mirror of
https://github.com/aljazceru/turso.git
synced 2025-12-29 14:04:22 +01:00
554 lines
23 KiB
Rust
554 lines
23 KiB
Rust
use limbo_sqlite3_parser::ast::{self, Expr};
|
|
use rand::{seq::SliceRandom as _, Rng};
|
|
|
|
use crate::model::{
|
|
query::predicate::Predicate,
|
|
table::{Table, Value},
|
|
};
|
|
|
|
use super::{
|
|
backtrack, one_of,
|
|
table::{GTValue, LTValue, LikeValue},
|
|
ArbitraryFrom, ArbitraryFromMaybe as _,
|
|
};
|
|
|
|
struct CompoundPredicate(Predicate);
|
|
struct SimplePredicate(Predicate);
|
|
|
|
impl ArbitraryFrom<(&Table, bool)> for SimplePredicate {
|
|
fn arbitrary_from<R: Rng>(rng: &mut R, (table, predicate_value): (&Table, bool)) -> Self {
|
|
// Pick a random column
|
|
let column_index = rng.gen_range(0..table.columns.len());
|
|
let column = &table.columns[column_index];
|
|
let column_values = table
|
|
.rows
|
|
.iter()
|
|
.map(|r| &r[column_index])
|
|
.collect::<Vec<_>>();
|
|
// Pick an operator
|
|
let operator = match predicate_value {
|
|
true => one_of(
|
|
vec![
|
|
Box::new(|rng| {
|
|
Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::Equals,
|
|
Box::new(Expr::arbitrary_from(rng, &column_values)),
|
|
)
|
|
}),
|
|
Box::new(|rng| {
|
|
let gt_value = GTValue::arbitrary_from(rng, &column_values).0;
|
|
Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::Greater,
|
|
Box::new(Expr::Literal(gt_value.into())),
|
|
)
|
|
}),
|
|
Box::new(|rng| {
|
|
let lt_value = LTValue::arbitrary_from(rng, &column_values).0;
|
|
Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::Less,
|
|
Box::new(Expr::Literal(lt_value.into())),
|
|
)
|
|
}),
|
|
],
|
|
rng,
|
|
),
|
|
false => one_of(
|
|
vec![
|
|
Box::new(|rng| {
|
|
Expr::Binary(
|
|
Box::new(Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::NotEquals,
|
|
Box::new(Expr::arbitrary_from(rng, &column_values)),
|
|
)
|
|
}),
|
|
Box::new(|rng| {
|
|
let lt_value = LTValue::arbitrary_from(rng, &column_values).0;
|
|
Expr::Binary(
|
|
Box::new(Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::Greater,
|
|
Box::new(Expr::Literal(lt_value.into())),
|
|
)
|
|
}),
|
|
Box::new(|rng| {
|
|
let gt_value = GTValue::arbitrary_from(rng, &column_values).0;
|
|
Expr::Binary(
|
|
Box::new(Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::Less,
|
|
Box::new(Expr::Literal(gt_value.into())),
|
|
)
|
|
}),
|
|
],
|
|
rng,
|
|
),
|
|
};
|
|
|
|
Self(Predicate(operator))
|
|
}
|
|
}
|
|
|
|
impl ArbitraryFrom<(&Table, bool)> for CompoundPredicate {
|
|
fn arbitrary_from<R: Rng>(rng: &mut R, (table, predicate_value): (&Table, bool)) -> Self {
|
|
// Decide if you want to create an AND or an OR
|
|
Self(if rng.gen_bool(0.7) {
|
|
// An AND for true requires each of its children to be true
|
|
// An AND for false requires at least one of its children to be false
|
|
if predicate_value {
|
|
(0..rng.gen_range(0..=3))
|
|
.map(|_| SimplePredicate::arbitrary_from(rng, (table, true)).0)
|
|
.reduce(|accum, curr| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(accum.0),
|
|
ast::Operator::And,
|
|
Box::new(curr.0),
|
|
))
|
|
})
|
|
.unwrap_or(Predicate::true_()) // Empty And is True
|
|
} else {
|
|
// Create a vector of random booleans
|
|
let mut booleans = (0..rng.gen_range(0..=3))
|
|
.map(|_| rng.gen_bool(0.5))
|
|
.collect::<Vec<_>>();
|
|
|
|
let len = booleans.len();
