mirror of
https://github.com/aljazceru/turso.git
synced 2025-12-25 12:04:21 +01:00
657 lines
26 KiB
Rust
657 lines
26 KiB
Rust
use super::compiler::{DbspCircuit, DbspCompiler, DeltaSet};
|
|
use super::dbsp::{RowKeyStream, RowKeyZSet};
|
|
use super::operator::{ComputationTracker, Delta, FilterPredicate};
|
|
use crate::schema::{BTreeTable, Column, Schema};
|
|
use crate::translate::logical::LogicalPlanBuilder;
|
|
use crate::types::{IOCompletions, IOResult, Value};
|
|
use crate::util::extract_view_columns;
|
|
use crate::{io_yield_one, Completion, LimboError, Result, Statement};
|
|
use std::collections::{BTreeMap, HashMap};
|
|
use std::fmt;
|
|
use std::sync::{Arc, Mutex};
|
|
use turso_parser::ast;
|
|
use turso_parser::{
|
|
ast::{Cmd, Stmt},
|
|
parser::Parser,
|
|
};
|
|
|
|
/// State machine for populating a view from its source table
|
|
pub enum PopulateState {
|
|
/// Initial state - need to prepare the query
|
|
Start,
|
|
/// Actively processing rows from the query
|
|
Processing {
|
|
stmt: Box<Statement>,
|
|
rows_processed: usize,
|
|
},
|
|
/// Population complete
|
|
Done,
|
|
}
|
|
|
|
impl fmt::Debug for PopulateState {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self {
|
|
PopulateState::Start => write!(f, "Start"),
|
|
PopulateState::Processing { rows_processed, .. } => f
|
|
.debug_struct("Processing")
|
|
.field("rows_processed", rows_processed)
|
|
.finish(),
|
|
PopulateState::Done => write!(f, "Done"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Per-connection transaction state for incremental views
|
|
#[derive(Debug, Clone, Default)]
|
|
pub struct ViewTransactionState {
|
|
// Per-connection delta for uncommitted changes (contains both weights and values)
|
|
pub delta: Delta,
|
|
}
|
|
|
|
/// Incremental view that maintains a stream of row keys using DBSP-style computation
|
|
/// The actual row data is stored as transformed Values
|
|
///
|
|
/// This version keeps everything in-memory. This is acceptable for small views, since DBSP
|
|
/// doesn't have to track the history of changes. Still for very large views (think of the result
|
|
/// of create view v as select * from tbl where x > 1; and that having 1B values.
|
|
///
|
|
/// We should have a version of this that materializes the results. Materializing will also be good
|
|
/// for large aggregations, because then we don't have to re-compute when opening the database
|
|
/// again.
|
|
///
|
|
/// Uses DBSP circuits for incremental computation.
|
|
#[derive(Debug)]
|
|
pub struct IncrementalView {
|
|
// Stream of row keys for this view
|
|
stream: RowKeyStream,
|
|
name: String,
|
|
// Store the actual row data as Values, keyed by row_key
|
|
// Using BTreeMap for ordered iteration
|
|
pub records: BTreeMap<i64, Vec<Value>>,
|
|
// WHERE clause predicate for filtering (kept for compatibility)
|
|
pub where_predicate: FilterPredicate,
|
|
// The SELECT statement that defines how to transform input data
|
|
pub select_stmt: ast::Select,
|
|
|
|
// DBSP circuit that encapsulates the computation
|
|
circuit: DbspCircuit,
|
|
// Track whether circuit has been initialized with data
|
|
circuit_initialized: bool,
|
|
|
|
// Tables referenced by this view (extracted from FROM clause and JOINs)
|
|
base_table: Arc<BTreeTable>,
|
|
// The view's output columns with their types
|
|
pub columns: Vec<Column>,
|
|
// State machine for population
|
|
populate_state: PopulateState,
|
|
// Computation tracker for statistics
|
|
// We will use this one day to export rows_read, but for now, will just test that we're doing the expected amount of compute
|
|
#[cfg_attr(not(test), allow(dead_code))]
|
|
