Files
turso/core/translate/planner.rs

574 lines
20 KiB
Rust

use super::{
plan::{Aggregate, Plan, SelectQueryType, SourceOperator, TableReference, TableReferenceType},
select::prepare_select_plan,
};
use crate::{
function::Func,
schema::{Schema, Table},
util::{exprs_are_equivalent, normalize_ident},
vdbe::BranchOffset,
Result,
};
use sqlite3_parser::ast::{self, Expr, FromClause, JoinType, Limit};
pub struct OperatorIdCounter {
id: usize,
}
impl OperatorIdCounter {
pub fn new() -> Self {
Self { id: 1 }
}
pub fn get_next_id(&mut self) -> usize {
let id = self.id;
self.id += 1;
id
}
}
pub fn resolve_aggregates(expr: &ast::Expr, aggs: &mut Vec<Aggregate>) -> bool {
if aggs
.iter()
.any(|a| exprs_are_equivalent(&a.original_expr, expr))
{
return true;
}
match expr {
ast::Expr::FunctionCall { name, args, .. } => {
let args_count = if let Some(args) = &args {
args.len()
} else {
0
};
match Func::resolve_function(normalize_ident(name.0.as_str()).as_str(), args_count) {
Ok(Func::Agg(f)) => {
aggs.push(Aggregate {
func: f,
args: args.clone().unwrap_or_default(),
original_expr: expr.clone(),
});
true
}
_ => {
let mut contains_aggregates = false;
if let Some(args) = args {
for arg in args.iter() {
contains_aggregates |= resolve_aggregates(arg, aggs);
}
}
contains_aggregates
}
}
}
ast::Expr::FunctionCallStar { name, .. } => {
if let Ok(Func::Agg(f)) =
Func::resolve_function(normalize_ident(name.0.as_str()).as_str(), 0)
{
aggs.push(Aggregate {
func: f,
args: vec![],
original_expr: expr.clone(),
});
true
} else {
false
}
}
ast::Expr::Binary(lhs, _, rhs) => {
let mut contains_aggregates = false;
contains_aggregates |= resolve_aggregates(lhs, aggs);
contains_aggregates |= resolve_aggregates(rhs, aggs);
contains_aggregates
}
ast::Expr::Unary(_, expr) => {
let mut contains_aggregates = false;
contains_aggregates |= resolve_aggregates(expr, aggs);
contains_aggregates
}
// TODO: handle other expressions that may contain aggregates
_ => false,
}
}
pub fn bind_column_references(
expr: &mut ast::Expr,
referenced_tables: &[TableReference],
) -> Result<()> {
match expr {
ast::Expr::Id(id) => {
// true and false are special constants that are effectively aliases for 1 and 0
// and not identifiers of columns
if id.0.eq_ignore_ascii_case("true") || id.0.eq_ignore_ascii_case("false") {
return Ok(());
}
let mut match_result = None;
let normalized_id = normalize_ident(id.0.as_str());
for (tbl_idx, table) in referenced_tables.iter().enumerate() {
let col_idx = table
.columns()
.iter()
.position(|c| c.name.eq_ignore_ascii_case(&normalized_id));
if col_idx.is_some() {
if match_result.is_some() {
crate::bail_parse_error!("Column {} is ambiguous", id.0);
}
let col = table.columns().get(col_idx.unwrap()).unwrap();
match_result = Some((tbl_idx, col_idx.unwrap(), col.is_rowid_alias));
}
}
if match_result.is_none() {
crate::bail_parse_error!("Column {} not found", id.0);
}
let (tbl_idx, col_idx, is_rowid_alias) = match_result.unwrap();
*expr = ast::Expr::Column {
database: None, // TODO: support different databases
table: tbl_idx,
column: col_idx,
is_rowid_alias,
};
Ok(())
}
ast::Expr::Qualified(tbl, id) => {
let normalized_table_name = normalize_ident(tbl.0.as_str());
let matching_tbl_idx = referenced_tables.iter().position(|t| {
t.table_identifier
.eq_ignore_ascii_case(&normalized_table_name)
});
if matching_tbl_idx.is_none() {
crate::bail_parse_error!("Table {} not found", normalized_table_name);
}
let tbl_idx = matching_tbl_idx.unwrap();
let normalized_id = normalize_ident(id.0.as_str());
let col_idx = referenced_tables[tbl_idx]
