adjust views to use circuits

This commit is contained in:
Glauber Costa
2025-08-27 10:38:11 -05:00
parent 29b93e3e58
commit 565c2a698a

View File

@@ -1,13 +1,12 @@
use super::compiler::{DbspCircuit, DbspCompiler, DeltaSet};
use super::dbsp::{RowKeyStream, RowKeyZSet};
use super::operator::{
AggregateFunction, AggregateOperator, ComputationTracker, Delta, FilterOperator,
FilterPredicate, IncrementalOperator, ProjectOperator,
};
use super::operator::{ComputationTracker, Delta, FilterPredicate};
use crate::schema::{BTreeTable, Column, Schema};
use crate::translate::logical::LogicalPlanBuilder;
use crate::types::{IOCompletions, IOResult, Value};
use crate::util::{extract_column_name_from_expr, extract_view_columns};
use crate::util::extract_view_columns;
use crate::{io_yield_one, Completion, LimboError, Result, Statement};
use std::collections::BTreeMap;
use std::collections::{BTreeMap, HashMap};
use std::fmt;
use std::sync::{Arc, Mutex};
use turso_parser::ast;
@@ -60,8 +59,7 @@ pub struct ViewTransactionState {
/// for large aggregations, because then we don't have to re-compute when opening the database
/// again.
///
/// Right now we are supporting the simplest views by keeping the operators in the view and
/// applying them in a sane order. But the general solution would turn this into a DBSP circuit.
/// Uses DBSP circuits for incremental computation.
#[derive(Debug)]
pub struct IncrementalView {
// Stream of row keys for this view
@@ -75,12 +73,11 @@ pub struct IncrementalView {
// The SELECT statement that defines how to transform input data
pub select_stmt: ast::Select,
// Internal filter operator for predicate evaluation
filter_operator: Option<FilterOperator>,
// Internal project operator for value transformation
project_operator: Option<ProjectOperator>,
// Internal aggregate operator for GROUP BY and aggregations
aggregate_operator: Option<AggregateOperator>,
// DBSP circuit that encapsulates the computation
circuit: DbspCircuit,
// Track whether circuit has been initialized with data
circuit_initialized: bool,
// Tables referenced by this view (extracted from FROM clause and JOINs)
base_table: Arc<BTreeTable>,
// The view's output columns with their types
@@ -108,6 +105,25 @@ impl IncrementalView {
Ok(())
}
/// Try to compile the SELECT statement into a DBSP circuit
fn try_compile_circuit(
select: &ast::Select,
schema: &Schema,
_base_table: &Arc<BTreeTable>,
) -> Result<DbspCircuit> {
// Build the logical plan from the SELECT statement
let mut builder = LogicalPlanBuilder::new(schema);
// Convert Select to a Stmt for the builder
let stmt = ast::Stmt::Select(select.clone());
let logical_plan = builder.build_statement(&stmt)?;
// Compile the logical plan to a DBSP circuit
let compiler = DbspCompiler::new();
let circuit = compiler.compile(&logical_plan)?;
Ok(circuit)
}
/// Get an iterator over column names, using enumerated naming for unnamed columns
pub fn column_names(&self) -> impl Iterator<Item = String> + '_ {
self.columns.iter().enumerate().map(|(i, col)| {
@@ -136,14 +152,6 @@ impl IncrementalView {
false
}
/// Apply filter operator to check if values pass the view's WHERE clause
fn apply_filter(&self, values: &[Value]) -> bool {
if let Some(ref filter_op) = self.filter_operator {
filter_op.evaluate_predicate(values)
} else {
true
}
}
pub fn from_sql(sql: &str, schema: &Schema) -> Result<Self> {
let mut parser = Parser::new(sql.as_bytes());
let cmd = parser.next_cmd()?;
@@ -173,10 +181,6 @@ impl IncrementalView {
// Extract output columns using the shared function
let view_columns = extract_view_columns(&select, schema);
// Extract GROUP BY columns and aggregate functions
let (group_by_columns, aggregate_functions, _old_output_names) =
Self::extract_aggregation_info(&select);
let (join_tables, join_condition) = Self::extract_join_info(&select);
if join_tables.is_some() || join_condition.is_some() {
return Err(LimboError::ParseError(
@@ -199,105 +203,43 @@ impl IncrementalView {
));
};
let base_table_column_names = base_table
.columns
.iter()
