Restructure transcript processing to always generate summaries and create additional content in separate directories

This commit is contained in:
Gigi
2025-04-01 10:54:09 +01:00
parent 2b967cd891
commit 218cf7a61a
4 changed files with 85 additions and 57 deletions

View File

@@ -1,14 +1,14 @@
Please transform the following transcript into an engaging blog post. The post should be written in a comprehensive yet accessible style, with a tone that balances technical accuracy with conversational ease.
Guidelines for the blog post:
1. Structure the content with clear sections and headings
2. Use a mix of technical depth and accessible explanations
3. Include relevant examples or analogies where appropriate
4. Maintain a conversational tone while being technically accurate
5. Use GitHub markdown flavor for formatting, prefixing headings with "#" / "##" / "###"
6. Include code blocks where relevant, with appropriate syntax highlighting
The target audience is technically-inclined general readers who are familiar with basic technical concepts but may not be experts in the specific domain.
Based on the following transcript and its summary, create a draft blog post. The draft should include:
1. A compelling title
2. An introduction that hooks the reader
3. Main sections with clear headings
4. Key points from the transcript
5. A conclusion
Transcript:
{transcript}
Summary:
{summary}
Blog Post Draft:

View File

@@ -1,10 +1,16 @@
Please analyze this transcript about an app idea and provide a structured prompt that can be easily understood by an LLM that can code, focusing on:
1. The core app concept and its main purpose
2. Key features and functionality discussed
3. Any technical considerations or implementation details
4. A step-by-step implementation plan that can be followed by a junior developer to build the app
Based on the following transcript and its summary, create a detailed app idea specification. The specification should include:
1. App name and tagline
2. Problem statement
3. Target audience
4. Key features
5. Technical considerations
6. User flow
7. Potential challenges
Transcript:
{transcript}
Prompt:
Summary:
{summary}
App Idea Specification:

6
prompts/summary.md Normal file
View File

@@ -0,0 +1,6 @@
Please provide a concise summary of the following transcript. Focus on the main points and key takeaways. Keep the summary clear and well-structured.
Transcript:
{transcript}
Summary:

View File

@@ -6,69 +6,70 @@ from pathlib import Path
import ollama
import time
import re
from datetime import datetime
def read_transcript(transcript_file: Path) -> str:
"""Read the content of a transcript file."""
with open(transcript_file, 'r', encoding='utf-8') as f:
return f.read()
def load_prompt_template(transcript_text: str) -> str:
"""Load the appropriate prompt template based on transcript content."""
def load_prompt_template(template_name: str) -> str:
"""Load a prompt template by name."""
prompt_dir = Path("prompts")
# Convert to lowercase for case-insensitive matching
text = transcript_text.lower()
# Check transcript content to determine appropriate prompt using regex word boundaries
if re.search(r'\bblog post\b', text):
# "I want to write a blog post"
prompt_file = prompt_dir / "blog_post.md"
elif re.search(r'\bidea\b', text) and re.search(r'\bapp\b', text):
# "I have an idea for an app"
prompt_file = prompt_dir / "idea_app.md"
else:
prompt_file = prompt_dir / "default.md"
prompt_file = prompt_dir / f"{template_name}.md"
with open(prompt_file, 'r', encoding='utf-8') as f:
return f.read()
def process_transcript(transcript_text: str) -> str:
"""Process a transcript using LLaMA to generate a summary."""
# Load the appropriate prompt template
prompt_template = load_prompt_template(transcript_text)
# Format the prompt with the transcript
prompt = prompt_template.format(transcript=transcript_text)
# Use Ollama to generate the summary
def process_with_llama(prompt: str) -> str:
"""Process text using LLaMA to generate content."""
response = ollama.chat(model='llama2', messages=[
{
'role': 'user',
'content': prompt
}
])
# Debug print
print("Response structure:", response)
# Extract the content from the response
return response['message']['content'].strip()
def save_summary(summary: str, output_file: Path) -> None:
"""Save the summary to a file."""
def save_content(content: str, output_file: Path) -> None:
"""Save content to a file."""
with open(output_file, 'w', encoding='utf-8') as f:
f.write(summary)
f.write(content)
def count_words(text: str) -> int:
"""Count the number of words in a text string."""
return len(text.split())
def determine_content_type(transcript_text: str) -> str:
"""Determine the type of content in the transcript."""
text = transcript_text.lower()
if re.search(r'\bblog post\b', text):
return "blog_post"
elif re.search(r'\bidea\b', text) and re.search(r'\bapp\b', text):
return "idea_app"
return "default"
def generate_summary(transcript_text: str) -> str:
"""Generate a summary of the transcript."""
prompt_template = load_prompt_template("summary")
prompt = prompt_template.format(transcript=transcript_text)
return process_with_llama(prompt)
def generate_additional_content(content_type: str, transcript_text: str, summary: str) -> str:
"""Generate additional content based on the content type."""
prompt_template = load_prompt_template(content_type)
prompt = prompt_template.format(transcript=transcript_text, summary=summary)
return process_with_llama(prompt)
def main():
transcript_dir = Path("VoiceMemos/transcripts")
summary_dir = Path("VoiceMemos/summaries")
draft_dir = Path("VoiceMemos/drafts")
prompt_dir = Path("VoiceMemos/prompts")
# Create summaries directory if it doesn't exist
summary_dir.mkdir(parents=True, exist_ok=True)
# Create necessary directories
for directory in [summary_dir, draft_dir, prompt_dir]:
directory.mkdir(parents=True, exist_ok=True)
# Get list of all transcript files
transcript_files = list(transcript_dir.glob("*.txt"))
@@ -94,16 +95,31 @@ def main():
# Skip if transcript is too short
if word_count <= 210:
print(" Transcript is too short (≤210 words), skipping summary creation")
print(" Transcript is too short (≤210 words), skipping processing")
continue
# Generate summary
summary = process_transcript(transcript_text)
# Save summary
save_summary(summary, summary_file)
print(" Generating summary...")
summary = generate_summary(transcript_text)
save_content(summary, summary_file)
print(f" Summary saved to {summary_file}")
# Determine content type and generate additional content if needed
content_type = determine_content_type(transcript_text)
if content_type != "default":
print(f" Generating additional content for type: {content_type}")
additional_content = generate_additional_content(content_type, transcript_text, summary)
# Save to appropriate directory with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
if content_type == "blog_post":
output_file = draft_dir / f"{transcript_file.stem}_{timestamp}.md"
else: # idea_app
output_file = prompt_dir / f"{transcript_file.stem}_{timestamp}.md"
save_content(additional_content, output_file)
print(f" Additional content saved to {output_file}")
# Add a small delay between files to avoid overloading
if idx < total_files:
time.sleep(1)