Merge 'Import MVCC implementation to the source tree' from Pekka Enberg

This pulls the MVCC implementation based on Hekaton me, @psarna, and
@avinassh did two years ago. No need to get excited, it's not integrated
to the Limbo core, just adds bunch of code likely full of bugs. Next
step is to see how to integrate this under a feature flag to query
executor and wire up transaction log to emit WAL.

Reviewed-by: Pere Diaz Bou <pere-altea@homail.com>

Closes #896
This commit is contained in:
Pekka Enberg
2025-02-05 14:00:24 +02:00
14 changed files with 2709 additions and 0 deletions

27
Cargo.lock generated
View File

@@ -554,6 +554,16 @@ dependencies = [
"crossbeam-utils",
]
[[package]]
name = "crossbeam-skiplist"
version = "0.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "df29de440c58ca2cc6e587ec3d22347551a32435fbde9d2bff64e78a9ffa151b"
dependencies = [
"crossbeam-epoch",
"crossbeam-utils",
]
[[package]]
name = "crossbeam-utils"
version = "0.8.21"
@@ -1570,6 +1580,7 @@ dependencies = [
"cfg_block",
"chrono",
"criterion",
"crossbeam-skiplist",
"fallible-iterator 0.3.0",
"getrandom 0.2.15",
"hex",
@@ -1607,6 +1618,7 @@ dependencies = [
"strum",
"tempfile",
"thiserror 1.0.69",
"tracing",
]
[[package]]
@@ -3043,14 +3055,29 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "784e0ac535deb450455cbfa28a6f0df145ea1bb7ae51b821cf5e7927fdcfbdd0"
dependencies = [
"pin-project-lite",
"tracing-attributes",
"tracing-core",
]
[[package]]
name = "tracing-attributes"
version = "0.1.28"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "395ae124c09f9e6918a2310af6038fba074bcf474ac352496d5910dd59a2226d"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.96",
]
[[package]]
name = "tracing-core"
version = "0.1.33"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e672c95779cf947c5311f83787af4fa8fffd12fb27e4993211a84bdfd9610f9c"
dependencies = [
"once_cell",
]
[[package]]
name = "typenum"

View File

@@ -70,6 +70,8 @@ limbo_time = { path = "../extensions/time", optional = true, features = ["static
miette = "7.4.0"
strum = "0.26"
parking_lot = "0.12.3"
tracing = "0.1.41"
crossbeam-skiplist = "0.1.3"
[build-dependencies]
chrono = "0.4.38"
@@ -92,3 +94,7 @@ tempfile = "3.8.0"
[[bench]]
name = "benchmark"
harness = false
[[bench]]
name = "mvcc_benchmark"
harness = false

View File

@@ -0,0 +1,129 @@
use criterion::async_executor::FuturesExecutor;
use criterion::{criterion_group, criterion_main, Criterion, Throughput};
use limbo_core::mvcc::clock::LocalClock;
use limbo_core::mvcc::database::{Database, Row, RowID};
use pprof::criterion::{Output, PProfProfiler};
fn bench_db() -> Database<LocalClock, String> {
let clock = LocalClock::default();
let storage = limbo_core::mvcc::persistent_storage::Storage::new_noop();
Database::new(clock, storage)
}
fn bench(c: &mut Criterion) {
let mut group = c.benchmark_group("mvcc-ops-throughput");
group.throughput(Throughput::Elements(1));
let db = bench_db();
group.bench_function("begin_tx + rollback_tx", |b| {
b.to_async(FuturesExecutor).iter(|| async {
let tx_id = db.begin_tx();
db.rollback_tx(tx_id)
})
});
let db = bench_db();
group.bench_function("begin_tx + commit_tx", |b| {
b.to_async(FuturesExecutor).iter(|| async {
let tx_id = db.begin_tx();
db.commit_tx(tx_id)
})
});
let db = bench_db();
group.bench_function("begin_tx-read-commit_tx", |b| {
b.to_async(FuturesExecutor).iter(|| async {
let tx_id = db.begin_tx();
db.read(
tx_id,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap();
db.commit_tx(tx_id)
})
});
let db = bench_db();
group.bench_function("begin_tx-update-commit_tx", |b| {
b.to_async(FuturesExecutor).iter(|| async {
let tx_id = db.begin_tx();
db.update(
tx_id,
Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "World".to_string(),
},
)
.unwrap();
db.commit_tx(tx_id)
})
});
let db = bench_db();
let tx = db.begin_tx();
db.insert(
tx,
Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello".to_string(),
},
)
.unwrap();
group.bench_function("read", |b| {
b.to_async(FuturesExecutor).iter(|| async {
db.read(
tx,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap();
})
});
let db = bench_db();
let tx = db.begin_tx();
db.insert(
tx,
Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello".to_string(),
},
)
.unwrap();
group.bench_function("update", |b| {
b.to_async(FuturesExecutor).iter(|| async {
db.update(
tx,
Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "World".to_string(),
},
)
.unwrap();
})
});
}
criterion_group! {
name = benches;
config = Criterion::default().with_profiler(PProfProfiler::new(100, Output::Flamegraph(None)));
targets = bench
}
criterion_main!(benches);

View File

@@ -5,6 +5,7 @@ mod info;
mod io;
#[cfg(feature = "json")]
mod json;
pub mod mvcc;
mod parameters;
mod pseudo;
mod result;

31
core/mvcc/clock.rs Normal file
View File

@@ -0,0 +1,31 @@
use std::sync::atomic::{AtomicU64, Ordering};
/// Logical clock.
pub trait LogicalClock {
fn get_timestamp(&self) -> u64;
fn reset(&self, ts: u64);
}
/// A node-local clock backed by an atomic counter.
#[derive(Debug, Default)]
pub struct LocalClock {
ts_sequence: AtomicU64,
}
impl LocalClock {
pub fn new() -> Self {
Self {
ts_sequence: AtomicU64::new(0),
}
}
}
impl LogicalClock for LocalClock {
fn get_timestamp(&self) -> u64 {
self.ts_sequence.fetch_add(1, Ordering::SeqCst)
}
fn reset(&self, ts: u64) {
self.ts_sequence.store(ts, Ordering::SeqCst);
}
}

