Files
turso/core/vector/operations/distance_l2.rs
2025-10-21 14:59:01 +04:00

240 lines
7.9 KiB
Rust

use crate::{
vector::vector_types::{Vector, VectorSparse, VectorType},
LimboError, Result,
};
use simsimd::SpatialSimilarity;
pub fn vector_distance_l2(v1: &Vector, v2: &Vector) -> Result<f64> {
if v1.dims != v2.dims {
return Err(LimboError::ConversionError(
"Vectors must have the same dimensions".to_string(),
));
}
if v1.vector_type != v2.vector_type {
return Err(LimboError::ConversionError(
"Vectors must be of the same type".to_string(),
));
}
match v1.vector_type {
#[cfg(not(target_family = "wasm"))]
VectorType::Float32Dense => Ok(vector_f32_distance_l2_simsimd(
v1.as_f32_slice(),
v2.as_f32_slice(),
)),
#[cfg(target_family = "wasm")]
VectorType::Float32Dense => Ok(vector_f32_distance_l2_rust(
v1.as_f32_slice(),
v2.as_f32_slice(),
)),
#[cfg(not(target_family = "wasm"))]
VectorType::Float64Dense => Ok(vector_f64_distance_l2_simsimd(
v1.as_f64_slice(),
v2.as_f64_slice(),
)),
#[cfg(target_family = "wasm")]
VectorType::Float64Dense => Ok(vector_f64_distance_l2_rust(
v1.as_f64_slice(),
v2.as_f64_slice(),
)),
VectorType::Float32Sparse => Ok(vector_f32_sparse_distance_l2(
v1.as_f32_sparse(),
v2.as_f32_sparse(),
)),
}
}
#[allow(dead_code)]
fn vector_f32_distance_l2_simsimd(v1: &[f32], v2: &[f32]) -> f64 {
f32::euclidean(v1, v2).unwrap_or(f64::NAN)
}
// SimSIMD do not support WASM for now, so we have alternative implementation: https://github.com/ashvardanian/SimSIMD/issues/189
#[allow(dead_code)]
fn vector_f32_distance_l2_rust(v1: &[f32], v2: &[f32]) -> f64 {
let sum = v1
.iter()
.zip(v2.iter())
.map(|(a, b)| (a - b).powi(2))
.sum::<f32>() as f64;
sum.sqrt()
}
#[allow(dead_code)]
fn vector_f64_distance_l2_simsimd(v1: &[f64], v2: &[f64]) -> f64 {
f64::euclidean(v1, v2).unwrap_or(f64::NAN)
}
// SimSIMD do not support WASM for now, so we have alternative implementation: https://github.com/ashvardanian/SimSIMD/issues/189
#[allow(dead_code)]
fn vector_f64_distance_l2_rust(v1: &[f64], v2: &[f64]) -> f64 {
let sum = v1
.iter()
.zip(v2.iter())
.map(|(a, b)| (a - b).powi(2))
.sum::<f64>();
sum.sqrt()
}
fn vector_f32_sparse_distance_l2(v1: VectorSparse<f32>, v2: VectorSparse<f32>) -> f64 {
let mut v1_pos = 0;
let mut v2_pos = 0;
let mut sum = 0.0;
while v1_pos < v1.idx.len() && v2_pos < v2.idx.len() {
if v1.idx[v1_pos] == v2.idx[v2_pos] {
sum += (v1.values[v1_pos] - v2.values[v2_pos]).powi(2);
v1_pos += 1;
v2_pos += 1;
} else if v1.idx[v1_pos] < v2.idx[v2_pos] {
sum += v1.values[v1_pos].powi(2);
v1_pos += 1;
} else {
sum += v2.values[v2_pos].powi(2);
v2_pos += 1;
}
}
while v1_pos < v1.idx.len() {
sum += v1.values[v1_pos].powi(2);
v1_pos += 1;
}
while v2_pos < v2.idx.len() {
sum += v2.values[v2_pos].powi(2);
v2_pos += 1;
}
(sum as f64).sqrt()
}
#[cfg(test)]
mod tests {
use quickcheck_macros::quickcheck;
use crate::vector::{
operations::convert::vector_convert, vector_types::tests::ArbitraryVector,
};
use super::*;
#[test]
fn test_vector_distance_l2_f32_another() {
let vectors = [
(0..8).map(|x| x as f32).collect::<Vec<f32>>(),
(1..9).map(|x| x as f32).collect::<Vec<f32>>(),
(2..10).map(|x| x as f32).collect::<Vec<f32>>(),
(3..11).map(|x| x as f32).collect::<Vec<f32>>(),
];
let query = (2..10).map(|x| x as f32).collect::<Vec<f32>>();
