
||||
|
||||
@@ -105,8 +105,8 @@ def cosine_beta_schedule(timesteps, s = 0.008):
|
||||
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
||||
"""
|
||||
steps = timesteps + 1
|
||||
x = torch.linspace(0, steps, steps)
|
||||
alphas_cumprod = torch.cos(((x / steps) + s) / (1 + s) * torch.pi * 0.5) ** 2
|
||||
x = torch.linspace(0, timesteps, steps)
|
||||
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
|
||||
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
||||
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
||||
return torch.clip(betas, 0, 0.999)
|
||||
|
||||
Reference in New Issue
Block a user