Compare commits

..

1 Commits

3 changed files with 88 additions and 280 deletions

View File

@@ -22,11 +22,19 @@ For all of you emailing me (there is a lot), the best way to contribute is throu
$ pip install dalle2-pytorch
```
## Usage
## CLI Usage (work in progress)
```bash
$ dream 'sharing a sunset at the summit of mount everest with my dog'
```
Once built, images will be saved to the same directory the command is invoked
## Training (for deep learning practitioners)
To train DALLE-2 is a 3 step process, with the training of CLIP being the most important
To train CLIP, you can either use <a href="https://github.com/lucidrains/x-clip">x-clip</a> package, or join the LAION discord, where a lot of replication efforts are already <a href="https://github.com/mlfoundations/open_clip">underway</a>.
To train CLIP, you can either use `x-clip` package, or join the LAION discord, where a lot of replication efforts are already underway.
This repository will demonstrate integration with `x-clip` for starters
@@ -101,7 +109,7 @@ clip = CLIP(
unet = Unet(
dim = 128,
image_embed_dim = 512,
cond_dim = 128,
time_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
).cuda()
@@ -128,14 +136,12 @@ loss.backward()
# then it will learn to generate images based on the CLIP image embeddings
```
Finally, the main contribution of the paper. The repository offers the diffusion prior network. It takes the CLIP text embeddings and tries to generate the CLIP image embeddings. Again, you will need the trained CLIP from the first step
Finally, the main contribution of the paper. The repository offers the diffusion prior network. It takes the CLIP text embeddings and tries to generate the CLIP image embeddings. Again, you will need the trained CLIP fron the first step
```python
import torch
from dalle2_pytorch import DiffusionPriorNetwork, DiffusionPrior, CLIP
# get trained CLIP from step one
clip = CLIP(
dim_text = 512,
dim_image = 512,
@@ -154,6 +160,7 @@ clip = CLIP(
prior_network = DiffusionPriorNetwork(
dim = 512,
num_timesteps = 100,
depth = 6,
dim_head = 64,
heads = 8
@@ -192,7 +199,7 @@ dalle2 = DALLE2(
decoder = decoder
)
# send the text as a string if you want to use the simple tokenizer from DALLE v1
# send the text as a string if you want to use the simple tokenizer from DALL-E1
# or you can do it as token ids, if you have your own tokenizer
texts = ['glistening morning dew on a flower petal']
@@ -205,7 +212,10 @@ Let's see the whole script below
```python
import torch
from dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder, CLIP
from dalle2_pytorch.dalle2_pytorch import DALLE2
from dalle2_pytorch import DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder, CLIP
import torch
clip = CLIP(
dim_text = 512,
@@ -242,6 +252,7 @@ loss.backward()
prior_network = DiffusionPriorNetwork(
dim = 512,
num_timesteps = 100,
depth = 6,
dim_head = 64,
heads = 8
@@ -264,7 +275,7 @@ loss.backward()
unet = Unet(
dim = 128,
image_embed_dim = 512,
cond_dim = 128,
time_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
).cuda()
@@ -276,7 +287,7 @@ decoder = Decoder(
cond_drop_prob = 0.2
).cuda()
loss = decoder(images) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss = decoder(images)
loss.backward()
# do above for many steps
@@ -286,30 +297,13 @@ dalle2 = DALLE2(
decoder = decoder
)
images = dalle2(
['cute puppy chasing after a squirrel'],
cond_scale = 2. # classifier free guidance strength (> 1 would strengthen the condition)
)
images = dalle2(['cute puppy chasing after a squirrel'])
# save your image
```
Everything in this readme should run without error
For the layperson, no worries, training will all be automated into a CLI tool, at least for small scale training.