let expected: Vec<f64> = vec![
32.0_f64.sqrt(),
8.0_f64.sqrt(),
0.0_f64.sqrt(),
8.0_f64.sqrt(),
];
let results = vectors
.iter()
.map(|v| vector_f32_distance_l2_rust(&query, v))
.collect::<Vec<f64>>();
assert_eq!(results, expected);
}
#[test]
fn test_vector_distance_l2_odd_len() {
let v = (0..5).map(|x| x as f32).collect::<Vec<f32>>();
let query = (2..7).map(|x| x as f32).collect::<Vec<f32>>();
assert_eq!(vector_f32_distance_l2_rust(&v, &query), 20.0_f64.sqrt());
}
#[test]
fn test_vector_distance_l2_f32() {
assert_eq!(vector_f32_distance_l2_rust(&[], &[]), 0.0);
assert_eq!(
vector_f32_distance_l2_rust(&[1.0, 2.0], &[0.0, 0.0]),
(1f64 + 2f64 * 2f64).sqrt()
);
assert_eq!(vector_f32_distance_l2_rust(&[1.0, 2.0], &[1.0, 2.0]), 0.0);
assert_eq!(
vector_f32_distance_l2_rust(&[1.0, 2.0], &[-1.0, -2.0]),
(2f64 * 2f64 + 4f64 * 4f64).sqrt()
);
assert_eq!(
vector_f32_distance_l2_rust(&[1.0, 2.0], &[-2.0, 1.0]),
(3f64 * 3f64 + 1f64 * 1f64).sqrt()
);
}
#[test]
fn test_vector_distance_l2_f64() {
assert_eq!(vector_f64_distance_l2_rust(&[], &[]), 0.0);
assert_eq!(
vector_f64_distance_l2_rust(&[1.0, 2.0], &[0.0, 0.0]),
(1f64 + 2f64 * 2f64).sqrt()
);
assert_eq!(vector_f64_distance_l2_rust(&[1.0, 2.0], &[1.0, 2.0]), 0.0);
assert_eq!(
vector_f64_distance_l2_rust(&[1.0, 2.0], &[-1.0, -2.0]),
(2f64 * 2f64 + 4f64 * 4f64).sqrt()
);
assert_eq!(
vector_f64_distance_l2_rust(&[1.0, 2.0], &[-2.0, 1.0]),
(3f64 * 3f64 + 1f64 * 1f64).sqrt()
);
}
#[test]
fn test_vector_distance_l2_f32_sparse() {
assert!(
(vector_f32_sparse_distance_l2(
VectorSparse {
idx: &[0, 1],
values: &[1.0, 2.0]
},
VectorSparse {
idx: &[1, 2],
values: &[1.0, 3.0]
},
) - vector_f32_distance_l2_rust(&[1.0, 2.0, 0.0], &[0.0, 1.0, 3.0]))
.abs()
< 1e-7
);
}
#[quickcheck]
fn prop_vector_distance_l2_dense_vs_sparse(
v1: ArbitraryVector<100>,
v2: ArbitraryVector<100>,
) -> bool {
let v1 = vector_convert(v1.into(), VectorType::Float32Dense).unwrap();
let v2 = vector_convert(v2.into(), VectorType::Float32Dense).unwrap();
let d1 = vector_distance_l2(&v1, &v2).unwrap();
let sparse1 = vector_convert(v1, VectorType::Float32Sparse).unwrap();
let sparse2 = vector_convert(v2, VectorType::Float32Sparse).unwrap();
let d2 = vector_f32_sparse_distance_l2(sparse1.as_f32_sparse(), sparse2.as_f32_sparse());
(d1.is_nan() && d2.is_nan()) || (d1 - d2).abs() < 1e-6
}
#[quickcheck]
fn prop_vector_distance_l2_rust_vs_simsimd_f32(
v1: ArbitraryVector<100>,
v2: ArbitraryVector<100>,
) -> bool {
let v1 = vector_convert(v1.into(), VectorType::Float32Dense).unwrap();
let v2 = vector_convert(v2.into(), VectorType::Float32Dense).unwrap();
let d1 = vector_f32_distance_l2_rust(v1.as_f32_slice(), v2.as_f32_slice());
let d2 = vector_f32_distance_l2_simsimd(v1.as_f32_slice(), v2.as_f32_slice());
(d1.is_nan() && d2.is_nan()) || (d1 - d2).abs() < 1e-4
}
#[quickcheck]
fn prop_vector_distance_l2_rust_vs_simsimd_f64(
v1: ArbitraryVector<100>,
v2: ArbitraryVector<100>,
) -> bool {
let v1 = vector_convert(v1.into(), VectorType::Float64Dense).unwrap();
let v2 = vector_convert(v2.into(), VectorType::Float64Dense).unwrap();
let d1 = vector_f64_distance_l2_rust(v1.as_f64_slice(), v2.as_f64_slice());
let d2 = vector_f64_distance_l2_simsimd(v1.as_f64_slice(), v2.as_f64_slice());
(d1.is_nan() && d2.is_nan()) || (d1 - d2).abs() < 1e-6
}
}