.columns()
.iter()
.position(|c| c.name.eq_ignore_ascii_case(&normalized_id));
if col_idx.is_none() {
crate::bail_parse_error!("Column {} not found", normalized_id);
}
let col = referenced_tables[tbl_idx]
.columns()
.get(col_idx.unwrap())
.unwrap();
*expr = ast::Expr::Column {
database: None, // TODO: support different databases
table: tbl_idx,
column: col_idx.unwrap(),
is_rowid_alias: col.is_rowid_alias,
};
Ok(())
}
ast::Expr::Between {
lhs,
not: _,
start,
end,
} => {
bind_column_references(lhs, referenced_tables)?;
bind_column_references(start, referenced_tables)?;
bind_column_references(end, referenced_tables)?;
Ok(())
}
ast::Expr::Binary(expr, _operator, expr1) => {
bind_column_references(expr, referenced_tables)?;
bind_column_references(expr1, referenced_tables)?;
Ok(())
}
ast::Expr::Case {
base,
when_then_pairs,
else_expr,
} => {
if let Some(base) = base {
bind_column_references(base, referenced_tables)?;
}
for (when, then) in when_then_pairs {
bind_column_references(when, referenced_tables)?;
bind_column_references(then, referenced_tables)?;
}
if let Some(else_expr) = else_expr {
bind_column_references(else_expr, referenced_tables)?;
}
Ok(())
}
ast::Expr::Cast { expr, type_name: _ } => bind_column_references(expr, referenced_tables),
ast::Expr::Collate(expr, _string) => bind_column_references(expr, referenced_tables),
ast::Expr::FunctionCall {
name: _,
distinctness: _,
args,
order_by: _,
filter_over: _,
} => {
if let Some(args) = args {
for arg in args {
bind_column_references(arg, referenced_tables)?;
}
}
Ok(())
}
// Already bound earlier
ast::Expr::Column { .. } => Ok(()),
ast::Expr::DoublyQualified(_, _, _) => todo!(),
ast::Expr::Exists(_) => todo!(),
ast::Expr::FunctionCallStar { .. } => Ok(()),
ast::Expr::InList { lhs, not: _, rhs } => {
bind_column_references(lhs, referenced_tables)?;
if let Some(rhs) = rhs {
for arg in rhs {
bind_column_references(arg, referenced_tables)?;
}
}
Ok(())
}
ast::Expr::InSelect { .. } => todo!(),
ast::Expr::InTable { .. } => todo!(),
ast::Expr::IsNull(expr) => {
bind_column_references(expr, referenced_tables)?;
Ok(())
}
ast::Expr::Like { lhs, rhs, .. } => {
bind_column_references(lhs, referenced_tables)?;
bind_column_references(rhs, referenced_tables)?;
Ok(())
}
ast::Expr::Literal(_) => Ok(()),
ast::Expr::Name(_) => todo!(),
ast::Expr::NotNull(expr) => {
bind_column_references(expr, referenced_tables)?;
Ok(())
}
ast::Expr::Parenthesized(expr) => {
for e in expr.iter_mut() {
bind_column_references(e, referenced_tables)?;
}
Ok(())
}
ast::Expr::Raise(_, _) => todo!(),
ast::Expr::Subquery(_) => todo!(),
ast::Expr::Unary(_, expr) => {
bind_column_references(expr, referenced_tables)?;
Ok(())
}
ast::Expr::Variable(_) => todo!(),
}
}
fn parse_from_clause_table(
schema: &Schema,
table: ast::SelectTable,
operator_id_counter: &mut OperatorIdCounter,
cur_table_index: usize,
) -> Result<(TableReference, SourceOperator)> {
match table {
ast::SelectTable::Table(qualified_name, maybe_alias, _) => {
let normalized_qualified_name = normalize_ident(qualified_name.name.0.as_str());
let Some(table) = schema.get_table(&normalized_qualified_name) else {
crate::bail_parse_error!("Table {} not found", normalized_qualified_name);
};
let alias = maybe_alias
.map(|a| match a {
ast::As::As(id) => id,
ast::As::Elided(id) => id,
})
.map(|a| a.0);
let table_reference = TableReference {
table: Table::BTree(table.clone()),
table_identifier: alias.unwrap_or(normalized_qualified_name),
table_index: cur_table_index,
reference_type: TableReferenceType::BTreeTable,