.enumerate()
.map(|(i, col)| col.name.clone().unwrap_or_else(|| format!("column_{i}")))
.collect();
Self::new(
name,
Vec::new(), // Empty initial data
where_predicate,
select.clone(),
base_table,
base_table_column_names,
view_columns,
group_by_columns,
aggregate_functions,
schema,
)
}
#[allow(clippy::too_many_arguments)]
pub fn new(
name: String,
initial_data: Vec<(i64, Vec<Value>)>,
where_predicate: FilterPredicate,
select_stmt: ast::Select,
base_table: Arc<BTreeTable>,
base_table_column_names: Vec<String>,
columns: Vec<Column>,
group_by_columns: Vec<String>,
aggregate_functions: Vec<AggregateFunction>,
schema: &Schema,
) -> Result<Self> {
let mut records = BTreeMap::new();
for (row_key, values) in initial_data {
records.insert(row_key, values);
}
// Create initial stream with row keys
let mut zset = RowKeyZSet::new();
for (row_key, values) in &records {
use crate::incremental::hashable_row::HashableRow;
let row = HashableRow::new(*row_key, values.clone());
zset.insert(row, 1);
}
let records = BTreeMap::new();
// Create the tracker that will be shared by all operators
let tracker = Arc::new(Mutex::new(ComputationTracker::new()));
// Create filter operator if we have a predicate
let filter_operator = if !matches!(where_predicate, FilterPredicate::None) {
let mut filter_op =
FilterOperator::new(where_predicate.clone(), base_table_column_names.clone());
filter_op.set_tracker(tracker.clone());
Some(filter_op)
} else {
None
};
// Compile the SELECT statement into a DBSP circuit
let circuit = Self::try_compile_circuit(&select_stmt, schema, &base_table)?;
// Check if this is an aggregated view
let is_aggregated = !group_by_columns.is_empty() || !aggregate_functions.is_empty();
// Create aggregate operator if needed
let aggregate_operator = if is_aggregated {
let mut agg_op = AggregateOperator::new(
group_by_columns,
aggregate_functions,
base_table_column_names.clone(),
);
agg_op.set_tracker(tracker.clone());
Some(agg_op)
} else {
None
};
// Only create project operator for non-aggregated views
let project_operator = if !is_aggregated {
let mut proj_op = ProjectOperator::from_select(
&select_stmt,
base_table_column_names.clone(),
schema,
)?;
proj_op.set_tracker(tracker.clone());
Some(proj_op)
} else {
None
};
// Circuit will be initialized when we first call merge_delta
let circuit_initialized = false;
Ok(Self {
stream: RowKeyStream::from_zset(zset),
stream: RowKeyStream::from_zset(RowKeyZSet::new()),
name,
records,
where_predicate,
select_stmt,
filter_operator,
project_operator,
aggregate_operator,
circuit,
circuit_initialized,
base_table,
columns,
populate_state: PopulateState::Start,
@@ -338,46 +280,28 @@ impl IncrementalView {
// Get the base table from referenced tables
let table = &self.base_table;
// Build column list for SELECT clause
let select_columns = if let Some(ref project_op) = self.project_operator {
// Get the columns used by the projection operator
let mut columns = Vec::new();
for col in project_op.columns() {
// Check if it's a simple column reference
if let turso_parser::ast::Expr::Id(name) = &col.expr {
columns.push(name.as_str().to_string());
} else {
// For expressions, we need all columns (for now)
columns.clear();
columns.push("*".to_string());
break;
}
}
if columns.is_empty() || columns.contains(&"*".to_string()) {
"*".to_string()
} else {
// Add the columns and always include rowid
columns.join(", ").to_string()
}
} else {
// No projection, use all columns
// Check if the table has a rowid alias (INTEGER PRIMARY KEY column)
let has_rowid_alias = table.columns.iter().any(|col| col.is_rowid_alias);
// For now, select all columns since we don't have the static operators
// The circuit will handle filtering and projection
// If there's a rowid alias, we don't need to select rowid separately
let select_clause = if has_rowid_alias {
"*".to_string()
} else {
"*, rowid".to_string()
};
// Build WHERE clause from filter operator
let where_clause = if let Some(ref filter_op) = self.filter_operator {
self.build_where_clause(filter_op.predicate())?