67
core/mvcc/cursor.rs Normal file
View File

@@ -0,0 +1,67 @@
use serde::de::DeserializeOwned;
use serde::Serialize;
use crate::mvcc::clock::LogicalClock;
use crate::mvcc::database::{Database, Result, Row, RowID};
use std::fmt::Debug;
#[derive(Debug)]
pub struct ScanCursor<
'a,
Clock: LogicalClock,
T: Sync + Send + Clone + Serialize + DeserializeOwned + Debug,
> {
pub db: &'a Database<Clock, T>,
pub row_ids: Vec<RowID>,
pub index: usize,
tx_id: u64,
}
impl<
'a,
Clock: LogicalClock,
T: Sync + Send + Clone + Serialize + DeserializeOwned + Debug + 'static,
> ScanCursor<'a, Clock, T>
{
pub fn new(
db: &'a Database<Clock, T>,
tx_id: u64,
table_id: u64,
) -> Result<ScanCursor<'a, Clock, T>> {
let row_ids = db.scan_row_ids_for_table(table_id)?;
Ok(Self {
db,
tx_id,
row_ids,
index: 0,
})
}
pub fn current_row_id(&self) -> Option<RowID> {
if self.index >= self.row_ids.len() {
return None;
}
Some(self.row_ids[self.index])
}
pub fn current_row(&self) -> Result<Option<Row<T>>> {
if self.index >= self.row_ids.len() {
return Ok(None);
}
let id = self.row_ids[self.index];
self.db.read(self.tx_id, id)
}
pub fn close(self) -> Result<()> {
Ok(())
}
pub fn forward(&mut self) -> bool {
self.index += 1;
self.index < self.row_ids.len()
}
pub fn is_empty(&self) -> bool {
self.index >= self.row_ids.len()
}
}

