use super::{ plan::{Aggregate, Plan, SelectQueryType, SourceOperator, TableReference, TableReferenceType}, select::prepare_select_plan, }; use crate::{ function::Func, schema::{Schema, Table}, util::{exprs_are_equivalent, normalize_ident}, vdbe::BranchOffset, Result, }; use sqlite3_parser::ast::{self, Expr, FromClause, JoinType, Limit}; pub struct OperatorIdCounter { id: usize, } impl OperatorIdCounter { pub fn new() -> Self { Self { id: 1 } } pub fn get_next_id(&mut self) -> usize { let id = self.id; self.id += 1; id } } pub fn resolve_aggregates(expr: &ast::Expr, aggs: &mut Vec) -> bool { if aggs .iter() .any(|a| exprs_are_equivalent(&a.original_expr, expr)) { return true; } match expr { ast::Expr::FunctionCall { name, args, .. } => { let args_count = if let Some(args) = &args { args.len() } else { 0 }; match Func::resolve_function(normalize_ident(name.0.as_str()).as_str(), args_count) { Ok(Func::Agg(f)) => { aggs.push(Aggregate { func: f, args: args.clone().unwrap_or_default(), original_expr: expr.clone(), }); true } _ => { let mut contains_aggregates = false; if let Some(args) = args { for arg in args.iter() { contains_aggregates |= resolve_aggregates(arg, aggs); } } contains_aggregates } } } ast::Expr::FunctionCallStar { name, .. } => { if let Ok(Func::Agg(f)) = Func::resolve_function(normalize_ident(name.0.as_str()).as_str(), 0) { aggs.push(Aggregate { func: f, args: vec![], original_expr: expr.clone(), }); true } else { false } } ast::Expr::Binary(lhs, _, rhs) => { let mut contains_aggregates = false; contains_aggregates |= resolve_aggregates(lhs, aggs); contains_aggregates |= resolve_aggregates(rhs, aggs); contains_aggregates } ast::Expr::Unary(_, expr) => { let mut contains_aggregates = false; contains_aggregates |= resolve_aggregates(expr, aggs); contains_aggregates } // TODO: handle other expressions that may contain aggregates _ => false, } } pub fn bind_column_references( expr: &mut ast::Expr, referenced_tables: &[TableReference], ) -> Result<()> { match expr { ast::Expr::Id(id) => { // true and false are special constants that are effectively aliases for 1 and 0 // and not identifiers of columns if id.0.eq_ignore_ascii_case("true") || id.0.eq_ignore_ascii_case("false") { return Ok(()); } let mut match_result = None; let normalized_id = normalize_ident(id.0.as_str()); for (tbl_idx, table) in referenced_tables.iter().enumerate() { let col_idx = table .columns() .iter() .position(|c| c.name.eq_ignore_ascii_case(&normalized_id)); if col_idx.is_some() { if match_result.is_some() { crate::bail_parse_error!("Column {} is ambiguous", id.0); } let col = table.columns().get(col_idx.unwrap()).unwrap(); match_result = Some((tbl_idx, col_idx.unwrap(), col.is_rowid_alias)); } } if match_result.is_none() { crate::bail_parse_error!("Column {} not found", id.0); } let (tbl_idx, col_idx, is_rowid_alias) = match_result.unwrap(); *expr = ast::Expr::Column { database: None, // TODO: support different databases table: tbl_idx, column: col_idx, is_rowid_alias, }; Ok(()) } ast::Expr::Qualified(tbl, id) => { let normalized_table_name = normalize_ident(tbl.0.as_str()); let matching_tbl_idx = referenced_tables.iter().position(|t| { t.table_identifier .eq_ignore_ascii_case(&normalized_table_name) }); if matching_tbl_idx.is_none() { crate::bail_parse_error!("Table {} not found", normalized_table_name); } let tbl_idx = matching_tbl_idx.unwrap(); let normalized_id = normalize_ident(id.0.as_str()); let col_idx = referenced_tables[tbl_idx] .columns() .iter() .position(|c| c.name.eq_ignore_ascii_case(&normalized_id)); if col_idx.is_none() { crate::bail_parse_error!("Column {} not found", normalized_id); } let col = referenced_tables[tbl_idx] .columns() .get(col_idx.unwrap()) .unwrap(); *expr = ast::Expr::Column { database: None, // TODO: support different databases table: tbl_idx, column: col_idx.unwrap(), is_rowid_alias: col.is_rowid_alias, }; Ok(()) } ast::Expr::Between { lhs, not: _, start, end, } => { bind_column_references(lhs, referenced_tables)?; bind_column_references(start, referenced_tables)?; bind_column_references(end, referenced_tables)?; Ok(()) } ast::Expr::Binary(expr, _operator, expr1) => { bind_column_references(expr, referenced_tables)?; bind_column_references(expr1, referenced_tables)?; Ok(()) } ast::Expr::Case { base, when_then_pairs, else_expr, } => { if let Some(base) = base { bind_column_references(base, referenced_tables)?; } for (when, then) in when_then_pairs { bind_column_references(when, referenced_tables)?; bind_column_references(then, referenced_tables)?; } if let Some(else_expr) = else_expr { bind_column_references(else_expr, referenced_tables)?; } Ok(()) } ast::Expr::Cast { expr, type_name: _ } => bind_column_references(expr, referenced_tables), ast::Expr::Collate(expr, _string) => bind_column_references(expr, referenced_tables), ast::Expr::FunctionCall { name: _, distinctness: _, args, order_by: _, filter_over: _, } => { if let Some(args) = args { for arg in args { bind_column_references(arg, referenced_tables)?; } } Ok(()) } // Already bound earlier ast::Expr::Column { .. } => Ok(()), ast::Expr::DoublyQualified(_, _, _) => todo!