pub tracker: Arc<Mutex<ComputationTracker>>,
|
|
}
|
|
|
|
impl IncrementalView {
|
|
/// Validate that a CREATE MATERIALIZED VIEW statement can be handled by IncrementalView
|
|
/// This should be called early, before updating sqlite_master
|
|
pub fn can_create_view(select: &ast::Select) -> Result<()> {
|
|
// Check for JOINs
|
|
let (join_tables, join_condition) = Self::extract_join_info(select);
|
|
if join_tables.is_some() || join_condition.is_some() {
|
|
return Err(LimboError::ParseError(
|
|
"JOINs in views are not yet supported".to_string(),
|
|
));
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Try to compile the SELECT statement into a DBSP circuit
|
|
fn try_compile_circuit(
|
|
select: &ast::Select,
|
|
schema: &Schema,
|
|
_base_table: &Arc<BTreeTable>,
|
|
) -> Result<DbspCircuit> {
|
|
// Build the logical plan from the SELECT statement
|
|
let mut builder = LogicalPlanBuilder::new(schema);
|
|
// Convert Select to a Stmt for the builder
|
|
let stmt = ast::Stmt::Select(select.clone());
|
|
let logical_plan = builder.build_statement(&stmt)?;
|
|
|
|
// Compile the logical plan to a DBSP circuit
|
|
let compiler = DbspCompiler::new();
|
|
let circuit = compiler.compile(&logical_plan)?;
|
|
|
|
Ok(circuit)
|
|
}
|
|
|
|
/// Get an iterator over column names, using enumerated naming for unnamed columns
|
|
pub fn column_names(&self) -> impl Iterator<Item = String> + '_ {
|
|
self.columns.iter().enumerate().map(|(i, col)| {
|
|
col.name
|
|
.clone()
|
|
.unwrap_or_else(|| format!("column{}", i + 1))
|
|
})
|
|
}
|
|
|
|
/// Check if this view has the same SQL definition as the provided SQL string
|
|
pub fn has_same_sql(&self, sql: &str) -> bool {
|
|
// Parse the SQL to extract just the SELECT statement
|
|
if let Ok(Some(Cmd::Stmt(Stmt::CreateMaterializedView { select, .. }))) =
|
|
Parser::new(sql.as_bytes()).next_cmd()
|
|
{
|
|
// Compare the SELECT statements as SQL strings
|
|
use turso_parser::ast::fmt::ToTokens;
|
|
|
|
// Format both SELECT statements and compare
|
|
if let (Ok(current_sql), Ok(provided_sql)) =
|
|
(self.select_stmt.format(), select.format())
|
|
{
|
|
return current_sql == provided_sql;
|
|
}
|
|
}
|
|
false
|
|
}
|
|
|
|
pub fn from_sql(sql: &str, schema: &Schema) -> Result<Self> {
|
|
let mut parser = Parser::new(sql.as_bytes());
|
|
let cmd = parser.next_cmd()?;
|
|
let cmd = cmd.expect("View is an empty statement");
|
|
match cmd {
|
|
Cmd::Stmt(Stmt::CreateMaterializedView {
|
|
if_not_exists: _,
|
|
view_name,
|
|
columns: _,
|
|
select,
|
|
}) => IncrementalView::from_stmt(view_name, select, schema),
|
|
_ => Err(LimboError::ParseError(format!(
|
|
"View is not a CREATE MATERIALIZED VIEW statement: {sql}"
|
|
))),
|
|
}
|
|
}
|
|
|
|
pub fn from_stmt(
|
|
view_name: ast::QualifiedName,
|
|
select: ast::Select,
|
|
schema: &Schema,
|
|
) -> Result<Self> {
|
|
let name = view_name.name.as_str().to_string();
|
|
|
|
let where_predicate = FilterPredicate::from_select(&select)?;
|
|
|
|
// Extract output columns using the shared function
|
|
let view_columns = extract_view_columns(&select, schema);
|
|
|
|
let (join_tables, join_condition) = Self::extract_join_info(&select);
|
|
if join_tables.is_some() || join_condition.is_some() {
|
|
return Err(LimboError::ParseError(
|
|
"JOINs in views are not yet supported".to_string(),
|
|
));
|
|
}
|
|
|
|
// Get the base table from FROM clause (when no joins)
|
|
let base_table = if let Some(base_table_name) = Self::extract_base_table(&select) {
|
|
if let Some(table) = schema.get_btree_table(&base_table_name) {
|
|
table.clone()
|
|
} else {
|
|
return Err(LimboError::ParseError(format!(
|
|
"Table '{base_table_name}' not found in schema"