810
core/mvcc/database/mod.rs Normal file
View File

@@ -0,0 +1,810 @@
use crate::mvcc::clock::LogicalClock;
use crate::mvcc::errors::DatabaseError;
use crate::mvcc::persistent_storage::Storage;
use crossbeam_skiplist::{SkipMap, SkipSet};
use std::fmt::Debug;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::RwLock;
pub type Result<T> = std::result::Result<T, DatabaseError>;
#[cfg(test)]
mod tests;
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct RowID {
pub table_id: u64,
pub row_id: u64,
}
#[derive(Clone, Debug, PartialEq, PartialOrd)]
pub struct Row<T> {
pub id: RowID,
pub data: T,
}
/// A row version.
#[derive(Clone, Debug, PartialEq)]
pub struct RowVersion<T> {
begin: TxTimestampOrID,
end: Option<TxTimestampOrID>,
row: Row<T>,
}
pub type TxID = u64;
/// A log record contains all the versions inserted and deleted by a transaction.
#[derive(Clone, Debug)]
pub struct LogRecord<T> {
pub(crate) tx_timestamp: TxID,
row_versions: Vec<RowVersion<T>>,
}
impl<T> LogRecord<T> {
fn new(tx_timestamp: TxID) -> Self {
Self {
tx_timestamp,
row_versions: Vec::new(),
}
}
}
/// A transaction timestamp or ID.
///
/// Versions either track a timestamp or a transaction ID, depending on the
/// phase of the transaction. During the active phase, new versions track the
/// transaction ID in the `begin` and `end` fields. After a transaction commits,
/// versions switch to tracking timestamps.
#[derive(Clone, Debug, PartialEq, PartialOrd)]
enum TxTimestampOrID {
Timestamp(u64),
TxID(TxID),
}
/// Transaction
#[derive(Debug)]
pub struct Transaction {
/// The state of the transaction.
state: AtomicTransactionState,
/// The transaction ID.
tx_id: u64,
/// The transaction begin timestamp.
begin_ts: u64,
/// The transaction write set.
write_set: SkipSet<RowID>,
/// The transaction read set.
read_set: SkipSet<RowID>,
}
impl Transaction {
fn new(tx_id: u64, begin_ts: u64) -> Transaction {
Transaction {
state: TransactionState::Active.into(),
tx_id,
begin_ts,
write_set: SkipSet::new(),
read_set: SkipSet::new(),
}
}
fn insert_to_read_set(&self, id: RowID) {
self.read_set.insert(id);
}
fn insert_to_write_set(&mut self, id: RowID) {
self.write_set.insert(id);
}
}
impl std::fmt::Display for Transaction {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::result::Result<(), std::fmt::Error> {
write!(
f,
"{{ state: {}, id: {}, begin_ts: {}, write_set: {:?}, read_set: {:?}",
self.state.load(),
self.tx_id,
self.begin_ts,
// FIXME: I'm sorry, we obviously shouldn't be cloning here.
self.write_set
.iter()
.map(|v| *v.value())
.collect::<Vec<RowID>>(),
self.read_set
.iter()
.map(|v| *v.value())
.collect::<Vec<RowID>>()
)
}
}
/// Transaction state.
#[derive(Debug, Clone, PartialEq)]
enum TransactionState {
Active,
Preparing,
Aborted,
Terminated,
Committed(u64),
}
impl TransactionState {
pub fn encode(&self) -> u64 {
match self {
TransactionState::Active => 0,
TransactionState::Preparing => 1,
TransactionState::Aborted => 2,
TransactionState::Terminated => 3,
TransactionState::Committed(ts) => {
// We only support 2*62 - 1 timestamps, because the extra bit
// is used to encode the type.
assert!(ts & 0x8000_0000_0000_0000 == 0);
0x8000_0000_0000_0000 | ts
}
}
}
pub fn decode(v: u64) -> Self {
match v {
0 => TransactionState::Active,
1 => TransactionState::Preparing,
2 => TransactionState::Aborted,
3 => TransactionState::Terminated,
v if v & 0x8000_0000_0000_0000 != 0 => {
TransactionState::Committed(v & 0x7fff_ffff_ffff_ffff)
}
_ => panic!("Invalid transaction state"),
}
}
}
// Transaction state encoded into a single 64-bit atomic.
#[derive(Debug)]
pub(crate) struct AtomicTransactionState {
pub(crate) state: AtomicU64,
}
impl From<TransactionState> for AtomicTransactionState {
fn from(state: TransactionState) -> Self {
Self {
state: AtomicU64::new(state.encode()),
}
}
}
impl From<AtomicTransactionState> for TransactionState {
fn from(state: AtomicTransactionState) -> Self {
let encoded = state.state.load(Ordering::Acquire);
TransactionState::decode(encoded)
}
}
impl std::cmp::PartialEq<TransactionState> for AtomicTransactionState {
fn eq(&self, other: &TransactionState) -> bool {
&self.load() == other
}
}
impl std::fmt::Display for TransactionState {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::result::Result<(), std::fmt::Error> {
match self {
TransactionState::Active => write!(f, "Active"),
TransactionState::Preparing => write!(f, "Preparing"),
TransactionState::Committed(ts) => write!(f, "Committed({ts})"),
TransactionState::Aborted => write!(f, "Aborted"),
TransactionState::Terminated => write!(f, "Terminated"),
}
}
}
impl AtomicTransactionState {
fn store(&self, state: TransactionState) {
self.state.store(state.encode(), Ordering::Release);
}
fn load(&self) -> TransactionState {
TransactionState::decode(self.state.load(Ordering::Acquire))
}
}
#[derive(Debug)]
pub struct Database<Clock: LogicalClock, T: Sync + Send + Clone + Debug> {
rows: SkipMap<RowID, RwLock<Vec<RowVersion<T>>>>,
txs: SkipMap<TxID, RwLock<Transaction>>,
tx_ids: AtomicU64,
clock: Clock,
storage: Storage,
}
impl<Clock: LogicalClock, T: Sync + Send + Clone + Debug + 'static> Database<Clock, T> {
/// Creates a new database.
pub fn new(clock: Clock, storage: Storage) -> Self {
Self {
rows: SkipMap::new(),
txs: SkipMap::new(),
tx_ids: AtomicU64::new(1), // let's reserve transaction 0 for special purposes
clock,
storage,
}
}
// Extracts the begin timestamp from a transaction
fn get_begin_timestamp(&self, ts_or_id: &TxTimestampOrID) -> u64 {
match ts_or_id {
TxTimestampOrID::Timestamp(ts) => *ts,
TxTimestampOrID::TxID(tx_id) => {
self.txs
.get(tx_id)
.unwrap()
.value()
.read()
.unwrap()
.begin_ts
}
}
}
/// Inserts a new row version into the database, while making sure that
/// the row version is inserted in the correct order.
fn insert_version(&self, id: RowID, row_version: RowVersion<T>) {
let versions = self.rows.get_or_insert_with(id, || RwLock::new(Vec::new()));
let mut versions = versions.value().write().unwrap();
self.insert_version_raw(&mut versions, row_version)
}
/// Inserts a new row version into the internal data structure for versions,
/// while making sure that the row version is inserted in the correct order.
fn insert_version_raw(&self, versions: &mut Vec<RowVersion<T>>, row_version: RowVersion<T>) {
// NOTICE: this is an insert a'la insertion sort, with pessimistic linear complexity.
// However, we expect the number of versions to be nearly sorted, so we deem it worthy
// to search linearly for the insertion point instead of paying the price of using
// another data structure, e.g. a BTreeSet. If it proves to be too quadratic empirically,
// we can either switch to a tree-like structure, or at least use partition_point()
// which performs a binary search for the insertion point.
let position = versions
.iter()
.rposition(|v| {
self.get_begin_timestamp(&v.begin) < self.get_begin_timestamp(&row_version.begin)
})
.map(|p| p + 1)
.unwrap_or(0);
if versions.len() - position > 3 {
tracing::debug!(
"Inserting a row version {} positions from the end",
versions.len() - position
);
}
versions.insert(position, row_version);
}
/// Inserts a new row into the database.
///
/// This function inserts a new `row` into the database within the context
/// of the transaction `tx_id`.
///
/// # Arguments
///
/// * `tx_id` - the ID of the transaction in which to insert the new row.
/// * `row` - the row object containing the values to be inserted.
///
pub fn insert(&self, tx_id: TxID, row: Row<T>) -> Result<()> {
let tx = self
.txs
.get(&tx_id)
.ok_or(DatabaseError::NoSuchTransactionID(tx_id))?;
let mut tx = tx.value().write().unwrap();
assert_eq!(tx.state, TransactionState::Active);
let id = row.id;
let row_version = RowVersion {
begin: TxTimestampOrID::TxID(tx.tx_id),
end: None,
row,
};
tx.insert_to_write_set(id);
drop(tx);
self.insert_version(id, row_version);
Ok(())
}
/// Updates a row in the database with new values.
///
/// This function updates an existing row in the database within the
/// context of the transaction `tx_id`. The `row` argument identifies the
/// row to be updated as `id` and contains the new values to be inserted.
///
/// If the row identified by the `id` does not exist, this function does
/// nothing and returns `false`. Otherwise, the function updates the row
/// with the new values and returns `true`.
///
/// # Arguments
///
