use limbo_sqlite3_parser::ast::{self, Expr}; use rand::{seq::SliceRandom as _, Rng}; use crate::model::{ query::predicate::Predicate, table::{Table, Value}, }; use super::{ backtrack, one_of, table::{GTValue, LTValue, LikeValue}, ArbitraryFrom, ArbitraryFromMaybe as _, }; struct CompoundPredicate(Predicate); struct SimplePredicate(Predicate); impl ArbitraryFrom<(&Table, bool)> for SimplePredicate { fn arbitrary_from(rng: &mut R, (table, predicate_value): (&Table, bool)) -> Self { // Pick a random column let column_index = rng.gen_range(0..table.columns.len()); let column = &table.columns[column_index]; let column_values = table .rows .iter() .map(|r| &r[column_index]) .collect::>(); // Pick an operator let operator = match predicate_value { true => one_of( vec![ Box::new(|rng| { Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::Equals, Box::new(Expr::arbitrary_from(rng, &column_values)), ) }), Box::new(|rng| { let gt_value = GTValue::arbitrary_from(rng, &column_values).0; Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::Greater, Box::new(Expr::Literal(gt_value.into())), ) }), Box::new(|rng| { let lt_value = LTValue::arbitrary_from(rng, &column_values).0; Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::Less, Box::new(Expr::Literal(lt_value.into())), ) }), ], rng, ), false => one_of( vec![ Box::new(|rng| { Expr::Binary( Box::new(Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::NotEquals, Box::new(Expr::arbitrary_from(rng, &column_values)), ) }), Box::new(|rng| { let lt_value = LTValue::arbitrary_from(rng, &column_values).0; Expr::Binary( Box::new(Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::Greater, Box::new(Expr::Literal(lt_value.into())), ) }), Box::new(|rng| { let gt_value = GTValue::arbitrary_from(rng, &column_values).0; Expr::Binary( Box::new(Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::Less, Box::new(Expr::Literal(gt_value.into())), ) }), ], rng, ), }; Self(Predicate(operator)) } } impl ArbitraryFrom<(&Table, bool)> for CompoundPredicate { fn arbitrary_from(rng: &mut R, (table, predicate_value): (&Table, bool)) -> Self { // Decide if you want to create an AND or an OR Self(if rng.gen_bool(0.7) { // An AND for true requires each of its children to be true // An AND for false requires at least one of its children to be false if predicate_value { (0..rng.gen_range(0..=3)) .map(|_| SimplePredicate::arbitrary_from(rng, (table, true)).0) .reduce(|accum, curr| { Predicate(Expr::Binary( Box::new(accum.0), ast::Operator::And, Box::new(curr.0), )) }) .unwrap_or(Predicate::true_()) // Empty And is True } else { // Create a vector of random booleans let mut booleans = (0..rng.gen_range(0..=3)) .map(|_| rng.gen_bool(0.5)) .collect::>(); let len = booleans.len(); // Make sure at least one of them is false if !booleans.is_empty() && booleans.iter().all(|b| *b) { booleans[rng.gen_range(0..len)] = false; } booleans .iter() .map(|b| SimplePredicate::arbitrary_from(rng, (table, *b)).0) .reduce(|accum, curr| { Predicate(Expr::Binary( Box::new(accum.0), ast::Operator::And, Box::new(curr.0), )) }) .unwrap_or(Predicate::true_()) // Empty And is True } } else { // An OR for true requires at least one of its children to be true // An OR for false requires each of its children to be false if predicate_value { // Create a vector of random booleans let mut booleans = (0..rng.gen_range(0..=3)) .map(|_| rng.gen_bool(0.5)) .collect::>(); let len = booleans.len(); // Make sure at least one of them is true if !booleans.is_empty() && booleans.iter().all(|b| !*b) { booleans[rng.gen_range(0..len)] = true; } booleans .iter() .map(|b| SimplePredicate::arbitrary_from(rng, (table, *b)).0) .reduce(|accum, curr| { Predicate(Expr::Binary( Box::new(accum.0), ast::Operator::Or, Box::new(curr.0), )) }) .unwrap_or(Predicate::false_()) // Empty Or is False } else { (0..rng.gen_range(0..