|
|
)));
|
|
}
|
|
} else {
|
|
return Err(LimboError::ParseError(
|
|
"views without a base table not supported yet".to_string(),
|
|
));
|
|
};
|
|
|
|
Self::new(
|
|
name,
|
|
where_predicate,
|
|
select.clone(),
|
|
base_table,
|
|
view_columns,
|
|
schema,
|
|
)
|
|
}
|
|
|
|
pub fn new(
|
|
name: String,
|
|
where_predicate: FilterPredicate,
|
|
select_stmt: ast::Select,
|
|
base_table: Arc<BTreeTable>,
|
|
columns: Vec<Column>,
|
|
schema: &Schema,
|
|
) -> Result<Self> {
|
|
let records = BTreeMap::new();
|
|
|
|
// Create the tracker that will be shared by all operators
|
|
let tracker = Arc::new(Mutex::new(ComputationTracker::new()));
|
|
|
|
// Compile the SELECT statement into a DBSP circuit
|
|
let circuit = Self::try_compile_circuit(&select_stmt, schema, &base_table)?;
|
|
|
|
// Circuit will be initialized when we first call merge_delta
|
|
let circuit_initialized = false;
|
|
|
|
Ok(Self {
|
|
stream: RowKeyStream::from_zset(RowKeyZSet::new()),
|
|
name,
|
|
records,
|
|
where_predicate,
|
|
select_stmt,
|
|
circuit,
|
|
circuit_initialized,
|
|
base_table,
|
|
columns,
|
|
populate_state: PopulateState::Start,
|
|
tracker,
|
|
})
|
|
}
|
|
|
|
pub fn name(&self) -> &str {
|
|
&self.name
|
|
}
|
|
|
|
/// Get all table names referenced by this view
|
|
pub fn get_referenced_table_names(&self) -> Vec<String> {
|
|
vec![self.base_table.name.clone()]
|
|
}
|
|
|
|
/// Get all tables referenced by this view
|
|
pub fn get_referenced_tables(&self) -> Vec<Arc<BTreeTable>> {
|
|
vec![self.base_table.clone()]
|
|
}
|
|
|
|
/// Extract the base table name from a SELECT statement (for non-join cases)
|
|
fn extract_base_table(select: &ast::Select) -> Option<String> {
|
|
if let ast::OneSelect::Select {
|
|
from: Some(ref from),
|
|
..
|
|
} = select.body.select
|
|
{
|
|
if let ast::SelectTable::Table(name, _, _) = from.select.as_ref() {
|
|
return Some(name.name.as_str().to_string());
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Generate the SQL query for populating the view from its source table
|
|
fn sql_for_populate(&self) -> crate::Result<String> {
|
|
// Get the base table from referenced tables
|
|
let table = &self.base_table;
|
|
|
|
// Check if the table has a rowid alias (INTEGER PRIMARY KEY column)
|
|
let has_rowid_alias = table.columns.iter().any(|col| col.is_rowid_alias);
|
|
|
|
// For now, select all columns since we don't have the static operators
|
|
// The circuit will handle filtering and projection
|
|
// If there's a rowid alias, we don't need to select rowid separately
|
|
let select_clause = if has_rowid_alias {
|
|
"*".to_string()
|
|
} else {
|
|
"*, rowid".to_string()
|
|
};
|
|
|
|
// Build WHERE clause from the where_predicate
|
|
let where_clause = self.build_where_clause(&self.where_predicate)?;
|
|
|
|
// Construct the final query
|
|
let query = if where_clause.is_empty() {
|
|
format!("SELECT {} FROM {}", select_clause, table.name)
|
|
} else {
|
|
format!(
|
|
"SELECT {} FROM {} WHERE {}",
|
|
select_clause, table.name, where_clause
|
|
)
|
|
};
|
|
Ok(query)
|
|
}
|
|
|
|
/// Build a WHERE clause from a FilterPredicate
|
|
fn build_where_clause(&self, predicate: &FilterPredicate) -> crate::Result<String> {
|
|
match predicate {
|
|
FilterPredicate::None => Ok(String::new()),
|
|
FilterPredicate::Equals { column, value } => {
|
|
Ok(format!("{} = {}", column, self.value_to_sql(value)))
|
|
}
|
|
FilterPredicate::NotEquals { column, value } => {
|
|
Ok(format!("{} != {}", column, self.value_to_sql(value)))
|
|
}
|
|
FilterPredicate::GreaterThan { column, value } => {
|
|
Ok(format!("{} > {}", column, self.value_to_sql(value)))
|
|
}
|
|