/// * `tx_id` - the ID of the transaction in which to update the new row.
/// * `row` - the row object containing the values to be updated.
///
/// # Returns
///
/// Returns `true` if the row was successfully updated, and `false` otherwise.
pub fn update(&self, tx_id: TxID, row: Row<T>) -> Result<bool> {
if !self.delete(tx_id, row.id)? {
return Ok(false);
}
self.insert(tx_id, row)?;
Ok(true)
}
/// Inserts a row in the database with new values, previously deleting
/// any old data if it existed. Bails on a delete error, e.g. write-write conflict.
pub fn upsert(&self, tx_id: TxID, row: Row<T>) -> Result<()> {
self.delete(tx_id, row.id)?;
self.insert(tx_id, row)
}
/// Deletes a row from the table with the given `id`.
///
/// This function deletes an existing row `id` in the database within the
/// context of the transaction `tx_id`.
///
/// # Arguments
///
/// * `tx_id` - the ID of the transaction in which to delete the new row.
/// * `id` - the ID of the row to delete.
///
/// # Returns
///
/// Returns `true` if the row was successfully deleted, and `false` otherwise.
///
pub fn delete(&self, tx_id: TxID, id: RowID) -> Result<bool> {
let row_versions_opt = self.rows.get(&id);
if let Some(ref row_versions) = row_versions_opt {
let mut row_versions = row_versions.value().write().unwrap();
for rv in row_versions.iter_mut().rev() {
let tx = self
.txs
.get(&tx_id)
.ok_or(DatabaseError::NoSuchTransactionID(tx_id))?;
let tx = tx.value().read().unwrap();
assert_eq!(tx.state, TransactionState::Active);
if is_write_write_conflict(&self.txs, &tx, rv) {
drop(row_versions);
drop(row_versions_opt);
drop(tx);
self.rollback_tx(tx_id);
return Err(DatabaseError::WriteWriteConflict);
}
if is_version_visible(&self.txs, &tx, rv) {
rv.end = Some(TxTimestampOrID::TxID(tx.tx_id));
drop(row_versions);
drop(row_versions_opt);
drop(tx);
let tx = self
.txs
.get(&tx_id)
.ok_or(DatabaseError::NoSuchTransactionID(tx_id))?;
let mut tx = tx.value().write().unwrap();
tx.insert_to_write_set(id);
return Ok(true);
}
}
}
Ok(false)
}
/// Retrieves a row from the table with the given `id`.
///
/// This operation is performed within the scope of the transaction identified
/// by `tx_id`.
///
/// # Arguments
///
/// * `tx_id` - The ID of the transaction to perform the read operation in.
/// * `id` - The ID of the row to retrieve.
///
/// # Returns
///
/// Returns `Some(row)` with the row data if the row with the given `id` exists,
/// and `None` otherwise.
pub fn read(&self, tx_id: TxID, id: RowID) -> Result<Option<Row<T>>> {
let tx = self.txs.get(&tx_id).unwrap();
let tx = tx.value().read().unwrap();
assert_eq!(tx.state, TransactionState::Active);
if let Some(row_versions) = self.rows.get(&id) {
let row_versions = row_versions.value().read().unwrap();
for rv in row_versions.iter().rev() {
if is_version_visible(&self.txs, &tx, rv) {
tx.insert_to_read_set(id);
return Ok(Some(rv.row.clone()));
}
}
}
Ok(None)
}
/// Gets all row ids in the database.
pub fn scan_row_ids(&self) -> Result<Vec<RowID>> {
let keys = self.rows.iter().map(|entry| *entry.key());
Ok(keys.collect())
}
/// Gets all row ids in the database for a given table.
pub fn scan_row_ids_for_table(&self, table_id: u64) -> Result<Vec<RowID>> {
Ok(self
.rows
.range(
RowID {
table_id,
row_id: 0,
}..RowID {
table_id,
row_id: u64::MAX,
},
)
.map(|entry| *entry.key())
.collect())
}
/// Begins a new transaction in the database.
///
/// This function starts a new transaction in the database and returns a `TxID` value
/// that you can use to perform operations within the transaction. All changes made within the
/// transaction are isolated from other transactions until you commit the transaction.
pub fn begin_tx(&self) -> TxID {
let tx_id = self.get_tx_id();
let begin_ts = self.get_timestamp();
let tx = Transaction::new(tx_id, begin_ts);
tracing::trace!("BEGIN {tx}");
self.txs.insert(tx_id, RwLock::new(tx));
tx_id
}
/// Commits a transaction with the specified transaction ID.
///
/// This function commits the changes made within the specified transaction and finalizes the
/// transaction. Once a transaction has been committed, all changes made within the transaction
/// are visible to other transactions that access the same data.
///
/// # Arguments
///
/// * `tx_id` - The ID of the transaction to commit.
pub fn commit_tx(&self, tx_id: TxID) -> Result<()> {
let end_ts = self.get_timestamp();
// NOTICE: the first shadowed tx keeps the entry alive in the map
// for the duration of this whole function, which is important for correctness!
let tx = self.txs.get(&tx_id).ok_or(DatabaseError::TxTerminated)?;
let tx = tx.value().write().unwrap();
match tx.state.load() {
TransactionState::Terminated => return Err(DatabaseError::TxTerminated),
_ => {
assert_eq!(tx.state, TransactionState::Active);
}
}
tx.state.store(TransactionState::Preparing);
tracing::trace!("PREPARE {tx}");
/* TODO: The code we have here is sufficient for snapshot isolation.
** In order to implement serializability, we need the following steps:
**
** 1. Validate if all read versions are still visible by inspecting the read_set
** 2. Validate if there are no phantoms by walking the scans from scan_set (which we don't even have yet)
** - a phantom is a version that became visible in the middle of our transaction,
** but wasn't taken into account during one of the scans from the scan_set
** 3. Wait for commit dependencies, which we don't even track yet...
** Excerpt from what's a commit dependency and how it's tracked in the original paper:
** """
A transaction T1 has a commit dependency on another transaction
T2, if T1 is allowed to commit only if T2 commits. If T2 aborts,
T1 must also abort, so cascading aborts are possible. T1 acquires a
commit dependency either by speculatively reading or speculatively ignoring a version,
instead of waiting for T2 to commit.
We implement commit dependencies by a register-and-report
approach: T1 registers its dependency with T2 and T2 informs T1
when it has committed or aborted. Each transaction T contains a
counter, CommitDepCounter, that counts how many unresolved
commit dependencies it still has. A transaction cannot commit
until this counter is zero. In addition, T has a Boolean variable
AbortNow that other transactions can set to tell T to abort. Each
transaction T also has a set, CommitDepSet, that stores transaction IDs
of the transactions that depend on T.
To take a commit dependency on a transaction T2, T1 increments
its CommitDepCounter and adds its transaction ID to T2s CommitDepSet.
When T2 has committed, it locates each transaction in
its CommitDepSet and decrements their CommitDepCounter. If
T2 aborted, it tells the dependent transactions to also abort by
setting their AbortNow flags. If a dependent transaction is not
found, this means that it has already aborted.
Note that a transaction with commit dependencies may not have to
wait at all - the dependencies may have been resolved before it is
ready to commit. Commit dependencies consolidate all waits into
a single wait and postpone the wait to just before commit.
Some transactions may have to wait before commit.
Waiting raises a concern of deadlocks.
However, deadlocks cannot occur because an older transaction never
waits on a younger transaction. In
a wait-for graph the direction of edges would always be from a
younger transaction (higher end timestamp) to an older transaction
(lower end timestamp) so cycles are impossible.
"""
** If you're wondering when a speculative read happens, here you go:
** Case 1: speculative read of TB:
"""
If transaction TB is in the Preparing state, it has acquired an end
timestamp TS which will be Vs begin timestamp if TB commits.
A safe approach in this situation would be to have transaction T
wait until transaction TB commits. However, we want to avoid all
blocking during normal processing so instead we continue with
the visibility test and, if the test returns true, allow T to
speculatively read V. Transaction T acquires a commit dependency on
TB, restricting the serialization order of the two transactions. That
is, T is allowed to commit only if TB commits.
"""
** Case 2: speculative ignore of TE:
"""
If TEs state is Preparing, it has an end timestamp TS that will become
the end timestamp of V if TE does commit. If TS is greater than the read
time RT, it is obvious that V will be visible if TE commits. If TE