(), ast::Expr::Exists(_) => todo!(), ast::Expr::FunctionCallStar { .. } => Ok(()), ast::Expr::InList { lhs, not: _, rhs } => { bind_column_references(lhs, referenced_tables)?; if let Some(rhs) = rhs { for arg in rhs { bind_column_references(arg, referenced_tables)?; } } Ok(()) } ast::Expr::InSelect { .. } => todo!(), ast::Expr::InTable { .. } => todo!(), ast::Expr::IsNull(expr) => { bind_column_references(expr, referenced_tables)?; Ok(()) } ast::Expr::Like { lhs, rhs, .. } => { bind_column_references(lhs, referenced_tables)?; bind_column_references(rhs, referenced_tables)?; Ok(()) } ast::Expr::Literal(_) => Ok(()), ast::Expr::Name(_) => todo!(), ast::Expr::NotNull(expr) => { bind_column_references(expr, referenced_tables)?; Ok(()) } ast::Expr::Parenthesized(expr) => { for e in expr.iter_mut() { bind_column_references(e, referenced_tables)?; } Ok(()) } ast::Expr::Raise(_, _) => todo!(), ast::Expr::Subquery(_) => todo!(), ast::Expr::Unary(_, expr) => { bind_column_references(expr, referenced_tables)?; Ok(()) } ast::Expr::Variable(_) => todo!(), } } fn parse_from_clause_table( schema: &Schema, table: ast::SelectTable, operator_id_counter: &mut OperatorIdCounter, cur_table_index: usize, ) -> Result<(TableReference, SourceOperator)> { match table { ast::SelectTable::Table(qualified_name, maybe_alias, _) => { let normalized_qualified_name = normalize_ident(qualified_name.name.0.as_str()); let Some(table) = schema.get_table(&normalized_qualified_name) else { crate::bail_parse_error!("Table {} not found", normalized_qualified_name); }; let alias = maybe_alias .map(|a| match a { ast::As::As(id) => id, ast::As::Elided(id) => id, }) .map(|a| a.0); let table_reference = TableReference { table: Table::BTree(table.clone()), table_identifier: alias.unwrap_or(normalized_qualified_name), table_index: cur_table_index, reference_type: TableReferenceType::BTreeTable, }; Ok(( table_reference.clone(), SourceOperator::Scan { table_reference, predicates: None, id: operator_id_counter.get_next_id(), iter_dir: None, }, )) } ast::SelectTable::Select(subselect, maybe_alias) => { let Plan::Select(mut subplan) = prepare_select_plan(schema, *subselect)? else { unreachable!(); }; subplan.query_type = SelectQueryType::Subquery { yield_reg: usize::MAX, // will be set later in bytecode emission coroutine_implementation_start: BranchOffset::Placeholder, // will be set later in bytecode emission }; let identifier = maybe_alias .map(|a| match a { ast::As::As(id) => id.0.clone(), ast::As::Elided(id) => id.0.clone(), }) .unwrap_or(format!("subquery_{}", cur_table_index)); let table_reference = TableReference::new_subquery(identifier.clone(), cur_table_index, &subplan); Ok(( table_reference.clone(), SourceOperator::Subquery { id: operator_id_counter.get_next_id(), table_reference, plan: Box::new(subplan), predicates: None, }, )) } _ => todo!(), } } pub fn parse_from( schema: &Schema, mut from: Option, operator_id_counter: &mut OperatorIdCounter, ) -> Result<(SourceOperator, Vec)> { if from.as_ref().and_then(|f| f.select.as_ref()).is_none() { return Ok(( SourceOperator::Nothing { id: operator_id_counter.get_next_id(), }, vec![], )); } let mut table_index = 0; let mut tables = vec![]; let mut from_owned = std::mem::take(&mut from).unwrap(); let select_owned = *std::mem::take(&mut from_owned.select).unwrap(); let joins_owned = std::mem::take(&mut from_owned.joins).unwrap_or_default(); let (table_reference, mut operator) = parse_from_clause_table(schema, select_owned, operator_id_counter, table_index)?; tables.push(table_reference); table_index += 1; for join in joins_owned.into_iter() { let JoinParseResult { source_operator: right, is_outer_join: outer, using, predicates, } = parse_join(schema, join, operator_id_counter, &mut tables, table_index)?; operator = SourceOperator::Join { left: Box::new(operator), right: Box::new(right), predicates, outer, using, id: operator_id_counter.get_next_id(), }; table_index += 1; } Ok((operator, tables)) } pub fn parse_where( where_clause: Option, referenced_tables: &[TableReference], ) -> Result>> { if let Some(where_expr) = where_clause { let mut predicates = vec![]; break_predicate_at_and_boundaries(where_expr, &mut