=3)) .map(|_| SimplePredicate::arbitrary_from(rng, (table, false)).0) .reduce(|accum, curr| { Predicate(Expr::Binary( Box::new(accum.0), ast::Operator::Or, Box::new(curr.0), )) }) .unwrap_or(Predicate::false_()) // Empty Or is False } }) } } impl ArbitraryFrom<&Table> for Predicate { fn arbitrary_from(rng: &mut R, table: &Table) -> Self { let predicate_value = rng.gen_bool(0.5); CompoundPredicate::arbitrary_from(rng, (table, predicate_value)).0 } } impl ArbitraryFrom<(&str, &Value)> for Predicate { fn arbitrary_from(rng: &mut R, (column_name, value): (&str, &Value)) -> Self { one_of( vec![ Box::new(|_| { Predicate(Expr::Binary( Box::new(Expr::Qualified( ast::Name("".to_string()), ast::Name(column_name.to_string()), )), ast::Operator::Equals, Box::new(Expr::Literal(value.into())), )) }), Box::new(|rng| { let gt_value = GTValue::arbitrary_from(rng, value).0; Predicate(Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column_name.to_string()), )), ast::Operator::Greater, Box::new(Expr::Literal(gt_value.into())), )) }), Box::new(|rng| { let lt_value = LTValue::arbitrary_from(rng, value).0; Predicate(Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column_name.to_string()), )), ast::Operator::Less, Box::new(Expr::Literal(lt_value.into())), )) }), ], rng, ) } } /// Produces a predicate that is true for the provided row in the given table fn produce_true_predicate(rng: &mut R, (t, row): (&Table, &Vec)) -> Predicate { // Pick a column let column_index = rng.gen_range(0..t.columns.len()); let column = &t.columns[column_index]; let value = &row[column_index]; backtrack( vec![ ( 1, Box::new(|_| { Some(Predicate(Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::Equals, Box::new(Expr::Literal(value.into())), ))) }), ), ( 1, Box::new(|rng| { let v = Value::arbitrary_from(rng, &column.column_type); if &v == value { None } else { Some(Predicate(Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::NotEquals, Box::new(Expr::Literal(v.into())), ))) } }), ), ( 1, Box::new(|rng| { let lt_value = LTValue::arbitrary_from(rng, value).0; Some(Predicate(Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::Greater, Box::new(Expr::Literal(lt_value.into())), ))) }), ), ( 1, Box::new(|rng| { let gt_value = GTValue::arbitrary_from(rng, value).0; Some(Predicate(Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::Less, Box::new(Expr::Literal(gt_value.into())), ))) }), ), ( 1, Box::new(|rng| { LikeValue::arbitrary_from_maybe(rng, value).map(|like| { Predicate(Expr::Like { lhs: Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), not: false, // TODO: also generate this value eventually op: ast::LikeOperator::Like, rhs: Box::new(Expr::Literal(like.0.into())), escape: None, // TODO: implement }) }) }), ), ], rng, ) } /// Produces a predicate that is false for the provided row in the given table fn produce_false_predicate(rng: &mut R, (t, row): (&Table, &Vec)) -> Predicate { // Pick a column let column_index = rng.gen_range(0..t.columns.len()); let column = &t.columns[column_index]; let value = &row[column_index]; one_of( vec![ Box::new(|_| { Predicate(Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::NotEquals, Box::new(Expr::Literal(value.into())), )) }), Box::new(|rng| { let v = loop { let v = Value::arbitrary_from(rng, &column.column_type); if &v != value { break v; } }; Predicate(Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::Equals, Box::new(Expr::Literal(v.into())), )) }), Box::new(|rng| { let gt_value = GTValue::arbitrary_from(rng, value).0; Predicate(Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::Greater, Box::new(Expr::Literal(gt_value.into())), )) }), Box::new(|rng| { let lt_value = LTValue::arbitrary_from(rng, value).0; Predicate(Expr::Binary( Box::new(ast::Expr::Qualified( ast::Name("".to_string()), ast::Name(column.name.clone()), )), ast::Operator::Less, Box::new(Expr::Literal(lt_value.into())), )) }), ], rng, ) } impl ArbitraryFrom<(&Table, &Vec)> for Predicate { fn arbitrary_from(rng: &mut R, (t, row): (&Table, &Vec)) -> Self { // We want to produce a predicate that is true for the row // We can do this by creating several predicates that // are true, some that are false, combiend them in ways that correspond to the creation of a true predicate // Produce some true and false predicates let mut true_predicates = (1..=rng.gen_range(1..=4)) .map(|_| produce_true_predicate(rng, (t, row))) .collect::>(); let false_predicates = (0..=rng.gen_range(0..=3)) .map(|_| produce_false_predicate(rng, (t, row))) .collect::>(); // Start building a top level predicate from a true predicate let mut result = true_predicates.pop().unwrap(); let mut predicates = true_predicates .iter() .map(|p| (true, p.clone())) .chain(false_predicates.iter().map(|p| (false, p.clone()))) .collect::>(); predicates.shuffle(rng); while !predicates.is_empty() { // Create a new predicate from at least 1 and at most 3 predicates let context = predicates[0..rng.gen_range(0..=usize::min(3, predicates.len()))].to_vec(); // Shift `predicates` to remove the predicates in the context predicates = predicates[context.len()..].to_vec(); // `result` is true, so we have the following three options to make a true predicate: // T or F // T or T // T and T result = one_of( vec![ // T or (X1 or X2 or ... or Xn) Box::new(|_| { Predicate(Expr::Binary( Box::new(result.0.clone()), ast::Operator::Or, Box::new( context .iter() .map(|(_, p)| p.clone()) .reduce(|accum, curr| { Predicate(Expr::Binary( Box::new(accum.0), ast::Operator::Or, Box::new(curr.0), )) }) .unwrap_or(Predicate::false_()) .0, ), )) }), // T or (T1 and T2 and ... and Tn) Box::new(|_| { Predicate(Expr::Binary( Box::new(result.0.clone()), ast::Operator::Or, Box::new( context .iter() .map(|(_, p)| p.clone()) .reduce(|accum, curr| { Predicate(Expr::Binary( Box::new(accum.0), ast::Operator::And, Box::new(curr.0), )) }) .unwrap_or(Predicate::true_()) .0, ), )) }), // T and T Box::new(|_| { // Check if all the predicates in the context are true if context.iter().all(|(b, _)| *b) { // T and (X1 or X2 or ... or Xn) Predicate(Expr::Binary( Box::new(result.0.clone()), ast::Operator::And, Box::new( context .iter() .map(|(_, p)| p.clone()) .reduce(|accum, curr| { Predicate(Expr::Binary( Box::new(accum.0), ast::Operator::And, Box::new(curr.0), )) }) .unwrap_or(Predicate::true_()) .0, ), )) } // Check if there is at least one true predicate else if context.iter().any(|(b, _)| *b) { // T and (X1 or X2 or ... or Xn) Predicate(Expr::Binary( Box::new(result.0.clone()), ast::Operator::And, Box::new( context .iter() .map(|(_, p)| p.clone()) .reduce(|accum, curr| { Predicate(Expr::Binary( Box::new(accum.0), ast::Operator::Or, Box::new(curr.0), )) }) .unwrap_or(Predicate::false_()) .0, ), )) // Predicate::And(vec![ // result.clone(), // Predicate::Or(context.iter().map(|(_, p)| p.clone()).collect()), // ]) } else { // T and (X1 or X2 or ... or Xn or TRUE) Predicate(Expr::Binary( Box::new(result.0.clone()), ast::Operator::And, Box::new( context .iter() .map(|(_, p)| p.clone()) .chain(std::iter::once(Predicate::true_())) .reduce(|accum, curr| { Predicate(Expr::Binary( Box::new(accum.0), ast::Operator::Or, Box::new(curr.0), )) }) .unwrap() // Chain guarantees at least one value .0, ), )) } }), ], rng, ); } result } }