} else {
String::new()
};
// Build WHERE clause from the where_predicate
let where_clause = self.build_where_clause(&self.where_predicate)?;
// Construct the final query
let query = if where_clause.is_empty() {
format!("SELECT {}, rowid FROM {}", select_columns, table.name)
format!("SELECT {} FROM {}", select_clause, table.name)
} else {
format!(
"SELECT {}, rowid FROM {} WHERE {}",
select_columns, table.name, where_clause
"SELECT {} FROM {} WHERE {}",
select_clause, table.name, where_clause
)
};
Ok(query)
@@ -494,20 +418,40 @@ impl IncrementalView {
let all_values: Vec<crate::types::Value> =
row.get_values().cloned().collect();
// The last value should be the rowid
let rowid = match all_values.last() {
Some(crate::types::Value::Integer(id)) => *id,
_ => {
// This shouldn't happen - rowid must be an integer
*rows_processed += 1;
batch_count += 1;
continue;
}
// Determine how to extract the rowid
// If there's a rowid alias (INTEGER PRIMARY KEY), the rowid is one of the columns
// Otherwise, it's the last value we explicitly selected
let (rowid, values) = if let Some((idx, _)) =
self.base_table.get_rowid_alias_column()
{
// The rowid is the value at the rowid alias column index
let rowid = match all_values.get(idx) {
Some(crate::types::Value::Integer(id)) => *id,
_ => {
// This shouldn't happen - rowid alias must be an integer
*rows_processed += 1;
batch_count += 1;
continue;
}
};
// All values are table columns (no separate rowid was selected)
(rowid, all_values)
} else {
// The last value is the explicitly selected rowid
let rowid = match all_values.last() {
Some(crate::types::Value::Integer(id)) => *id,
_ => {
// This shouldn't happen - rowid must be an integer
*rows_processed += 1;
batch_count += 1;
continue;
}
};
// Get all values except the rowid
let values = all_values[..all_values.len() - 1].to_vec();
(rowid, values)
};
// Get all values except the rowid
let values = all_values[..all_values.len() - 1].to_vec();
// Add to batch delta - let merge_delta handle filtering and aggregation
batch_delta.insert(rowid, values);
@@ -542,120 +486,6 @@ impl IncrementalView {
}
}
/// Extract GROUP BY columns and aggregate functions from SELECT statement
fn extract_aggregation_info(
select: &ast::Select,
) -> (Vec<String>, Vec<AggregateFunction>, Vec<String>) {
use turso_parser::ast::*;
let mut group_by_columns = Vec::new();
let mut aggregate_functions = Vec::new();
let mut output_column_names = Vec::new();
if let OneSelect::Select {
ref group_by,
ref columns,
..
} = select.body.select
{
// Extract GROUP BY columns
if let Some(group_by) = group_by {
for expr in &group_by.exprs {
if let Some(col_name) = extract_column_name_from_expr(expr) {
group_by_columns.push(col_name);
}
}
}
// Extract aggregate functions and column names/aliases from SELECT list
for result_col in columns {
match result_col {
ResultColumn::Expr(expr, alias) => {
// Extract aggregate functions
let mut found_aggregates = Vec::new();
Self::extract_aggregates_from_expr(expr, &mut found_aggregates);
// Determine the output column name
let col_name = if let Some(As::As(alias_name)) = alias {
// Use the provided alias
alias_name.as_str().to_string()
} else if !found_aggregates.is_empty() {
// Use the default name from the aggregate function
found_aggregates[0].default_output_name()
} else if let Some(name) = extract_column_name_from_expr(expr) {
// Use the column name
name
} else {
// Fallback to a generic name
format!("column{}", output_column_names.len() + 1)
};
output_column_names.push(col_name);
aggregate_functions.extend(found_aggregates);
}
ResultColumn::Star => {
// For SELECT *, we'd need to know the base table columns
// This is handled elsewhere
}
ResultColumn::TableStar(_) => {
// Similar to Star, but for a specific table
}
}
}
}
(group_by_columns, aggregate_functions, output_column_names)
}
/// Recursively extract aggregate functions from an expression
fn extract_aggregates_from_expr(
expr: &ast::Expr,
aggregate_functions: &mut Vec<AggregateFunction>,
) {
use crate::function::Func;
use turso_parser::ast::*;
match expr {
// Handle COUNT(*) and similar aggregate functions with *
Expr::FunctionCallStar { name, .. } => {
// FunctionCallStar is typically COUNT(*), which has 0 args
if let Ok(func) = Func::resolve_function(name.as_str(), 0) {
// Use the centralized mapping from operator.rs
// For COUNT(*), we pass None as the input column
if let Some(agg_func) = AggregateFunction::from_sql_function(&func, None) {
aggregate_functions.push(agg_func);
}
}
}
Expr::FunctionCall { name, args, .. } => {
// Regular function calls with arguments
let arg_count = args.len();
if let Ok(func) = Func::resolve_function(name.as_str(), arg_count) {
// Extract the input column if there's an argument
let input_column = if arg_count > 0 {
args.first().and_then(extract_column_name_from_expr)
} else {
None
};
// Use the centralized mapping from operator.rs
if let Some(agg_func) =
AggregateFunction::from_sql_function(&func, input_column)
{
aggregate_functions.push(agg_func);
}
}
}
// Recursively check binary expressions, etc.