predicates); for expr in predicates.iter_mut() { bind_column_references(expr, referenced_tables)?; } Ok(Some(predicates)) } else { Ok(None) } } struct JoinParseResult { source_operator: SourceOperator, is_outer_join: bool, using: Option, predicates: Option>, } fn parse_join( schema: &Schema, join: ast::JoinedSelectTable, operator_id_counter: &mut OperatorIdCounter, tables: &mut Vec, table_index: usize, ) -> Result { let ast::JoinedSelectTable { operator: join_operator, table, constraint, } = join; let (table_reference, source_operator) = parse_from_clause_table(schema, table, operator_id_counter, table_index)?; tables.push(table_reference); let (outer, natural) = match join_operator { ast::JoinOperator::TypedJoin(Some(join_type)) => { let is_outer = join_type.contains(JoinType::OUTER); let is_natural = join_type.contains(JoinType::NATURAL); (is_outer, is_natural) } _ => (false, false), }; let mut using = None; let mut predicates = None; if natural && constraint.is_some() { crate::bail_parse_error!("NATURAL JOIN cannot be combined with ON or USING clause"); } let constraint = if natural { // NATURAL JOIN is first transformed into a USING join with the common columns let left_tables = &tables[..table_index]; assert!(!left_tables.is_empty()); let right_table = &tables[table_index]; let right_cols = &right_table.columns(); let mut distinct_names = None; // TODO: O(n^2) maybe not great for large tables or big multiway joins for right_col in right_cols.iter() { let mut found_match = false; for left_table in left_tables.iter() { for left_col in left_table.columns().iter() { if left_col.name == right_col.name { if distinct_names.is_none() { distinct_names = Some(ast::DistinctNames::new(ast::Name(left_col.name.clone()))); } else { distinct_names .as_mut() .unwrap() .insert(ast::Name(left_col.name.clone())) .unwrap(); } found_match = true; break; } } if found_match { break; } } } if distinct_names.is_none() { crate::bail_parse_error!("No columns found to NATURAL join on"); } Some(ast::JoinConstraint::Using(distinct_names.unwrap())) } else { constraint }; if let Some(constraint) = constraint { match constraint { ast::JoinConstraint::On(expr) => { let mut preds = vec![]; break_predicate_at_and_boundaries(expr, &mut preds); for predicate in preds.iter_mut() { bind_column_references(predicate, tables)?; } predicates = Some(preds); } ast::JoinConstraint::Using(distinct_names) => { // USING join is replaced with a list of equality predicates let mut using_predicates = vec![]; for distinct_name in distinct_names.iter() { let name_normalized = normalize_ident(distinct_name.0.as_str()); let left_tables = &tables[..table_index]; assert!(!left_tables.is_empty()); let right_table = &tables[table_index]; let mut left_col = None; for (left_table_idx, left_table) in left_tables.iter().enumerate() { left_col = left_table .columns() .iter() .enumerate() .find(|(_, col)| col.name == name_normalized) .map(|(idx, col)| (left_table_idx, idx, col)); if left_col.is_some() { break; } } if left_col.is_none() { crate::bail_parse_error!( "cannot join using column {} - column not present in all tables", distinct_name.0 ); } let right_col = right_table .columns() .iter() .enumerate() .find(|(_, col)| col.name == name_normalized); if right_col.is_none() { crate::bail_parse_error!( "cannot join using column {} - column not present in all tables", distinct_name.0 ); } let (left_table_idx, left_col_idx, left_col) = left_col.unwrap(); let (right_col_idx, right_col) = right_col.unwrap(); using_predicates.push(ast::Expr::Binary( Box::new(ast::Expr::Column { database: None, table: left_table_idx, column: left_col_idx, is_rowid_alias: left_col.is_rowid_alias, }), ast::Operator::Equals, Box::new(ast::Expr::Column { database: None, table: right_table.table_index, column: right_col_idx, is_rowid_alias: right_col.is_rowid_alias, }), )); } predicates = Some(using_predicates); using = Some(distinct_names); } } } Ok(JoinParseResult { source_operator, is_outer_join: outer, using, predicates, }) } pub fn parse_limit(limit: Limit) -> Option { if let Expr::Literal(ast::Literal::Numeric(n)) = limit.expr { n.parse().ok() } else if let Expr::Id(id) = limit.expr { if id.0.eq_ignore_ascii_case("true") { Some(1) } else if id.0.eq_ignore_ascii_case("false") { Some(0) } else { None } } else { None } } pub fn break_predicate_at_and_boundaries( predicate: ast::Expr, out_predicates: &mut Vec, ) { match predicate { ast::Expr::Binary(left, ast::Operator::And, right) => { break_predicate_at_and_boundaries(*left, out_predicates); break_predicate_at_and_boundaries(*right, out_predicates); } _ => { out_predicates.push(predicate); } } }