FilterPredicate::GreaterThanOrEqual { column, value } => {
|
|
Ok(format!("{} >= {}", column, self.value_to_sql(value)))
|
|
}
|
|
FilterPredicate::LessThan { column, value } => {
|
|
Ok(format!("{} < {}", column, self.value_to_sql(value)))
|
|
}
|
|
FilterPredicate::LessThanOrEqual { column, value } => {
|
|
Ok(format!("{} <= {}", column, self.value_to_sql(value)))
|
|
}
|
|
FilterPredicate::And(left, right) => {
|
|
let left_clause = self.build_where_clause(left)?;
|
|
let right_clause = self.build_where_clause(right)?;
|
|
Ok(format!("({left_clause} AND {right_clause})"))
|
|
}
|
|
FilterPredicate::Or(left, right) => {
|
|
let left_clause = self.build_where_clause(left)?;
|
|
let right_clause = self.build_where_clause(right)?;
|
|
Ok(format!("({left_clause} OR {right_clause})"))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Convert a Value to SQL literal representation
|
|
fn value_to_sql(&self, value: &Value) -> String {
|
|
match value {
|
|
Value::Null => "NULL".to_string(),
|
|
Value::Integer(i) => i.to_string(),
|
|
Value::Float(f) => f.to_string(),
|
|
Value::Text(t) => format!("'{}'", t.as_str().replace('\'', "''")),
|
|
Value::Blob(_) => "NULL".to_string(), // Blob literals not supported in WHERE clause yet
|
|
}
|
|
}
|
|
|
|
/// Populate the view by scanning the source table using a state machine
|
|
/// This can be called multiple times and will resume from where it left off
|
|
pub fn populate_from_table(
|
|
&mut self,
|
|
conn: &std::sync::Arc<crate::Connection>,
|
|
) -> crate::Result<IOResult<()>> {
|
|
// If already populated, return immediately
|
|
if matches!(self.populate_state, PopulateState::Done) {
|
|
return Ok(IOResult::Done(()));
|
|
}
|
|
|
|
const BATCH_SIZE: usize = 100; // Process 100 rows at a time before yielding
|
|
|
|
loop {
|
|
match &mut self.populate_state {
|
|
PopulateState::Start => {
|
|
// Generate the SQL query for populating the view
|
|
// It is best to use a standard query than a cursor for two reasons:
|
|
// 1) Using a sql query will allow us to be much more efficient in cases where we only want
|
|
// some rows, in particular for indexed filters
|
|
// 2) There are two types of cursors: index and table. In some situations (like for example
|
|
// if the table has an integer primary key), the key will be exclusively in the index
|
|
// btree and not in the table btree. Using cursors would force us to be aware of this
|
|
// distinction (and others), and ultimately lead to reimplementing the whole query
|
|
// machinery (next step is which index is best to use, etc)
|
|
let query = self.sql_for_populate()?;
|
|
|
|
// Prepare the statement
|
|
let stmt = conn.prepare(&query)?;
|
|
|
|
self.populate_state = PopulateState::Processing {
|
|
stmt: Box::new(stmt),
|
|
rows_processed: 0,
|
|
};
|
|
// Continue to next state
|
|
}
|
|
|
|
PopulateState::Processing {
|
|
stmt,
|
|
rows_processed,
|
|
} => {
|
|
// Collect rows into a delta batch
|
|
let mut batch_delta = Delta::new();
|
|
let mut batch_count = 0;
|
|
|
|
loop {
|
|
if batch_count >= BATCH_SIZE {
|
|
// Process this batch through the standard pipeline
|
|
self.merge_delta(&batch_delta);
|
|
// Yield control after processing a batch
|
|
// TODO: currently this inner statement is the one that is tracking completions
|
|
// so as a stop gap we can just return a dummy completion here
|
|
io_yield_one!(Completion::new_dummy());
|
|
}
|
|
|
|
// This step() call resumes from where the statement left off
|
|
match stmt.step()? {
|
|
crate::vdbe::StepResult::Row => {
|
|
// Get the row
|
|
let row = stmt.row().unwrap();
|
|
|
|
// Extract values from the row
|
|
let all_values: Vec<crate::types::Value> =
|
|