Expr::Binary(left, _, right) => {
Self::extract_aggregates_from_expr(left, aggregate_functions);
Self::extract_aggregates_from_expr(right, aggregate_functions);
}
_ => {}
}
}
/// Extract JOIN information from SELECT statement
#[allow(clippy::type_complexity)]
pub fn extract_join_info(
@@ -743,50 +573,36 @@ impl IncrementalView {
/// Get current data merged with transaction state
pub fn current_data(&self, tx_state: Option<&ViewTransactionState>) -> Vec<(i64, Vec<Value>)> {
// Start with committed records
if let Some(tx_state) = tx_state {
// processed_delta = input delta for now. Need to apply operations
let processed_delta = &tx_state.delta;
// Use circuit to process uncommitted changes
let mut uncommitted = DeltaSet::new();
uncommitted.insert(self.base_table.name.clone(), tx_state.delta.clone());
// For non-aggregation views, merge the processed delta with committed records
let mut result_map: BTreeMap<i64, Vec<Value>> = self.records.clone();
for (row, weight) in &processed_delta.changes {
if *weight > 0 && self.apply_filter(&row.values) {
result_map.insert(row.rowid, row.values.clone());
} else if *weight < 0 {
result_map.remove(&row.rowid);
// Execute with uncommitted changes (won't affect circuit state)
match self.circuit.execute(HashMap::new(), uncommitted) {
Ok(processed_delta) => {
// Merge processed delta with committed records
let mut result_map: BTreeMap<i64, Vec<Value>> = self.records.clone();
for (row, weight) in &processed_delta.changes {
if *weight > 0 {
result_map.insert(row.rowid, row.values.clone());
} else if *weight < 0 {
result_map.remove(&row.rowid);
}
}
result_map.into_iter().collect()
}
Err(e) => {
// Return error or panic - no fallback
panic!("Failed to execute circuit with uncommitted data: {e:?}");
}
}
result_map.into_iter().collect()
} else {
// No transaction state: return committed records
self.records.clone().into_iter().collect()
}
}
/// Apply filter operator to a delta if present and commit the changes
fn apply_filter_to_delta(&mut self, delta: Delta) -> Delta {
if let Some(ref mut filter_op) = self.filter_operator {
// Commit updates state and returns output
filter_op.commit(delta)
} else {
delta
}
}
/// Apply aggregation operator to a delta if this is an aggregated view and commit the changes
fn apply_aggregation_to_delta(&mut self, delta: Delta) -> Delta {
if let Some(ref mut agg_op) = self.aggregate_operator {
// Commit updates state and returns output
agg_op.commit(delta)
} else {
delta
}
}
/// Merge a delta of changes into the view's current state
pub fn merge_delta(&mut self, delta: &Delta) {
// Early return if delta is empty
@@ -794,16 +610,33 @@ impl IncrementalView {
return;
}
// Apply operators in pipeline
let mut current_delta = delta.clone();
current_delta = self.apply_filter_to_delta(current_delta);
// Use the circuit to process the delta
let mut input_data = HashMap::new();
input_data.insert(self.base_table.name.clone(), delta.clone());
// Apply projection operator if present (for non-aggregated views)
if let Some(ref mut project_op) = self.project_operator {
current_delta = project_op.commit(current_delta);
// If circuit hasn't been initialized yet, initialize it first
// This happens during populate_from_table
if !self.circuit_initialized {
// Initialize the circuit with empty state
self.circuit
.initialize(HashMap::new())
.expect("Failed to initialize circuit");
self.circuit_initialized = true;
}
current_delta = self.apply_aggregation_to_delta(current_delta);
// Execute the circuit to process the delta
let current_delta = match self.circuit.execute(input_data.clone(), DeltaSet::empty()) {
Ok(output) => {
// Commit the changes to the circuit's internal state
self.circuit
.commit(input_data)
.expect("Failed to commit to circuit");
output
}
Err(e) => {
panic!("Failed to execute circuit: {e:?}");
}
};
// Update records and stream with the processed delta
let mut zset_delta = RowKeyZSet::new();
@@ -821,441 +654,3 @@ impl IncrementalView {
self.stream.apply_delta(&zset_delta);
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::incremental::operator::{Delta, IncrementalOperator};
use crate::schema::{BTreeTable, Column, Schema, Type};