## CLI Usage (work in progress)
```bash
$ dream 'sharing a sunset at the summit of mount everest with my dog'
```
Once built, images will be saved to the same directory the command is invoked
## Training wrapper (wip)
Offer training wrappers
## Training CLI (wip)
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
@@ -319,12 +313,11 @@ Offer training wrappers
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
- [x] add what was proposed in the paper, where DDPM objective for image latent embedding predicts x0 directly (reread vq-diffusion paper and get caught up on that line of work)
- [x] make sure it works end to end to produce an output tensor, taking a single gradient step
- [x] augment unet so that it can also be conditioned on text encodings (although in paper they hinted this didn't make much a difference)
- [ ] augment unet so that it can also be conditioned on text encodings (although in paper they hinted this didn't make much a difference)
- [ ] look into Jonathan Ho's cascading DDPM for the decoder, as that seems to be what they are using. get caught up on DDPM literature
- [ ] figure out all the current bag of tricks needed to make DDPMs great (starting with the blur trick mentioned in paper)
- [ ] train on a toy task, offer in colab
- [ ] add attention to unet - apply some personal tricks with efficient attention
- [ ] figure out the big idea behind latent diffusion and what can be ported over
## Citations
@@ -372,5 +365,3 @@ Offer training wrappers
primaryClass = {cs.LG}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - Yang Song's <a href="https://arxiv.org/abs/2011.13456">paper</a>

View File

@@ -7,12 +7,9 @@ import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from einops_exts import rearrange_many, repeat_many, check_shape
from einops_exts.torch import EinopsToAndFrom
from kornia.filters import filter2d
from dalle2_pytorch.tokenizer import tokenizer
# use x-clip
@@ -118,72 +115,25 @@ class ChanRMSNorm(RMSNorm):
inv_norm = torch.rsqrt(squared_sum + self.eps)
return x * inv_norm * rearrange(self.gamma, 'c -> 1 c 1 1') * self.scale
class Residual(nn.Module):
def __init__(self, fn):
class PreNormResidual(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.fn = fn
self.norm = RMSNorm(dim)
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
# mlp
class MLP(nn.Module):
def __init__(
self,
dim_in,
dim_out,
*,
expansion_factor = 2.,
depth = 2,
norm = False,
):
super().__init__()
hidden_dim = int(expansion_factor * dim_out)
norm_fn = lambda: nn.LayerNorm(hidden_dim) if norm else nn.Identity()
layers = [nn.Sequential(
nn.Linear(dim_in, hidden_dim),
nn.SiLU(),
norm_fn()
)]
for _ in range(depth - 1):
layers.append(nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.SiLU(),
norm_fn()
))
layers.append(nn.Linear(hidden_dim, dim_out))
self.net = nn.Sequential(*layers)
def forward(self, x):
return self.net(x.float())
# feedforward
class SwiGLU(nn.Module):
""" used successfully in https://arxiv.org/abs/2204.0231 """
def forward(self, x):
x, gate = x.chunk(2, dim = -1)
return x * F.silu(gate)
def FeedForward(dim, mult = 4, dropout = 0., post_activation_norm = False):
""" post-activation norm https://arxiv.org/abs/2110.09456 """
return self.fn(self.norm(x), **kwargs) + x
def FeedForward(dim, mult = 4, dropout = 0.):
inner_dim = int(mult * dim)
return nn.Sequential(
RMSNorm(dim),
nn.Linear(dim, inner_dim * 2, bias = False),
SwiGLU(),
RMSNorm(inner_dim) if post_activation_norm else nn.Identity(),
nn.Linear(dim, inner_dim, bias = False),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim, bias = False)
)
# attention
class Attention(nn.Module):
def __init__(
self,
@@ -239,7 +189,6 @@ class Attention(nn.Module):
sim = sim - sim.amax(dim = -1, keepdim = True)
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
out = einsum('b h i j, b j d -> b h i d', attn, v)
@@ -286,26 +235,26 @@ class DiffusionPriorNetwork(nn.Module):
def __init__(
self,
dim,
num_timesteps = None,
num_timesteps = 1000,
**kwargs
):
super().__init__()
self.time_embeddings = nn.Embedding(num_timesteps, dim) if exists(num_timesteps) else nn.Sequential(Rearrange('b -> b 1'), MLP(1, dim)) # also offer a continuous version of timestep embeddings, with a 2 layer MLP
self.time_embeddings = nn.Embedding(num_timesteps, dim) # also offer a continuous version of timestep embeddings, with a 2 layer MLP
self.learned_query = nn.Parameter(torch.randn(dim))
self.causal_transformer = CausalTransformer(dim = dim, **kwargs)
def forward_with_cond_scale(
self,
*args,
x,
*,
cond_scale = 1.,
**kwargs
):
logits = self.forward(*args, **kwargs)