aborts, V will still be visible, because any transaction that updates
V after TE has aborted will obtain an end timestamp greater than
TS. If TS is less than RT, we have a more complicated situation:
if TE commits, V will not be visible to T but if TE aborts, it will
be visible. We could handle this by forcing T to wait until TE
commits or aborts but we want to avoid all blocking during normal processing.
Instead we allow T to speculatively ignore V and
proceed with its processing. Transaction T acquires a commit
dependency (see Section 2.7) on TE, that is, T is allowed to commit
only if TE commits.
"""
*/
tx.state.store(TransactionState::Committed(end_ts));
tracing::trace!("COMMIT {tx}");
let tx_begin_ts = tx.begin_ts;
let write_set: Vec<RowID> = tx.write_set.iter().map(|v| *v.value()).collect();
drop(tx);
// Postprocessing: inserting row versions and logging the transaction to persistent storage.
// TODO: we should probably save to persistent storage first, and only then update the in-memory structures.
let mut log_record: LogRecord<T> = LogRecord::new(end_ts);
for ref id in write_set {
if let Some(row_versions) = self.rows.get(id) {
let mut row_versions = row_versions.value().write().unwrap();
for row_version in row_versions.iter_mut() {
if let TxTimestampOrID::TxID(id) = row_version.begin {
if id == tx_id {
row_version.begin = TxTimestampOrID::Timestamp(tx_begin_ts);
self.insert_version_raw(
&mut log_record.row_versions,
row_version.clone(),
); // FIXME: optimize cloning out
}
}
if let Some(TxTimestampOrID::TxID(id)) = row_version.end {
if id == tx_id {
row_version.end = Some(TxTimestampOrID::Timestamp(end_ts));
self.insert_version_raw(
&mut log_record.row_versions,
row_version.clone(),
); // FIXME: optimize cloning out
}
}
}
}
}
tracing::trace!("UPDATED TX{tx_id}");
// We have now updated all the versions with a reference to the
// transaction ID to a timestamp and can, therefore, remove the
// transaction. Please note that when we move to lockless, the
// invariant doesn't necessarily hold anymore because another thread
// might have speculatively read a version that we want to remove.
// But that's a problem for another day.
// FIXME: it actually just become a problem for today!!!
// TODO: test that reproduces this failure, and then a fix
self.txs.remove(&tx_id);
if !log_record.row_versions.is_empty() {
self.storage.log_tx(log_record)?;
}
tracing::trace!("LOGGED {tx_id}");
Ok(())
}
/// Rolls back a transaction with the specified ID.
///
/// This function rolls back a transaction with the specified `tx_id` by
/// discarding any changes made by the transaction.
///
/// # Arguments
///
/// * `tx_id` - The ID of the transaction to abort.
pub fn rollback_tx(&self, tx_id: TxID) {
let tx_unlocked = self.txs.get(&tx_id).unwrap();
let tx = tx_unlocked.value().write().unwrap();
assert_eq!(tx.state, TransactionState::Active);
tx.state.store(TransactionState::Aborted);
tracing::trace!("ABORT {tx}");
let write_set: Vec<RowID> = tx.write_set.iter().map(|v| *v.value()).collect();
drop(tx);
for ref id in write_set {
if let Some(row_versions) = self.rows.get(id) {
let mut row_versions = row_versions.value().write().unwrap();
row_versions.retain(|rv| rv.begin != TxTimestampOrID::TxID(tx_id));
if row_versions.is_empty() {
self.rows.remove(id);
}
}
}
let tx = tx_unlocked.value().read().unwrap();
tx.state.store(TransactionState::Terminated);
tracing::trace!("TERMINATE {tx}");
// FIXME: verify that we can already remove the transaction here!
// Maybe it's fine for snapshot isolation, but too early for serializable?
self.txs.remove(&tx_id);
}
/// Generates next unique transaction id
pub fn get_tx_id(&self) -> u64 {
self.tx_ids.fetch_add(1, Ordering::SeqCst)
}
/// Gets current timestamp
pub fn get_timestamp(&self) -> u64 {
self.clock.get_timestamp()
}
/// Removes unused row versions with very loose heuristics,
/// which sometimes leaves versions intact for too long.
/// Returns the number of removed versions.
pub fn drop_unused_row_versions(&self) -> usize {
tracing::trace!(
"Dropping unused row versions. Database stats: transactions: {}; rows: {}",
self.txs.len(),
self.rows.len()
);
let mut dropped = 0;
let mut to_remove = Vec::new();
for entry in self.rows.iter() {
let mut row_versions = entry.value().write().unwrap();
row_versions.retain(|rv| {
// FIXME: should take rv.begin into account as well
let should_stay = match rv.end {
Some(TxTimestampOrID::Timestamp(version_end_ts)) => {
// a transaction started before this row version ended, ergo row version is needed
// NOTICE: O(row_versions x transactions), but also lock-free, so sounds acceptable
self.txs.iter().any(|tx| {
let tx = tx.value().read().unwrap();
// FIXME: verify!
match tx.state.load() {
TransactionState::Active | TransactionState::Preparing => {
version_end_ts > tx.begin_ts
}
_ => false,
}
})
}
// Let's skip potentially complex logic if the transafction is still
// active/tracked. We will drop the row version when the transaction
// gets garbage-collected itself, it will always happen eventually.
Some(TxTimestampOrID::TxID(tx_id)) => !self.txs.contains_key(&tx_id),
// this row version is current, ergo visible
None => true,
};
if !should_stay {
dropped += 1;
tracing::trace!(
"Dropping row version {:?} {:?}-{:?}",
entry.key(),
rv.begin,
rv.end
);
}
should_stay
});
if row_versions.is_empty() {
to_remove.push(*entry.key());
}
}
for id in to_remove {
self.rows.remove(&id);
}
dropped
}
pub fn recover(&self) -> Result<()> {
let tx_log = self.storage.read_tx_log()?;
for record in tx_log {
tracing::debug!("RECOVERING {:?}", record);
for version in record.row_versions {
self.insert_version(version.row.id, version);
}
self.clock.reset(record.tx_timestamp);
}
Ok(())
}
}
/// A write-write conflict happens when transaction T_m attempts to update a
/// row version that is currently being updated by an active transaction T_n.
pub(crate) fn is_write_write_conflict<T>(
txs: &SkipMap<TxID, RwLock<Transaction>>,
tx: &Transaction,
rv: &RowVersion<T>,
) -> bool {
match rv.end {
Some(TxTimestampOrID::TxID(rv_end)) => {
let te = txs.get(&rv_end).unwrap();
let te = te.value().read().unwrap();
match te.state.load() {
TransactionState::Active | TransactionState::Preparing => tx.tx_id != te.tx_id,
_ => false,
}
}
Some(TxTimestampOrID::Timestamp(_)) => false,
None => false,
}
}
pub(crate) fn is_version_visible<T>(
txs: &SkipMap<TxID, RwLock<Transaction>>,
tx: &Transaction,
rv: &RowVersion<T>,
) -> bool {
is_begin_visible(txs, tx, rv) && is_end_visible(txs, tx, rv)
}
fn is_begin_visible<T>(
txs: &SkipMap<TxID, RwLock<Transaction>>,
tx: &Transaction,
rv: &RowVersion<T>,
) -> bool {
match rv.begin {
TxTimestampOrID::Timestamp(rv_begin_ts) => tx.begin_ts >= rv_begin_ts,
TxTimestampOrID::TxID(rv_begin) => {
let tb = txs.get(&rv_begin).unwrap();
let tb = tb.value().read().unwrap();
let visible = match tb.state.load() {
TransactionState::Active => tx.tx_id == tb.tx_id && rv.end.is_none(),
TransactionState::Preparing => false, // NOTICE: makes sense for snapshot isolation, not so much for serializable!
TransactionState::Committed(committed_ts) => tx.begin_ts >= committed_ts,
TransactionState::Aborted => false,
TransactionState::Terminated => {
tracing::debug!("TODO: should reread rv's end field - it should have updated the timestamp in the row version by now");
false
}
};
tracing::trace!(
"is_begin_visible: tx={tx}, tb={tb} rv = {:?}-{:?} visible = {visible}",
rv.begin,
rv.end
);
visible
}
}
}
fn is_end_visible<T>(
txs: &SkipMap<TxID, RwLock<Transaction>>,
tx: &Transaction,
rv: &RowVersion<T>,
) -> bool {
match rv.end {
Some(TxTimestampOrID::Timestamp(rv_end_ts)) => tx.begin_ts < rv_end_ts,
Some(TxTimestampOrID::TxID(rv_end)) => {
let te = txs.get(&rv_end).unwrap();
let te = te.value().read().unwrap();
let visible = match te.state.load() {
TransactionState::Active => tx.tx_id != te.tx_id,
TransactionState::Preparing => false, // NOTICE: makes sense for snapshot isolation, not so much for serializable!
TransactionState::Committed(committed_ts) => tx.begin_ts < committed_ts,
TransactionState::Aborted => false,
TransactionState::Terminated => {
tracing::debug!("TODO: should reread rv's end field - it should have updated the timestamp in the row version by now");
false
}
};
tracing::trace!(
"is_end_visible: tx={tx}, te={te} rv = {:?}-{:?} visible = {visible}",
rv.begin,
rv.end
);
visible
}
None => true,
}
}