use crate::types::Value;
use std::sync::Arc;
fn create_test_schema() -> Schema {
let mut schema = Schema::new(false);
let table = BTreeTable {
root_page: 1,
name: "t".to_string(),
columns: vec![
Column {
name: Some("a".to_string()),
ty: Type::Integer,
ty_str: "INTEGER".to_string(),
primary_key: false,
is_rowid_alias: false,
notnull: false,
default: None,
unique: false,
collation: None,
hidden: false,
},
Column {
name: Some("b".to_string()),
ty: Type::Integer,
ty_str: "INTEGER".to_string(),
primary_key: false,
is_rowid_alias: false,
notnull: false,
default: None,
unique: false,
collation: None,
hidden: false,
},
Column {
name: Some("c".to_string()),
ty: Type::Integer,
ty_str: "INTEGER".to_string(),
primary_key: false,
is_rowid_alias: false,
notnull: false,
default: None,
unique: false,
collation: None,
hidden: false,
},
],
primary_key_columns: vec![],
has_rowid: true,
is_strict: false,
unique_sets: None,
};
schema.add_btree_table(Arc::new(table));
schema
}
#[test]
fn test_projection_simple_columns() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, b FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(10), Value::Integer(20), Value::Integer(30)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(output.values, vec![Value::Integer(10), Value::Integer(20)]);
}
#[test]
fn test_projection_arithmetic_expression() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a * 2 as doubled FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(4), Value::Integer(2), Value::Integer(0)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(output.values, vec![Value::Integer(8)]);
}
#[test]
fn test_projection_multiple_expressions() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a + b as sum, a - b as diff, c FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(10), Value::Integer(3), Value::Integer(7)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(
output.values,
vec![Value::Integer(13), Value::Integer(7), Value::Integer(7),]
);
}
#[test]
fn test_projection_function_call() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT abs(a - 300) as abs_diff, b FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(255), Value::Integer(20), Value::Integer(30)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
// abs(255 - 300) = abs(-45) = 45
assert_eq!(output.values, vec![Value::Integer(45), Value::Integer(20),]);
}
#[test]
fn test_projection_mixed_columns_and_expressions() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, b * 2 as doubled, c, a + b + c as total FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(1), Value::Integer(5), Value::Integer(3)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(
output.values,
vec![
Value::Integer(1),
Value::Integer(10),
Value::Integer(3),
Value::Integer(9),
]
);
}
#[test]
fn test_projection_complex_expression() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT (a * 2) + (b * 3) as weighted, c / 2 as half FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(5), Value::Integer(2), Value::Integer(10)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(output.values, vec![Value::Integer(16), Value::Integer(5),]);
}
#[test]
fn test_projection_with_where_clause() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, a * 2 as doubled FROM t WHERE b > 2";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
assert!(view.filter_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(4), Value::Integer(3), Value::Integer(0)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(output.values, vec![Value::Integer(4), Value::Integer(8),]);
}
#[test]
fn test_projection_more_output_columns_than_input() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, b, a * 2 as doubled_a, b * 3 as tripled_b, a + b as sum, hex(c) as hex_c FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(5), Value::Integer(2), Value::Integer(15)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
// 3 input columns -> 6 output columns
assert_eq!(
output.values,
vec![
Value::Integer(5), // a
Value::Integer(2), // b
Value::Integer(10), // a * 2
Value::Integer(6), // b * 3
Value::Integer(7), // a + b
Value::Text("3135".into()), // hex(15) - SQLite converts to string "15" then hex encodes