if cond_scale == 1:
return logits
return self.forward(x, **kwargs)
null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs)
logits = self.forward(x, **kwargs)
null_logits = self.forward(x, cond_drop_prob = 1., **kwargs)
return null_logits + (logits - null_logits) * cond_scale
def forward(
@@ -325,15 +274,8 @@ class DiffusionPriorNetwork(nn.Module):
text_embed, image_embed = rearrange_many((text_embed, image_embed), 'b d -> b 1 d')
# whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different)
# but let's just do it right
if exists(mask):
not_all_masked_out = mask.any(dim = -1)
mask = torch.cat((mask, rearrange(not_all_masked_out, 'b -> b 1')), dim = 1)
if exists(mask):
mask = F.pad(mask, (0, 2), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query
mask = F.pad(mask, (0, 3), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query
time_embed = self.time_embeddings(diffusion_timesteps)
time_embed = rearrange(time_embed, 'b d -> b 1 d')
@@ -432,13 +374,12 @@ class DiffusionPrior(nn.Module):
image_encoding = self.clip.visual_transformer(image)
image_cls = image_encoding[:, 0]
image_embed = self.clip.to_visual_latent(image_cls)
return l2norm(image_embed)
return image_embed
def get_text_cond(self, text):
text_encodings = self.clip.text_transformer(text)
text_cls, text_encodings = text_encodings[:, 0], text_encodings[:, 1:]
text_embed = self.clip.to_text_latent(text_cls)
text_embed = l2norm(text_embed)
return dict(text_encodings = text_encodings, text_embed = text_embed, mask = text != 0)
def q_mean_variance(self, x_start, t):
@@ -571,17 +512,6 @@ def Upsample(dim):
def Downsample(dim):
return nn.Conv2d(dim, dim, 4, 2, 1)
class Blur(nn.Module):
def __init__(self):
super().__init__()
filt = torch.Tensor([1, 2, 1])
self.register_buffer('filt', filt)
def forward(self, x):
filt = self.filt
filt = rearrange(filt, '... j -> ... 1 j') * rearrange(flit, '... i -> ... i 1')
return filter2d(x, filt, normalized = True)
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
@@ -609,17 +539,10 @@ class ConvNextBlock(nn.Module):
super().__init__()
need_projection = dim != dim_out
self.cross_attn = None
if exists(cond_dim):
self.cross_attn = EinopsToAndFrom(
'b c h w',
'b (h w) c',
CrossAttention(
dim = dim,
context_dim = cond_dim
)
)
self.mlp = nn.Sequential(
nn.GELU(),
nn.Linear(cond_dim, dim)
) if exists(cond_dim) else None
self.ds_conv = nn.Conv2d(dim, dim, 7, padding = 3, groups = dim)
@@ -636,82 +559,21 @@ class ConvNextBlock(nn.Module):
def forward(self, x, cond = None):
h = self.ds_conv(x)
if exists(self.cross_attn):
if exists(self.mlp):
assert exists(cond)
h = self.cross_attn(h, context = cond) + h
condition = self.mlp(cond)
h = h + rearrange(condition, 'b c -> b c 1 1')
h = self.net(h)
return h + self.res_conv(x)
class CrossAttention(nn.Module):
def __init__(
self,
dim,
*,
context_dim = None,
dim_head = 64,
heads = 8,
dropout = 0.,
):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
inner_dim = dim_head * heads
context_dim = default(context_dim, dim)
self.norm = RMSNorm(dim)
self.norm_context = RMSNorm(context_dim)
self.dropout = nn.Dropout(dropout)
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x, context, mask = None):
b, n, device = *x.shape[:2], x.device
x = self.norm(x)
context = self.norm_context(context)
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = self.heads)
# add null key / value for classifier free guidance in prior net
nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'd -> b h 1 d', h = self.heads, b = b)
k = torch.cat((nk, k), dim = -2)
v = torch.cat((nv, v), dim = -2)
q = q * self.scale
sim = einsum('b h i d, b h j d -> b h i j', q, k)
max_neg_value = -torch.finfo(sim.dtype).max
if exists(mask):
mask = F.pad(mask, (1, 0), value = True)
mask = rearrange(mask, 'b j -> b 1 1 j')
sim = sim.masked_fill(~mask, max_neg_value)
sim = sim - sim.amax(dim = -1, keepdim = True)
attn = sim.softmax(dim = -1)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Unet(nn.Module):
def __init__(
self,
dim,
*,
image_embed_dim,
cond_dim = None,
num_image_tokens = 4,
time_dim = None,
out_dim = None,
dim_mults=(1, 2, 4, 8),
channels = 3,
@@ -722,31 +584,18 @@ class Unet(nn.Module):
dims = [channels, *map(lambda m: dim * m, dim_mults)]
in_out = list(zip(dims[:-1], dims[1:]))
# time, image embeddings, and optional text encoding
cond_dim = default(cond_dim, dim)
time_dim = default(time_dim, dim)
self.time_mlp = nn.Sequential(
SinusoidalPosEmb(dim),
nn.Linear(dim, dim * 4),
nn.GELU(),
nn.Linear(dim * 4, cond_dim),
Rearrange('b d -> b 1 d')
nn.Linear(dim * 4, dim)