760
core/mvcc/database/tests.rs Normal file
View File

@@ -0,0 +1,760 @@
use super::*;
use crate::mvcc::clock::LocalClock;
fn test_db() -> Database<LocalClock, String> {
let clock = LocalClock::new();
let storage = crate::mvcc::persistent_storage::Storage::new_noop();
Database::new(clock, storage)
}
#[test]
fn test_insert_read() {
let db = test_db();
let tx1 = db.begin_tx();
let tx1_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello".to_string(),
};
db.insert(tx1, tx1_row.clone()).unwrap();
let row = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
db.commit_tx(tx1).unwrap();
let tx2 = db.begin_tx();
let row = db
.read(
tx2,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
}
#[test]
fn test_read_nonexistent() {
let db = test_db();
let tx = db.begin_tx();
let row = db.read(
tx,
RowID {
table_id: 1,
row_id: 1,
},
);
assert!(row.unwrap().is_none());
}
#[test]
fn test_delete() {
let db = test_db();
let tx1 = db.begin_tx();
let tx1_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello".to_string(),
};
db.insert(tx1, tx1_row.clone()).unwrap();
let row = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
db.delete(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap();
let row = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap();
assert!(row.is_none());
db.commit_tx(tx1).unwrap();
let tx2 = db.begin_tx();
let row = db
.read(
tx2,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap();
assert!(row.is_none());
}
#[test]
fn test_delete_nonexistent() {
let db = test_db();
let tx = db.begin_tx();
assert!(!db
.delete(
tx,
RowID {
table_id: 1,
row_id: 1
}
)
.unwrap());
}
#[test]
fn test_commit() {
let db = test_db();
let tx1 = db.begin_tx();
let tx1_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello".to_string(),
};
db.insert(tx1, tx1_row.clone()).unwrap();
let row = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
let tx1_updated_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "World".to_string(),
};
db.update(tx1, tx1_updated_row.clone()).unwrap();
let row = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_updated_row, row);
db.commit_tx(tx1).unwrap();
let tx2 = db.begin_tx();
let row = db
.read(
tx2,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
db.commit_tx(tx2).unwrap();
assert_eq!(tx1_updated_row, row);
db.drop_unused_row_versions();
}
#[test]
fn test_rollback() {
let db = test_db();
let tx1 = db.begin_tx();
let row1 = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello".to_string(),
};
db.insert(tx1, row1.clone()).unwrap();
let row2 = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(row1, row2);
let row3 = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "World".to_string(),
};
db.update(tx1, row3.clone()).unwrap();
let row4 = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(row3, row4);
db.rollback_tx(tx1);
let tx2 = db.begin_tx();
let row5 = db
.read(
tx2,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap();
assert_eq!(row5, None);
}
#[test]
fn test_dirty_write() {
let db = test_db();
// T1 inserts a row with ID 1, but does not commit.
let tx1 = db.begin_tx();
let tx1_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello".to_string(),
};
db.insert(tx1, tx1_row.clone()).unwrap();
let row = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
// T2 attempts to delete row with ID 1, but fails because T1 has not committed.
let tx2 = db.begin_tx();
let tx2_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "World".to_string(),
};
assert!(!db.update(tx2, tx2_row).unwrap());
let row = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
}
#[test]
fn test_dirty_read() {
let db = test_db();
// T1 inserts a row with ID 1, but does not commit.
let tx1 = db.begin_tx();
let row1 = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello".to_string(),
};
db.insert(tx1, row1).unwrap();
// T2 attempts to read row with ID 1, but doesn't see one because T1 has not committed.
let tx2 = db.begin_tx();
let row2 = db
.read(
tx2,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap();
assert_eq!(row2, None);
}
#[test]
fn test_dirty_read_deleted() {
let db = test_db();
// T1 inserts a row with ID 1 and commits.
let tx1 = db.begin_tx();
let tx1_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello".to_string(),
};
db.insert(tx1, tx1_row.clone()).unwrap();
db.commit_tx(tx1).unwrap();
// T2 deletes row with ID 1, but does not commit.
let tx2 = db.begin_tx();
assert!(db
.delete(
tx2,
RowID {
table_id: 1,
row_id: 1
}
)
.unwrap());
// T3 reads row with ID 1, but doesn't see the delete because T2 hasn't committed.
let tx3 = db.begin_tx();
let row = db
.read(
tx3,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
}
#[test]
fn test_fuzzy_read() {
let db = test_db();
// T1 inserts a row with ID 1 and commits.
let tx1 = db.begin_tx();
let tx1_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello".to_string(),
};
db.insert(tx1, tx1_row.clone()).unwrap();
let row = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
db.commit_tx(tx1).unwrap();
// T2 reads the row with ID 1 within an active transaction.
let tx2 = db.begin_tx();
let row = db
.read(
tx2,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
// T3 updates the row and commits.
let tx3 = db.begin_tx();
let tx3_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "World".to_string(),
};
db.update(tx3, tx3_row).unwrap();
db.commit_tx(tx3).unwrap();
// T2 still reads the same version of the row as before.
let row = db
.read(
tx2,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
}
#[test]
fn test_lost_update() {
let db = test_db();
// T1 inserts a row with ID 1 and commits.
let tx1 = db.begin_tx();
let tx1_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello".to_string(),
};
db.insert(tx1, tx1_row.clone()).unwrap();
let row = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
db.commit_tx(tx1).unwrap();
// T2 attempts to update row ID 1 within an active transaction.
let tx2 = db.begin_tx();
let tx2_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "World".to_string(),
};
assert!(db.update(tx2, tx2_row.clone()).unwrap());
// T3 also attempts to update row ID 1 within an active transaction.
let tx3 = db.begin_tx();
let tx3_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "Hello, world!".to_string(),
};
assert_eq!(
Err(DatabaseError::WriteWriteConflict),
db.update(tx3, tx3_row)
);
db.commit_tx(tx2).unwrap();
assert_eq!(Err(DatabaseError::TxTerminated), db.commit_tx(tx3));
let tx4 = db.begin_tx();
let row = db
.read(
tx4,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx2_row, row);
}
// Test for the visibility to check if a new transaction can see old committed values.
// This test checks for the typo present in the paper, explained in https://github.com/penberg/mvcc-rs/issues/15
#[test]
fn test_committed_visibility() {
let db = test_db();
// let's add $10 to my account since I like money
let tx1 = db.begin_tx();
let tx1_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "10".to_string(),
};
db.insert(tx1, tx1_row.clone()).unwrap();
db.commit_tx(tx1).unwrap();
// but I like more money, so let me try adding $10 more
let tx2 = db.begin_tx();
let tx2_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "20".to_string(),