]
);
}
#[test]
fn test_aggregation_count_with_group_by() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, COUNT(*) FROM t GROUP BY a";
let mut view = IncrementalView::from_sql(sql, &schema).unwrap();
// Verify the view has an aggregate operator
assert!(view.aggregate_operator.is_some());
// Insert some test data
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(1), Value::Integer(10), Value::Integer(100)],
);
delta.insert(
2,
vec![Value::Integer(2), Value::Integer(20), Value::Integer(200)],
);
delta.insert(
3,
vec![Value::Integer(1), Value::Integer(30), Value::Integer(300)],
);
// Process the delta
view.merge_delta(&delta);
// Verify we only processed the 3 rows we inserted
assert_eq!(view.tracker.lock().unwrap().aggregation_updates, 3);
// Check the aggregated results
let results = view.current_data(None);
// Should have 2 groups: a=1 with count=2, a=2 with count=1
assert_eq!(results.len(), 2);
// Find the group with a=1
let group1 = results
.iter()
.find(|(_, vals)| vals[0] == Value::Integer(1))
.unwrap();
assert_eq!(group1.1[0], Value::Integer(1)); // a=1
assert_eq!(group1.1[1], Value::Integer(2)); // COUNT(*)=2
// Find the group with a=2
let group2 = results
.iter()
.find(|(_, vals)| vals[0] == Value::Integer(2))
.unwrap();
assert_eq!(group2.1[0], Value::Integer(2)); // a=2
assert_eq!(group2.1[1], Value::Integer(1)); // COUNT(*)=1
}
#[test]
fn test_aggregation_sum_with_filter() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT SUM(b) FROM t WHERE a > 1";
let mut view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.aggregate_operator.is_some());
assert!(view.filter_operator.is_some());
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(1), Value::Integer(10), Value::Integer(100)],
);
delta.insert(
2,
vec![Value::Integer(2), Value::Integer(20), Value::Integer(200)],
);
delta.insert(
3,
vec![Value::Integer(3), Value::Integer(30), Value::Integer(300)],
);
view.merge_delta(&delta);
// Should filter all 3 rows
assert_eq!(view.tracker.lock().unwrap().filter_evaluations, 3);
// But only aggregate the 2 that passed the filter (a > 1)
assert_eq!(view.tracker.lock().unwrap().aggregation_updates, 2);
let results = view.current_data(None);
// Should have 1 row with sum of b where a > 1
assert_eq!(results.len(), 1);
assert_eq!(results[0].1[0], Value::Integer(50)); // SUM(b) = 20 + 30
}
#[test]
fn test_aggregation_incremental_updates() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, COUNT(*), SUM(b) FROM t GROUP BY a";
let mut view = IncrementalView::from_sql(sql, &schema).unwrap();
// Initial insert
let mut delta1 = Delta::new();
delta1.insert(
1,
vec![Value::Integer(1), Value::Integer(10), Value::Integer(100)],
);
delta1.insert(
2,
vec![Value::Integer(1), Value::Integer(20), Value::Integer(200)],
);
view.merge_delta(&delta1);
// Verify we processed exactly 2 rows for the first batch
assert_eq!(view.tracker.lock().unwrap().aggregation_updates, 2);
// Check initial state
let results1 = view.current_data(None);
assert_eq!(results1.len(), 1);
assert_eq!(results1[0].1[1], Value::Integer(2)); // COUNT(*)=2
assert_eq!(results1[0].1[2], Value::Integer(30)); // SUM(b)=30
// Reset counter to track second batch separately
view.tracker.lock().unwrap().aggregation_updates = 0;
// Add more data
let mut delta2 = Delta::new();
delta2.insert(
3,
vec![Value::Integer(1), Value::Integer(5), Value::Integer(300)],
);
delta2.insert(
4,
vec![Value::Integer(2), Value::Integer(15), Value::Integer(400)],
);
view.merge_delta(&delta2);
// Should only process the 2 new rows, not recompute everything
assert_eq!(view.tracker.lock().unwrap().aggregation_updates, 2);
// Check updated state
let results2 = view.current_data(None);
assert_eq!(results2.len(), 2);
// Group a=1
let group1 = results2
.iter()
.find(|(_, vals)| vals[0] == Value::Integer(1))
.unwrap();
assert_eq!(group1.1[1], Value::Integer(3)); // COUNT(*)=3
assert_eq!(group1.1[2], Value::Integer(35)); // SUM(b)=35
// Group a=2
let group2 = results2
.iter()
.find(|(_, vals)| vals[0] == Value::Integer(2))
.unwrap();
assert_eq!(group2.1[1], Value::Integer(1)); // COUNT(*)=1
assert_eq!(group2.1[2], Value::Integer(15)); // SUM(b)=15
}
}