|
|
|
|
// Make sure at least one of them is false
|
|
if !booleans.is_empty() && booleans.iter().all(|b| *b) {
|
|
booleans[rng.gen_range(0..len)] = false;
|
|
}
|
|
|
|
booleans
|
|
.iter()
|
|
.map(|b| SimplePredicate::arbitrary_from(rng, (table, *b)).0)
|
|
.reduce(|accum, curr| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(accum.0),
|
|
ast::Operator::And,
|
|
Box::new(curr.0),
|
|
))
|
|
})
|
|
.unwrap_or(Predicate::true_()) // Empty And is True
|
|
}
|
|
} else {
|
|
// An OR for true requires at least one of its children to be true
|
|
// An OR for false requires each of its children to be false
|
|
if predicate_value {
|
|
// Create a vector of random booleans
|
|
let mut booleans = (0..rng.gen_range(0..=3))
|
|
.map(|_| rng.gen_bool(0.5))
|
|
.collect::<Vec<_>>();
|
|
let len = booleans.len();
|
|
// Make sure at least one of them is true
|
|
if !booleans.is_empty() && booleans.iter().all(|b| !*b) {
|
|
booleans[rng.gen_range(0..len)] = true;
|
|
}
|
|
|
|
booleans
|
|
.iter()
|
|
.map(|b| SimplePredicate::arbitrary_from(rng, (table, *b)).0)
|
|
.reduce(|accum, curr| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(accum.0),
|
|
ast::Operator::Or,
|
|
Box::new(curr.0),
|
|
))
|
|
})
|
|
.unwrap_or(Predicate::false_()) // Empty Or is False
|
|
} else {
|
|
(0..rng.gen_range(0..=3))
|
|
.map(|_| SimplePredicate::arbitrary_from(rng, (table, false)).0)
|
|
.reduce(|accum, curr| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(accum.0),
|
|
ast::Operator::Or,
|
|
Box::new(curr.0),
|
|
))
|
|
})
|
|
.unwrap_or(Predicate::false_()) // Empty Or is False
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
impl ArbitraryFrom<&Table> for Predicate {
|
|
fn arbitrary_from<R: Rng>(rng: &mut R, table: &Table) -> Self {
|
|
let predicate_value = rng.gen_bool(0.5);
|
|
CompoundPredicate::arbitrary_from(rng, (table, predicate_value)).0
|
|
}
|
|
}
|
|
|
|
impl ArbitraryFrom<(&str, &Value)> for Predicate {
|
|
fn arbitrary_from<R: Rng>(rng: &mut R, (column_name, value): (&str, &Value)) -> Self {
|
|
one_of(
|
|
vec![
|
|
Box::new(|_| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column_name.to_string()),
|
|
)),
|
|
ast::Operator::Equals,
|
|
Box::new(Expr::Literal(value.into())),
|
|
))
|
|
}),
|
|
Box::new(|rng| {
|
|
let gt_value = GTValue::arbitrary_from(rng, value).0;
|
|
Predicate(Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column_name.to_string()),
|
|
)),
|
|
ast::Operator::Greater,
|
|
Box::new(Expr::Literal(gt_value.into())),
|
|
))
|
|
}),
|
|
Box::new(|rng| {
|
|
let lt_value = LTValue::arbitrary_from(rng, value).0;
|
|
Predicate(Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column_name.to_string()),
|
|
)),
|
|
ast::Operator::Less,
|
|
Box::new(Expr::Literal(lt_value.into())),
|
|
))
|
|
}),
|
|
],
|
|
rng,
|
|
)
|
|
}
|
|
}
|
|
|
|
/// Produces a predicate that is true for the provided row in the given table
|
|
fn produce_true_predicate<R: Rng>(rng: &mut R, (t, row): (&Table, &Vec<Value>)) -> Predicate {
|
|
// Pick a column
|
|
let column_index = rng.gen_range(0..t.columns.len());
|
|
let column = &t.columns[column_index];
|
|
let value = &row[column_index];
|
|
backtrack(
|
|
vec![
|
|
(
|
|
1,
|
|
Box::new(|_| {
|
|
Some(Predicate(Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::Equals,
|
|
Box::new(Expr::Literal(value.into())),