};
assert!(db.update(tx2, tx2_row.clone()).unwrap());
let row = db
.read(
tx2,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(row, tx2_row);
// can I check how much money I have?
let tx3 = db.begin_tx();
let row = db
.read(
tx3,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap()
.unwrap();
assert_eq!(tx1_row, row);
}
// Test to check if a older transaction can see (un)committed future rows
#[test]
fn test_future_row() {
let db = test_db();
let tx1 = db.begin_tx();
let tx2 = db.begin_tx();
let tx2_row = Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "10".to_string(),
};
db.insert(tx2, tx2_row).unwrap();
// transaction in progress, so tx1 shouldn't be able to see the value
let row = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap();
assert_eq!(row, None);
// lets commit the transaction and check if tx1 can see it
db.commit_tx(tx2).unwrap();
let row = db
.read(
tx1,
RowID {
table_id: 1,
row_id: 1,
},
)
.unwrap();
assert_eq!(row, None);
}
/* States described in the Hekaton paper *for serializability*:
Table 1: Case analysis of action to take when version Vs
Begin field contains the ID of transaction TB
------------------------------------------------------------------------------------------------------
TBs state | TBs end timestamp | Action to take when transaction T checks visibility of version V.
------------------------------------------------------------------------------------------------------
Active | Not set | V is visible only if TB=T and Vs end timestamp equals infinity.
------------------------------------------------------------------------------------------------------
Preparing | TS | Vs begin timestamp will be TS ut V is not yet committed. Use TS
| as Vs begin time when testing visibility. If the test is true,
| allow T to speculatively read V. Committed TS Vs begin timestamp
| will be TS and V is committed. Use TS as Vs begin time to test
| visibility.
------------------------------------------------------------------------------------------------------
Committed | TS | Vs begin timestamp will be TS and V is committed. Use TS as Vs
| begin time to test visibility.
------------------------------------------------------------------------------------------------------
Aborted | Irrelevant | Ignore V; its a garbage version.
------------------------------------------------------------------------------------------------------
Terminated | Irrelevant | Reread Vs Begin field. TB has terminated so it must have finalized
or not found | | the timestamp.
------------------------------------------------------------------------------------------------------
Table 2: Case analysis of action to take when V's End field
contains a transaction ID TE.
------------------------------------------------------------------------------------------------------
TEs state | TEs end timestamp | Action to take when transaction T checks visibility of a version V
| | as of read time RT.
------------------------------------------------------------------------------------------------------
Active | Not set | V is visible only if TE is not T.
------------------------------------------------------------------------------------------------------
Preparing | TS | Vs end timestamp will be TS provided that TE commits. If TS > RT,
| V is visible to T. If TS < RT, T speculatively ignores V.
------------------------------------------------------------------------------------------------------
Committed | TS | Vs end timestamp will be TS and V is committed. Use TS as Vs end
| timestamp when testing visibility.
------------------------------------------------------------------------------------------------------
Aborted | Irrelevant | V is visible.
------------------------------------------------------------------------------------------------------
Terminated | Irrelevant | Reread Vs End field. TE has terminated so it must have finalized
or not found | | the timestamp.
*/
fn new_tx(tx_id: TxID, begin_ts: u64, state: TransactionState) -> RwLock<Transaction> {
let state = state.into();
RwLock::new(Transaction {
state,
tx_id,
begin_ts,
write_set: SkipSet::new(),
read_set: SkipSet::new(),
})
}
#[test]
fn test_snapshot_isolation_tx_visible1() {
let txs: SkipMap<TxID, RwLock<Transaction>> = SkipMap::from_iter([
(1, new_tx(1, 1, TransactionState::Committed(2))),
(2, new_tx(2, 2, TransactionState::Committed(5))),
(3, new_tx(3, 3, TransactionState::Aborted)),
(5, new_tx(5, 5, TransactionState::Preparing)),
(6, new_tx(6, 6, TransactionState::Committed(10))),
(7, new_tx(7, 7, TransactionState::Active)),
]);
let current_tx = new_tx(4, 4, TransactionState::Preparing);
let current_tx = current_tx.read().unwrap();
let rv_visible = |begin: TxTimestampOrID, end: Option<TxTimestampOrID>| {
let row_version = RowVersion {
begin,
end,
row: Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "testme".to_string(),
},
};
tracing::debug!("Testing visibility of {row_version:?}");
is_version_visible(&txs, &current_tx, &row_version)
};
// begin visible: transaction committed with ts < current_tx.begin_ts
// end visible: inf
assert!(rv_visible(TxTimestampOrID::TxID(1), None));
// begin invisible: transaction committed with ts > current_tx.begin_ts
assert!(!rv_visible(TxTimestampOrID::TxID(2), None));
// begin invisible: transaction aborted
assert!(!rv_visible(TxTimestampOrID::TxID(3), None));
// begin visible: timestamp < current_tx.begin_ts
// end invisible: transaction committed with ts > current_tx.begin_ts
assert!(!rv_visible(
TxTimestampOrID::Timestamp(0),
Some(TxTimestampOrID::TxID(1))
));
// begin visible: timestamp < current_tx.begin_ts
// end visible: transaction committed with ts < current_tx.begin_ts
assert!(rv_visible(
TxTimestampOrID::Timestamp(0),
Some(TxTimestampOrID::TxID(2))
));
// begin visible: timestamp < current_tx.begin_ts
// end invisible: transaction aborted
assert!(!rv_visible(
TxTimestampOrID::Timestamp(0),
Some(TxTimestampOrID::TxID(3))
));
// begin invisible: transaction preparing
assert!(!rv_visible(TxTimestampOrID::TxID(5), None));
// begin invisible: transaction committed with ts > current_tx.begin_ts
assert!(!rv_visible(TxTimestampOrID::TxID(6), None));
// begin invisible: transaction active
assert!(!rv_visible(TxTimestampOrID::TxID(7), None));
// begin invisible: transaction committed with ts > current_tx.begin_ts
assert!(!rv_visible(TxTimestampOrID::TxID(6), None));
// begin invisible: transaction active
assert!(!rv_visible(TxTimestampOrID::TxID(7), None));
// begin visible: timestamp < current_tx.begin_ts
// end invisible: transaction preparing
assert!(!rv_visible(
TxTimestampOrID::Timestamp(0),
Some(TxTimestampOrID::TxID(5))
));
// begin invisible: timestamp > current_tx.begin_ts
assert!(!rv_visible(
TxTimestampOrID::Timestamp(6),
Some(TxTimestampOrID::TxID(6))
));
// begin visible: timestamp < current_tx.begin_ts
// end visible: some active transaction will eventually overwrite this version,
// but that hasn't happened
// (this is the https://avi.im/blag/2023/hekaton-paper-typo/ case, I believe!)
assert!(rv_visible(
TxTimestampOrID::Timestamp(0),
Some(TxTimestampOrID::TxID(7))
));
}