};
Ok((
table_reference.clone(),
SourceOperator::Scan {
table_reference,
predicates: None,
id: operator_id_counter.get_next_id(),
iter_dir: None,
},
))
}
ast::SelectTable::Select(subselect, maybe_alias) => {
let Plan::Select(mut subplan) = prepare_select_plan(schema, *subselect)? else {
unreachable!();
};
subplan.query_type = SelectQueryType::Subquery {
yield_reg: usize::MAX, // will be set later in bytecode emission
coroutine_implementation_start: BranchOffset::Placeholder, // will be set later in bytecode emission
};
let identifier = maybe_alias
.map(|a| match a {
ast::As::As(id) => id.0.clone(),
ast::As::Elided(id) => id.0.clone(),
})
.unwrap_or(format!("subquery_{}", cur_table_index));
let table_reference =
TableReference::new_subquery(identifier.clone(), cur_table_index, &subplan);
Ok((
table_reference.clone(),
SourceOperator::Subquery {
id: operator_id_counter.get_next_id(),
table_reference,
plan: Box::new(subplan),
predicates: None,
},
))
}
_ => todo!(),
}
}
pub fn parse_from(
schema: &Schema,
mut from: Option<FromClause>,
operator_id_counter: &mut OperatorIdCounter,
) -> Result<(SourceOperator, Vec<TableReference>)> {
if from.as_ref().and_then(|f| f.select.as_ref()).is_none() {
return Ok((
SourceOperator::Nothing {
id: operator_id_counter.get_next_id(),
},
vec![],
));
}
let mut table_index = 0;
let mut tables = vec![];
let mut from_owned = std::mem::take(&mut from).unwrap();
let select_owned = *std::mem::take(&mut from_owned.select).unwrap();
let joins_owned = std::mem::take(&mut from_owned.joins).unwrap_or_default();
let (table_reference, mut operator) =
parse_from_clause_table(schema, select_owned, operator_id_counter, table_index)?;
tables.push(table_reference);
table_index += 1;
for join in joins_owned.into_iter() {
let JoinParseResult {
source_operator: right,
is_outer_join: outer,
using,
predicates,
} = parse_join(schema, join, operator_id_counter, &mut tables, table_index)?;
operator = SourceOperator::Join {
left: Box::new(operator),
right: Box::new(right),
predicates,
outer,
using,
id: operator_id_counter.get_next_id(),
};
table_index += 1;
}
Ok((operator, tables))
}
pub fn parse_where(
where_clause: Option<Expr>,
referenced_tables: &[TableReference],
) -> Result<Option<Vec<Expr>>> {
if let Some(where_expr) = where_clause {
let mut predicates = vec![];
break_predicate_at_and_boundaries(where_expr, &mut predicates);
for expr in predicates.iter_mut() {
bind_column_references(expr, referenced_tables)?;
}
Ok(Some(predicates))
} else {
Ok(None)
}
}
struct JoinParseResult {
source_operator: SourceOperator,
is_outer_join: bool,
using: Option<ast::DistinctNames>,
predicates: Option<Vec<ast::Expr>>,
}
fn parse_join(
schema: &Schema,
join: ast::JoinedSelectTable,
operator_id_counter: &mut OperatorIdCounter,
tables: &mut Vec<TableReference>,
table_index: usize,
) -> Result<JoinParseResult> {
let ast::JoinedSelectTable {
operator: join_operator,
table,
constraint,
} = join;
let (table_reference, source_operator) =
parse_from_clause_table(schema, table, operator_id_counter, table_index)?;
tables.push(table_reference);
let (outer, natural) = match join_operator {
ast::JoinOperator::TypedJoin(Some(join_type)) => {
let is_outer = join_type.contains(JoinType::OUTER);
let is_natural = join_type.contains(JoinType::NATURAL);
(is_outer, is_natural)
}
_ => (false, false),
};
let mut using = None;
let mut predicates = None;
if natural && constraint.is_some() {
crate::bail_parse_error!("NATURAL JOIN cannot be combined with ON or USING clause");
}
let constraint = if natural {