|
|
)))
|
|
}),
|
|
),
|
|
(
|
|
1,
|
|
Box::new(|rng| {
|
|
let v = Value::arbitrary_from(rng, &column.column_type);
|
|
if &v == value {
|
|
None
|
|
} else {
|
|
Some(Predicate(Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::NotEquals,
|
|
Box::new(Expr::Literal(v.into())),
|
|
)))
|
|
}
|
|
}),
|
|
),
|
|
(
|
|
1,
|
|
Box::new(|rng| {
|
|
let lt_value = LTValue::arbitrary_from(rng, value).0;
|
|
Some(Predicate(Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::Greater,
|
|
Box::new(Expr::Literal(lt_value.into())),
|
|
)))
|
|
}),
|
|
),
|
|
(
|
|
1,
|
|
Box::new(|rng| {
|
|
let gt_value = GTValue::arbitrary_from(rng, value).0;
|
|
Some(Predicate(Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::Less,
|
|
Box::new(Expr::Literal(gt_value.into())),
|
|
)))
|
|
}),
|
|
),
|
|
(
|
|
1,
|
|
Box::new(|rng| {
|
|
LikeValue::arbitrary_from_maybe(rng, value).map(|like| {
|
|
Predicate(Expr::Like {
|
|
lhs: Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
not: false, // TODO: also generate this value eventually
|
|
op: ast::LikeOperator::Like,
|
|
rhs: Box::new(Expr::Literal(like.0.into())),
|
|
escape: None, // TODO: implement
|
|
})
|
|
})
|
|
}),
|
|
),
|
|
],
|
|
rng,
|
|
)
|
|
}
|
|
|
|
/// Produces a predicate that is false for the provided row in the given table
|
|
fn produce_false_predicate<R: Rng>(rng: &mut R, (t, row): (&Table, &Vec<Value>)) -> Predicate {
|
|
// Pick a column
|
|
let column_index = rng.gen_range(0..t.columns.len());
|
|
let column = &t.columns[column_index];
|
|
let value = &row[column_index];
|
|
one_of(
|
|
vec![
|
|
Box::new(|_| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::NotEquals,
|
|
Box::new(Expr::Literal(value.into())),
|
|
))
|
|
}),
|
|
Box::new(|rng| {
|
|
let v = loop {
|
|
let v = Value::arbitrary_from(rng, &column.column_type);
|
|
if &v != value {
|
|
break v;
|
|
}
|
|
};
|
|
Predicate(Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::Equals,
|
|
Box::new(Expr::Literal(v.into())),
|
|
))
|
|
}),
|
|
Box::new(|rng| {
|
|
let gt_value = GTValue::arbitrary_from(rng, value).0;
|
|
Predicate(Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::Greater,
|
|
Box::new(Expr::Literal(gt_value.into())),
|
|
))
|
|
}),
|
|
Box::new(|rng| {
|
|
let lt_value = LTValue::arbitrary_from(rng, value).0;
|
|
Predicate(Expr::Binary(
|
|
Box::new(ast::Expr::Qualified(
|
|
ast::Name("".to_string()),
|
|
ast::Name(column.name.clone()),
|
|
)),
|
|
ast::Operator::Less,
|
|
Box::new(Expr::Literal(lt_value.into())),
|
|
))
|
|
}),
|
|
],
|
|
rng,
|
|
)
|
|
}
|
|
|
|
impl ArbitraryFrom<(&Table, &Vec<Value>)> for Predicate {
|
|
fn arbitrary_from<R: Rng>(rng: &mut R, (t, row): (&Table, &Vec<Value>)) -> Self {
|
|
// We want to produce a predicate that is true for the row
|
|
// We can do this by creating several predicates that
|
|
// are true, some that are false, combiend them in ways that correspond to the creation of a true predicate
|
|
|
|
// Produce some true and false predicates
|
|
let mut true_predicates = (1..=rng.gen_range(1..=4))
|
|
.map(|_| produce_true_predicate(rng, (t, row)))
|
|
.collect::<Vec<_>>();
|
|
|
|
let false_predicates = (0..=rng.gen_range(0..=3))
|
|
.map(|_| produce_false_predicate(rng, (t, row)))
|
|
.collect::<Vec<_>>();
|
|
|
|
// Start building a top level predicate from a true predicate