row.get_values().cloned().collect();
|
|
|
|
// Determine how to extract the rowid
|
|
// If there's a rowid alias (INTEGER PRIMARY KEY), the rowid is one of the columns
|
|
// Otherwise, it's the last value we explicitly selected
|
|
let (rowid, values) = if let Some((idx, _)) =
|
|
self.base_table.get_rowid_alias_column()
|
|
{
|
|
// The rowid is the value at the rowid alias column index
|
|
let rowid = match all_values.get(idx) {
|
|
Some(crate::types::Value::Integer(id)) => *id,
|
|
_ => {
|
|
// This shouldn't happen - rowid alias must be an integer
|
|
*rows_processed += 1;
|
|
batch_count += 1;
|
|
continue;
|
|
}
|
|
};
|
|
// All values are table columns (no separate rowid was selected)
|
|
(rowid, all_values)
|
|
} else {
|
|
// The last value is the explicitly selected rowid
|
|
let rowid = match all_values.last() {
|
|
Some(crate::types::Value::Integer(id)) => *id,
|
|
_ => {
|
|
// This shouldn't happen - rowid must be an integer
|
|
*rows_processed += 1;
|
|
batch_count += 1;
|
|
continue;
|
|
}
|
|
};
|
|
// Get all values except the rowid
|
|
let values = all_values[..all_values.len() - 1].to_vec();
|
|
(rowid, values)
|
|
};
|
|
|
|
// Add to batch delta - let merge_delta handle filtering and aggregation
|
|
batch_delta.insert(rowid, values);
|
|
|
|
*rows_processed += 1;
|
|
batch_count += 1;
|
|
}
|
|
crate::vdbe::StepResult::Done => {
|
|
// Process any remaining rows in the batch
|
|
self.merge_delta(&batch_delta);
|
|
// All rows processed, move to Done state
|
|
self.populate_state = PopulateState::Done;
|
|
return Ok(IOResult::Done(()));
|
|
}
|
|
crate::vdbe::StepResult::Interrupt | crate::vdbe::StepResult::Busy => {
|
|
return Err(LimboError::Busy);
|
|
}
|
|
crate::vdbe::StepResult::IO => {
|
|
// Process current batch before yielding
|
|
self.merge_delta(&batch_delta);
|
|
// The Statement needs to wait for IO
|
|
io_yield_one!(Completion::new_dummy());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PopulateState::Done => {
|
|
// Already populated
|
|
return Ok(IOResult::Done(()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Extract JOIN information from SELECT statement
|
|
#[allow(clippy::type_complexity)]
|
|
pub fn extract_join_info(
|
|
select: &ast::Select,
|
|
) -> (Option<(String, String)>, Option<(String, String)>) {
|
|
use turso_parser::ast::*;
|
|
|
|
if let OneSelect::Select {
|
|
from: Some(ref from),
|
|
..
|
|
} = select.body.select
|
|
{
|
|
// Check if there are any joins
|
|
if !from.joins.is_empty() {
|
|
// Get the first (left) table name
|
|
let left_table = match from.select.as_ref() {
|
|
SelectTable::Table(name, _, _) => Some(name.name.as_str().to_string()),
|
|
_ => None,
|
|
};
|
|
|
|
// Get the first join (right) table and condition
|
|
if let Some(first_join) = from.joins.first() {
|
|
let right_table = match &first_join.table.as_ref() {
|
|
SelectTable::Table(name, _, _) => Some(name.name.as_str().to_string()),
|
|
_ => None,
|
|
};
|
|
|
|
// Extract join condition (simplified - assumes single equality)
|
|
let join_condition = if let Some(ref constraint) = &first_join.constraint {
|
|
match constraint {
|
|
JoinConstraint::On(expr) => Self::extract_join_columns_from_expr(expr),
|
|
_ => None,
|
|
}
|
|
} else {
|
|
None
|
|
};
|
|
|
|
if let (Some(left), Some(right)) = (left_table, right_table) {
|
|
return (Some((left, right)), join_condition);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
(None, None)
|
|
}
|
|
|
|
/// Extract join column names from a join condition expression
|
|
fn extract_join_columns_from_expr(expr: &ast::Expr) -> Option<(String, String)> {
|
|
use turso_parser::ast::*;
|
|
|
|
// Look for expressions like: t1.col = t2.col