// NATURAL JOIN is first transformed into a USING join with the common columns
let left_tables = &tables[..table_index];
assert!(!left_tables.is_empty());
let right_table = &tables[table_index];
let right_cols = &right_table.columns();
let mut distinct_names = None;
// TODO: O(n^2) maybe not great for large tables or big multiway joins
for right_col in right_cols.iter() {
let mut found_match = false;
for left_table in left_tables.iter() {
for left_col in left_table.columns().iter() {
if left_col.name == right_col.name {
if distinct_names.is_none() {
distinct_names =
Some(ast::DistinctNames::new(ast::Name(left_col.name.clone())));
} else {
distinct_names
.as_mut()
.unwrap()
.insert(ast::Name(left_col.name.clone()))
.unwrap();
}
found_match = true;
break;
}
}
if found_match {
break;
}
}
}
if distinct_names.is_none() {
crate::bail_parse_error!("No columns found to NATURAL join on");
}
Some(ast::JoinConstraint::Using(distinct_names.unwrap()))
} else {
constraint
};
if let Some(constraint) = constraint {
match constraint {
ast::JoinConstraint::On(expr) => {
let mut preds = vec![];
break_predicate_at_and_boundaries(expr, &mut preds);
for predicate in preds.iter_mut() {
bind_column_references(predicate, tables)?;
}
predicates = Some(preds);
}
ast::JoinConstraint::Using(distinct_names) => {
// USING join is replaced with a list of equality predicates
let mut using_predicates = vec![];
for distinct_name in distinct_names.iter() {
let name_normalized = normalize_ident(distinct_name.0.as_str());
let left_tables = &tables[..table_index];
assert!(!left_tables.is_empty());
let right_table = &tables[table_index];
let mut left_col = None;
for (left_table_idx, left_table) in left_tables.iter().enumerate() {
left_col = left_table
.columns()
.iter()
.enumerate()
.find(|(_, col)| col.name == name_normalized)
.map(|(idx, col)| (left_table_idx, idx, col));
if left_col.is_some() {
break;
}
}
if left_col.is_none() {
crate::bail_parse_error!(
"cannot join using column {} - column not present in all tables",
distinct_name.0
);
}
let right_col = right_table
.columns()
.iter()
.enumerate()
.find(|(_, col)| col.name == name_normalized);
if right_col.is_none() {
crate::bail_parse_error!(
"cannot join using column {} - column not present in all tables",
distinct_name.0
);
}
let (left_table_idx, left_col_idx, left_col) = left_col.unwrap();
let (right_col_idx, right_col) = right_col.unwrap();
using_predicates.push(ast::Expr::Binary(
Box::new(ast::Expr::Column {
database: None,
table: left_table_idx,
column: left_col_idx,
is_rowid_alias: left_col.is_rowid_alias,
}),
ast::Operator::Equals,
Box::new(ast::Expr::Column {
database: None,
table: right_table.table_index,
column: right_col_idx,
is_rowid_alias: right_col.is_rowid_alias,
}),
));
}
predicates = Some(using_predicates);
using = Some(distinct_names);
}
}
}
Ok(JoinParseResult {
source_operator,
is_outer_join: outer,
using,
predicates,
})
}
pub fn parse_limit(limit: Limit) -> Option<usize> {
if let Expr::Literal(ast::Literal::Numeric(n)) = limit.expr {
n.parse().ok()
} else if let Expr::Id(id) = limit.expr {
if id.0.eq_ignore_ascii_case("true") {
Some(1)
} else if id.0.eq_ignore_ascii_case("false") {
Some(0)
} else {
None
}
} else {
None
}
}
pub fn break_predicate_at_and_boundaries(
predicate: ast::Expr,
out_predicates: &mut Vec<ast::Expr>,
) {
match predicate {
ast::Expr::Binary(left, ast::Operator::And, right) => {
break_predicate_at_and_boundaries(*left, out_predicates);
break_predicate_at_and_boundaries(*right, out_predicates);
}
_ => {
out_predicates.push(predicate);
}
}
}