use crate::{ vector::vector_types::{Vector, VectorSparse, VectorType}, LimboError, Result, }; use simsimd::SpatialSimilarity; pub fn vector_distance_l2(v1: &Vector, v2: &Vector) -> Result { if v1.dims != v2.dims { return Err(LimboError::ConversionError( "Vectors must have the same dimensions".to_string(), )); } if v1.vector_type != v2.vector_type { return Err(LimboError::ConversionError( "Vectors must be of the same type".to_string(), )); } match v1.vector_type { #[cfg(not(target_family = "wasm"))] VectorType::Float32Dense => Ok(vector_f32_distance_l2_simsimd( v1.as_f32_slice(), v2.as_f32_slice(), )), #[cfg(target_family = "wasm")] VectorType::Float32Dense => Ok(vector_f32_distance_l2_rust( v1.as_f32_slice(), v2.as_f32_slice(), )), #[cfg(not(target_family = "wasm"))] VectorType::Float64Dense => Ok(vector_f64_distance_l2_simsimd( v1.as_f64_slice(), v2.as_f64_slice(), )), #[cfg(target_family = "wasm")] VectorType::Float64Dense => Ok(vector_f64_distance_l2_rust( v1.as_f64_slice(), v2.as_f64_slice(), )), VectorType::Float32Sparse => Ok(vector_f32_sparse_distance_l2( v1.as_f32_sparse(), v2.as_f32_sparse(), )), } } #[allow(dead_code)] fn vector_f32_distance_l2_simsimd(v1: &[f32], v2: &[f32]) -> f64 { f32::euclidean(v1, v2).unwrap_or(f64::NAN) } // SimSIMD do not support WASM for now, so we have alternative implementation: https://github.com/ashvardanian/SimSIMD/issues/189 #[allow(dead_code)] fn vector_f32_distance_l2_rust(v1: &[f32], v2: &[f32]) -> f64 { let sum = v1 .iter() .zip(v2.iter()) .map(|(a, b)| (a - b).powi(2)) .sum::() as f64; sum.sqrt() } #[allow(dead_code)] fn vector_f64_distance_l2_simsimd(v1: &[f64], v2: &[f64]) -> f64 { f64::euclidean(v1, v2).unwrap_or(f64::NAN) } // SimSIMD do not support WASM for now, so we have alternative implementation: https://github.com/ashvardanian/SimSIMD/issues/189 #[allow(dead_code)] fn vector_f64_distance_l2_rust(v1: &[f64], v2: &[f64]) -> f64 { let sum = v1 .iter() .zip(v2.iter()) .map(|(a, b)| (a - b).powi(2)) .sum::(); sum.sqrt() } fn vector_f32_sparse_distance_l2(v1: VectorSparse, v2: VectorSparse) -> f64 { let mut v1_pos = 0; let mut v2_pos = 0; let mut sum = 0.0; while v1_pos < v1.idx.len() && v2_pos < v2.idx.len() { if v1.idx[v1_pos] == v2.idx[v2_pos] { sum += (v1.values[v1_pos] - v2.values[v2_pos]).powi(2); v1_pos += 1; v2_pos += 1; } else if v1.idx[v1_pos] < v2.idx[v2_pos] { sum += v1.values[v1_pos].powi(2); v1_pos += 1; } else { sum += v2.values[v2_pos].powi(2); v2_pos += 1; } } while v1_pos < v1.idx.len() { sum += v1.values[v1_pos].powi(2); v1_pos += 1; } while v2_pos < v2.idx.len() { sum += v2.values[v2_pos].powi(2); v2_pos += 1; } (sum as f64).sqrt() } #[cfg(test)] mod tests { use quickcheck_macros::quickcheck; use crate::vector::{ operations::convert::vector_convert, vector_types::tests::ArbitraryVector, }; use super::*; #[test] fn test_vector_distance_l2_f32_another() { let vectors = [ (0..8).map(|x| x as f32).collect::>(), (1..9).map(|x| x as f32).collect::>(), (2..10).map(|x| x as f32).collect::>(), (3..11).map(|x| x as f32).collect::>(), ]; let query = (2..10).map(|x| x as f32).collect::>(); let expected: Vec = vec![ 32.0_f64.sqrt(), 8.0_f64.sqrt(), 0.0_f64.sqrt(), 8.0_f64.sqrt(), ]; let results = vectors .iter() .map(|v| vector_f32_distance_l2_rust(&query, v)) .collect::>(); assert_eq!