|
|
if let Expr::Binary(left, op, right) = expr {
|
|
if matches!(op, Operator::Equals) {
|
|
// Extract column names from both sides
|
|
let left_col = match &**left {
|
|
Expr::Qualified(name, _) => Some(name.as_str().to_string()),
|
|
Expr::Id(name) => Some(name.as_str().to_string()),
|
|
_ => None,
|
|
};
|
|
|
|
let right_col = match &**right {
|
|
Expr::Qualified(name, _) => Some(name.as_str().to_string()),
|
|
Expr::Id(name) => Some(name.as_str().to_string()),
|
|
_ => None,
|
|
};
|
|
|
|
if let (Some(l), Some(r)) = (left_col, right_col) {
|
|
return Some((l, r));
|
|
}
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// Get the current records as an iterator - for cursor-based access
|
|
pub fn iter(&self) -> impl Iterator<Item = (i64, Vec<Value>)> + '_ {
|
|
self.stream.to_vec().into_iter().filter_map(move |row| {
|
|
self.records
|
|
.get(&row.rowid)
|
|
.map(|values| (row.rowid, values.clone()))
|
|
})
|
|
}
|
|
|
|
/// Get current data merged with transaction state
|
|
pub fn current_data(&self, tx_state: Option<&ViewTransactionState>) -> Vec<(i64, Vec<Value>)> {
|
|
if let Some(tx_state) = tx_state {
|
|
// Use circuit to process uncommitted changes
|
|
let mut uncommitted = DeltaSet::new();
|
|
uncommitted.insert(self.base_table.name.clone(), tx_state.delta.clone());
|
|
|
|
// Execute with uncommitted changes (won't affect circuit state)
|
|
match self.circuit.execute(HashMap::new(), uncommitted) {
|
|
Ok(processed_delta) => {
|
|
// Merge processed delta with committed records
|
|
let mut result_map: BTreeMap<i64, Vec<Value>> = self.records.clone();
|
|
for (row, weight) in &processed_delta.changes {
|
|
if *weight > 0 {
|
|
result_map.insert(row.rowid, row.values.clone());
|
|
} else if *weight < 0 {
|
|
result_map.remove(&row.rowid);
|
|
}
|
|
}
|
|
result_map.into_iter().collect()
|
|
}
|
|
Err(e) => {
|
|
// Return error or panic - no fallback
|
|
panic!("Failed to execute circuit with uncommitted data: {e:?}");
|
|
}
|
|
}
|
|
} else {
|
|
// No transaction state: return committed records
|
|
self.records.clone().into_iter().collect()
|
|
}
|
|
}
|
|
|
|
/// Merge a delta of changes into the view's current state
|
|
pub fn merge_delta(&mut self, delta: &Delta) {
|
|
// Early return if delta is empty
|
|
if delta.is_empty() {
|
|
return;
|
|
}
|
|
|
|
// Use the circuit to process the delta
|
|
let mut input_data = HashMap::new();
|
|
input_data.insert(self.base_table.name.clone(), delta.clone());
|
|
|
|
// If circuit hasn't been initialized yet, initialize it first
|
|
// This happens during populate_from_table
|
|
if !self.circuit_initialized {
|
|
// Initialize the circuit with empty state
|
|
self.circuit
|
|
.initialize(HashMap::new())
|
|
.expect("Failed to initialize circuit");
|
|
self.circuit_initialized = true;
|
|
}
|
|
|
|
// Execute the circuit to process the delta
|
|
let current_delta = match self.circuit.execute(input_data.clone(), DeltaSet::empty()) {
|
|
Ok(output) => {
|
|
// Commit the changes to the circuit's internal state
|
|
self.circuit
|
|
.commit(input_data)
|
|
.expect("Failed to commit to circuit");
|
|
output
|
|
}
|
|
Err(e) => {
|
|
panic!("Failed to execute circuit: {e:?}");
|
|
}
|
|
};
|
|
|
|
// Update records and stream with the processed delta
|
|
let mut zset_delta = RowKeyZSet::new();
|
|
|
|
for (row, weight) in ¤t_delta.changes {
|
|
if *weight > 0 {
|
|
self.records.insert(row.rowid, row.values.clone());
|
|
zset_delta.insert(row.clone(), 1);
|
|
} else if *weight < 0 {
|
|
self.records.remove(&row.rowid);
|
|
zset_delta.insert(row.clone(), -1);
|
|
}
|
|
}
|
|
|
|
self.stream.apply_delta(&zset_delta);
|
|
}
|
|
}
|