)
self.image_to_cond = nn.Sequential(
nn.Linear(image_embed_dim, cond_dim * num_image_tokens),
Rearrange('b (n d) -> b n d', n = num_image_tokens)
) if image_embed_dim != cond_dim else nn.Identity()
self.null_image_embed = nn.Parameter(torch.randn(image_embed_dim))
self.text_to_cond = nn.LazyLinear(cond_dim)
# for classifier free guidance
self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim))
self.null_text_embed = nn.Parameter(torch.randn(1, 1, cond_dim))
# layers
cond_dim = time_dim + image_embed_dim
self.downs = nn.ModuleList([])
self.ups = nn.ModuleList([])
@@ -756,7 +605,7 @@ class Unet(nn.Module):
is_last = ind >= (num_resolutions - 1)
self.downs.append(nn.ModuleList([
ConvNextBlock(dim_in, dim_out, norm = ind != 0),
ConvNextBlock(dim_in, dim_out, cond_dim = cond_dim, norm = ind != 0),
ConvNextBlock(dim_out, dim_out, cond_dim = cond_dim),
Downsample(dim_out) if not is_last else nn.Identity()
]))
@@ -764,7 +613,7 @@ class Unet(nn.Module):
mid_dim = dims[-1]
self.mid_block1 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim)
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim)))
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', PreNormResidual(mid_dim, Attention(mid_dim)))
self.mid_block2 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim)
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
@@ -784,16 +633,16 @@ class Unet(nn.Module):
def forward_with_cond_scale(
self,
*args,
x,
*,
cond_scale = 1.,
**kwargs
):
logits = self.forward(*args, **kwargs)
if cond_scale == 1:
return logits
return self.forward(x, **kwargs)
null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs)
logits = self.forward(x, **kwargs)
null_logits = self.forward(x, cond_drop_prob = 1., **kwargs)
return null_logits + (logits - null_logits) * cond_scale
def forward(
@@ -806,59 +655,37 @@ class Unet(nn.Module):
cond_drop_prob = 0.
):
batch_size, device = x.shape[0], x.device
time_tokens = self.time_mlp(time)
t = self.time_mlp(time)
cond_prob_mask = prob_mask_like((batch_size,), cond_drop_prob, device = device)
cond_prob_mask = rearrange(cond_prob_mask, 'b -> b 1 1')
# mask out image embedding depending on condition dropout
# for classifier free guidance
image_tokens = self.image_to_cond(image_embed)
image_tokens = torch.where(
cond_prob_mask,
image_tokens,
self.null_image_embed
image_embed = torch.where(
rearrange(cond_prob_mask, 'b -> b 1'),
image_embed,
rearrange(self.null_image_embed, 'd -> 1 d')
)
# take care of text encodings (optional)
if exists(text_encodings):
text_tokens = self.text_to_cond(text_encodings)
text_tokens = torch.where(
cond_prob_mask,
text_tokens,
self.null_text_embed
)
# main conditioning tokens (c)
c = torch.cat((time_tokens, image_tokens), dim = -2)
# text and image conditioning tokens (mid_c)
# to save on compute, only do cross attention based conditioning on the inner most layers of the Unet
mid_c = c if not exists(text_encodings) else torch.cat((c, text_tokens), dim = -2)
# go through the layers of the unet, down and up
t = torch.cat((t, image_embed), dim = -1)
hiddens = []
for convnext, convnext2, downsample in self.downs:
x = convnext(x, c)
x = convnext2(x, c)
x = convnext(x, t)
x = convnext2(x, t)
hiddens.append(x)
x = downsample(x)
x = self.mid_block1(x, mid_c)
x = self.mid_block1(x, t)
x = self.mid_attn(x)
x = self.mid_block2(x, mid_c)
x = self.mid_block2(x, t)
for convnext, convnext2, upsample in self.ups:
x = torch.cat((x, hiddens.pop()), dim=1)
x = convnext(x, c)
x = convnext2(x, c)
x = convnext(x, t)
x = convnext2(x, t)
x = upsample(x)
return self.final_conv(x)
@@ -919,15 +746,11 @@ class Decoder(nn.Module):
self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
def get_text_encodings(self, text):
text_encodings = self.clip.text_transformer(text)
return text_encodings[:, 1:]
def get_image_embed(self, image):
image_encoding = self.clip.visual_transformer(image)
image_cls = image_encoding[:, 0]
image_embed = self.clip.to_visual_latent(image_cls)
return l2norm(image_embed)
return image_embed
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
@@ -950,8 +773,8 @@ class Decoder(nn.Module):
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, image_embed, text_encodings = None, clip_denoised = True, cond_scale = 1.):
x_recon = self.predict_start_from_noise(x, t = t, noise = self.net.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale))
def p_mean_variance(self, x, t, image_embed, clip_denoised: bool):
x_recon = self.predict_start_from_noise(x, t = t, noise = self.net(x, t, image_embed = image_embed))
if clip_denoised:
x_recon.clamp_(-1., 1.)