|
|
let mut result = true_predicates.pop().unwrap();
|
|
|
|
let mut predicates = true_predicates
|
|
.iter()
|
|
.map(|p| (true, p.clone()))
|
|
.chain(false_predicates.iter().map(|p| (false, p.clone())))
|
|
.collect::<Vec<_>>();
|
|
|
|
predicates.shuffle(rng);
|
|
|
|
while !predicates.is_empty() {
|
|
// Create a new predicate from at least 1 and at most 3 predicates
|
|
let context =
|
|
predicates[0..rng.gen_range(0..=usize::min(3, predicates.len()))].to_vec();
|
|
// Shift `predicates` to remove the predicates in the context
|
|
predicates = predicates[context.len()..].to_vec();
|
|
|
|
// `result` is true, so we have the following three options to make a true predicate:
|
|
// T or F
|
|
// T or T
|
|
// T and T
|
|
|
|
result = one_of(
|
|
vec![
|
|
// T or (X1 or X2 or ... or Xn)
|
|
Box::new(|_| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(result.0.clone()),
|
|
ast::Operator::Or,
|
|
Box::new(
|
|
context
|
|
.iter()
|
|
.map(|(_, p)| p.clone())
|
|
.reduce(|accum, curr| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(accum.0),
|
|
ast::Operator::Or,
|
|
Box::new(curr.0),
|
|
))
|
|
})
|
|
.unwrap_or(Predicate::false_())
|
|
.0,
|
|
),
|
|
))
|
|
}),
|
|
// T or (T1 and T2 and ... and Tn)
|
|
Box::new(|_| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(result.0.clone()),
|
|
ast::Operator::Or,
|
|
Box::new(
|
|
context
|
|
.iter()
|
|
.map(|(_, p)| p.clone())
|
|
.reduce(|accum, curr| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(accum.0),
|
|
ast::Operator::And,
|
|
Box::new(curr.0),
|
|
))
|
|
})
|
|
.unwrap_or(Predicate::true_())
|
|
.0,
|
|
),
|
|
))
|
|
}),
|
|
// T and T
|
|
Box::new(|_| {
|
|
// Check if all the predicates in the context are true
|
|
if context.iter().all(|(b, _)| *b) {
|
|
// T and (X1 or X2 or ... or Xn)
|
|
Predicate(Expr::Binary(
|
|
Box::new(result.0.clone()),
|
|
ast::Operator::And,
|
|
Box::new(
|
|
context
|
|
.iter()
|
|
.map(|(_, p)| p.clone())
|
|
.reduce(|accum, curr| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(accum.0),
|
|
ast::Operator::And,
|
|
Box::new(curr.0),
|
|
))
|
|
})
|
|
.unwrap_or(Predicate::true_())
|
|
.0,
|
|
),
|
|
))
|
|
}
|
|
// Check if there is at least one true predicate
|
|
else if context.iter().any(|(b, _)| *b) {
|
|
// T and (X1 or X2 or ... or Xn)
|
|
Predicate(Expr::Binary(
|
|
Box::new(result.0.clone()),
|
|
ast::Operator::And,
|
|
Box::new(
|
|
context
|
|
.iter()
|
|
.map(|(_, p)| p.clone())
|
|
.reduce(|accum, curr| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(accum.0),
|
|
ast::Operator::Or,
|
|
Box::new(curr.0),
|
|
))
|
|
})
|
|
.unwrap_or(Predicate::false_())
|
|
.0,
|
|
),
|
|
))
|
|
// Predicate::And(vec![
|
|
// result.clone(),
|
|
// Predicate::Or(context.iter().map(|(_, p)| p.clone()).collect()),
|
|
// ])
|
|
} else {
|
|
// T and (X1 or X2 or ... or Xn or TRUE)
|
|
Predicate(Expr::Binary(
|
|
Box::new(result.0.clone()),
|
|
ast::Operator::And,
|
|
Box::new(
|
|
context
|
|
.iter()
|
|
.map(|(_, p)| p.clone())
|
|
.chain(std::iter::once(Predicate::true_()))
|
|
.reduce(|accum, curr| {
|
|
Predicate(Expr::Binary(
|
|
Box::new(accum.0),
|
|
ast::Operator::Or,
|
|
Box::new(curr.0),
|
|
))
|
|
})
|
|
.unwrap() // Chain guarantees at least one value
|
|
.0,
|
|
),
|
|
))
|
|
}
|
|
}),
|
|
],
|
|
rng,
|
|
);
|
|
}
|
|
|
|
result
|
|
}
|
|
}
|