(results, expected); } #[test] fn test_vector_distance_l2_odd_len() { let v = (0..5).map(|x| x as f32).collect::>(); let query = (2..7).map(|x| x as f32).collect::>(); assert_eq!(vector_f32_distance_l2_rust(&v, &query), 20.0_f64.sqrt()); } #[test] fn test_vector_distance_l2_f32() { assert_eq!(vector_f32_distance_l2_rust(&[], &[]), 0.0); assert_eq!( vector_f32_distance_l2_rust(&[1.0, 2.0], &[0.0, 0.0]), (1f64 + 2f64 * 2f64).sqrt() ); assert_eq!(vector_f32_distance_l2_rust(&[1.0, 2.0], &[1.0, 2.0]), 0.0); assert_eq!( vector_f32_distance_l2_rust(&[1.0, 2.0], &[-1.0, -2.0]), (2f64 * 2f64 + 4f64 * 4f64).sqrt() ); assert_eq!( vector_f32_distance_l2_rust(&[1.0, 2.0], &[-2.0, 1.0]), (3f64 * 3f64 + 1f64 * 1f64).sqrt() ); } #[test] fn test_vector_distance_l2_f64() { assert_eq!(vector_f64_distance_l2_rust(&[], &[]), 0.0); assert_eq!( vector_f64_distance_l2_rust(&[1.0, 2.0], &[0.0, 0.0]), (1f64 + 2f64 * 2f64).sqrt() ); assert_eq!(vector_f64_distance_l2_rust(&[1.0, 2.0], &[1.0, 2.0]), 0.0); assert_eq!( vector_f64_distance_l2_rust(&[1.0, 2.0], &[-1.0, -2.0]), (2f64 * 2f64 + 4f64 * 4f64).sqrt() ); assert_eq!( vector_f64_distance_l2_rust(&[1.0, 2.0], &[-2.0, 1.0]), (3f64 * 3f64 + 1f64 * 1f64).sqrt() ); } #[test] fn test_vector_distance_l2_f32_sparse() { assert!( (vector_f32_sparse_distance_l2( VectorSparse { idx: &[0, 1], values: &[1.0, 2.0] }, VectorSparse { idx: &[1, 2], values: &[1.0, 3.0] }, ) - vector_f32_distance_l2_rust(&[1.0, 2.0, 0.0], &[0.0, 1.0, 3.0])) .abs() < 1e-7 ); } #[quickcheck] fn prop_vector_distance_l2_dense_vs_sparse( v1: ArbitraryVector<100>, v2: ArbitraryVector<100>, ) -> bool { let v1 = vector_convert(v1.into(), VectorType::Float32Dense).unwrap(); let v2 = vector_convert(v2.into(), VectorType::Float32Dense).unwrap(); let d1 = vector_distance_l2(&v1, &v2).unwrap(); let sparse1 = vector_convert(v1, VectorType::Float32Sparse).unwrap(); let sparse2 = vector_convert(v2, VectorType::Float32Sparse).unwrap(); let d2 = vector_f32_sparse_distance_l2(sparse1.as_f32_sparse(), sparse2.as_f32_sparse()); (d1.is_nan() && d2.is_nan()) || (d1 - d2).abs() < 1e-6 } #[quickcheck] fn prop_vector_distance_l2_rust_vs_simsimd_f32( v1: ArbitraryVector<100>, v2: ArbitraryVector<100>, ) -> bool { let v1 = vector_convert(v1.into(), VectorType::Float32Dense).unwrap(); let v2 = vector_convert(v2.into(), VectorType::Float32Dense).unwrap(); let d1 = vector_f32_distance_l2_rust(v1.as_f32_slice(), v2.as_f32_slice()); let d2 = vector_f32_distance_l2_simsimd(v1.as_f32_slice(), v2.as_f32_slice()); (d1.is_nan() && d2.is_nan()) || (d1 - d2).abs() < 1e-4 } #[quickcheck] fn prop_vector_distance_l2_rust_vs_simsimd_f64( v1: ArbitraryVector<100>, v2: ArbitraryVector<100>, ) -> bool { let v1 = vector_convert(v1.into(), VectorType::Float64Dense).unwrap(); let v2 = vector_convert(v2.into(), VectorType::Float64Dense).unwrap(); let d1 = vector_f64_distance_l2_rust(v1.as_f64_slice(), v2.as_f64_slice()); let d2 = vector_f64_distance_l2_simsimd(v1.as_f64_slice(), v2.as_f64_slice()); (d1.is_nan() && d2.is_nan()) || (d1 - d2).abs() < 1e-6 } }