@@ -960,32 +783,31 @@ class Decoder(nn.Module):
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, image_embed, text_encodings = None, cond_scale = 1., clip_denoised = True, repeat_noise = False):
def p_sample(self, x, t, image_embed, clip_denoised = True, repeat_noise = False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, clip_denoised = clip_denoised)
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, image_embed = image_embed, clip_denoised = clip_denoised)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, shape, image_embed, text_encodings = None, cond_scale = 1):
def p_sample_loop(self, shape, image_embed):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps):
img = self.p_sample(img, torch.full((b,), i, device = device, dtype = torch.long), image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale)
img = self.p_sample(img, torch.full((b,), i, device = device, dtype = torch.long), image_embed = image_embed)
return img
@torch.no_grad()
def sample(self, image_embed, text = None, cond_scale = 1.):
def sample(self, image_embed):
batch_size = image_embed.shape[0]
image_size = self.image_size
channels = self.channels
text_encodings = self.get_text_encodings(text) if exists(text) else None
return self.p_sample_loop((batch_size, channels, image_size, image_size), image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale)
return self.p_sample_loop((batch_size, channels, image_size, image_size), image_embed = image_embed)
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
@@ -995,7 +817,7 @@ class Decoder(nn.Module):
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def p_losses(self, x_start, t, *, image_embed, text_encodings = None, noise = None):
def p_losses(self, x_start, t, *, image_embed, noise = None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start = x_start, t = t, noise = noise)
@@ -1004,7 +826,6 @@ class Decoder(nn.Module):
x_noisy,
t,
image_embed = image_embed,
text_encodings = text_encodings,
cond_drop_prob = self.cond_drop_prob
)
@@ -1017,16 +838,14 @@ class Decoder(nn.Module):
return loss
def forward(self, image, text = None):
def forward(self, image):
b, device, img_size, = image.shape[0], image.device, self.image_size
check_shape(image, 'b c h w', h = img_size, w = img_size, c = self.channels)
times = torch.randint(0, self.num_timesteps, (b,), device = device, dtype = torch.long)
image_embed = self.get_image_embed(image)
text_encodings = self.get_text_encodings(text) if exists(text) else None
loss = self.p_losses(image, times, image_embed = image_embed, text_encodings = text_encodings)
loss = self.p_losses(image, times, image_embed = image_embed)
return loss
# main class
@@ -1042,16 +861,14 @@ class DALLE2(nn.Module):
super().__init__()
assert isinstance(prior, DiffusionPrior)
assert isinstance(decoder, Decoder)
self.prior = prior
self.decoder = decoder
self.prior = prior.eval()
self.decoder = decoder.eval()
self.prior_num_samples = prior_num_samples
@torch.no_grad()
@eval_decorator
def forward(
self,
text,
cond_scale = 1.
text
):
device = next(self.parameters()).device
@@ -1059,6 +876,7 @@ class DALLE2(nn.Module):
text = [text] if not isinstance(text, (list, tuple)) else text
text = tokenizer.tokenize(text).to(device)
print(text.shape, type(text))
image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples)
images = self.decoder.sample(image_embed, cond_scale = cond_scale)
images = self.decoder.sample(image_embed)
return images

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.0.14',
version = '0.0.4',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',
@@ -25,7 +25,6 @@ setup(
'click',
'einops>=0.4',
'einops-exts>=0.0.3',
'kornia>=0.5.4',
'pillow',
'torch>=1.10',
'torchvision',