13
core/mvcc/errors.rs Normal file
View File

@@ -0,0 +1,13 @@
use thiserror::Error;
#[derive(Error, Debug, PartialEq)]
pub enum DatabaseError {
#[error("no such transaction ID: `{0}`")]
NoSuchTransactionID(u64),
#[error("transaction aborted because of a write-write conflict")]
WriteWriteConflict,
#[error("transaction is terminated")]
TxTerminated,
#[error("I/O error: {0}")]
Io(String),
}

158
core/mvcc/mod.rs Normal file
View File

@@ -0,0 +1,158 @@
//! Multiversion concurrency control (MVCC) for Rust.
//!
//! This module implements the main memory MVCC method outlined in the paper
//! "High-Performance Concurrency Control Mechanisms for Main-Memory Databases"
//! by Per-Åke Larson et al (VLDB, 2011).
//!
//! ## Data anomalies
//!
//! * A *dirty write* occurs when transaction T_m updates a value that is written by
//! transaction T_n but not yet committed. The MVCC algorithm prevents dirty
//! writes by validating that a row version is visible to transaction T_m before
//! allowing update to it.
//!
//! * A *dirty read* occurs when transaction T_m reads a value that was written by
//! transaction T_n but not yet committed. The MVCC algorithm prevents dirty
//! reads by validating that a row version is visible to transaction T_m.
//!
//! * A *fuzzy read* (non-repeatable read) occurs when transaction T_m reads a
//! different value in the course of the transaction because another
//! transaction T_n has updated the value.
//!
//! * A *lost update* occurs when transactions T_m and T_n both attempt to update
//! the same value, resulting in one of the updates being lost. The MVCC algorithm
//! prevents lost updates by detecting the write-write conflict and letting the
//! first-writer win by aborting the later transaction.
//!
//! TODO: phantom reads, cursor lost updates, read skew, write skew.
//!
//! ## TODO
//!
//! * Optimistic reads and writes
//! * Garbage collection
pub mod clock;
pub mod cursor;
pub mod database;
pub mod errors;
pub mod persistent_storage;
#[cfg(test)]
mod tests {
use crate::mvcc::clock::LocalClock;
use crate::mvcc::database::{Database, Row, RowID};
use std::sync::atomic::AtomicU64;
use std::sync::atomic::Ordering;
use std::sync::Arc;
static IDS: AtomicU64 = AtomicU64::new(1);
#[test]
fn test_non_overlapping_concurrent_inserts() {
// Two threads insert to the database concurrently using non-overlapping
// row IDs.
let clock = LocalClock::default();
let storage = crate::mvcc::persistent_storage::Storage::new_noop();
let db = Arc::new(Database::new(clock, storage));
let iterations = 100000;
let th1 = {
let db = db.clone();
std::thread::spawn(move || {
for _ in 0..iterations {
let tx = db.begin_tx();
let id = IDS.fetch_add(1, Ordering::SeqCst);
let id = RowID {
table_id: 1,
row_id: id,
};
let row = Row {
id,
data: "Hello".to_string(),
};
db.insert(tx, row.clone()).unwrap();
db.commit_tx(tx).unwrap();
let tx = db.begin_tx();
let committed_row = db.read(tx, id).unwrap();
db.commit_tx(tx).unwrap();
assert_eq!(committed_row, Some(row));
}
})
};
let th2 = {
std::thread::spawn(move || {
for _ in 0..iterations {
let tx = db.begin_tx();
let id = IDS.fetch_add(1, Ordering::SeqCst);
let id = RowID {
table_id: 1,
row_id: id,
};
let row = Row {
id,
data: "World".to_string(),
};
db.insert(tx, row.clone()).unwrap();
db.commit_tx(tx).unwrap();
let tx = db.begin_tx();
let committed_row = db.read(tx, id).unwrap();
db.commit_tx(tx).unwrap();
assert_eq!(committed_row, Some(row));
}
})
};
th1.join().unwrap();
th2.join().unwrap();
}
#[test]
fn test_overlapping_concurrent_inserts_read_your_writes() {
let clock = LocalClock::default();
let storage = crate::mvcc::persistent_storage::Storage::new_noop();
let db = Arc::new(Database::new(clock, storage));
let iterations = 100000;
let work = |prefix: &'static str| {
let db = db.clone();
std::thread::spawn(move || {
let mut failed_upserts = 0;
for i in 0..iterations {
if i % 1000 == 0 {
tracing::debug!("{prefix}: {i}");
}
if i % 10000 == 0 {
let dropped = db.drop_unused_row_versions();
tracing::debug!("garbage collected {dropped} versions");
}
let tx = db.begin_tx();
let id = i % 16;
let id = RowID {
table_id: 1,
row_id: id,
};
let row = Row {
id,
data: format!("{prefix} @{tx}"),
};
if let Err(e) = db.upsert(tx, row.clone()) {
tracing::trace!("upsert failed: {e}");
failed_upserts += 1;
continue;
}
let committed_row = db.read(tx, id).unwrap();
db.commit_tx(tx).unwrap();
assert_eq!(committed_row, Some(row));
}
tracing::info!(
"{prefix}'s failed upserts: {failed_upserts}/{iterations} {:.2}%",
(failed_upserts * 100) as f64 / iterations as f64
);
})
};
let threads = vec![work("A"), work("B"), work("C"), work("D")];
for th in threads {
th.join().unwrap();
}
}
}

View File

@@ -0,0 +1,32 @@
use std::fmt::Debug;
use crate::mvcc::database::{LogRecord, Result};
use crate::mvcc::errors::DatabaseError;
#[derive(Debug)]
pub enum Storage {
Noop,
}
impl Storage {
pub fn new_noop() -> Self {
Self::Noop
}
}
impl Storage {
pub fn log_tx<T>(&self, _m: LogRecord<T>) -> Result<()> {
match self {
Self::Noop => (),
}
Ok(())
}
pub fn read_tx_log<T>(&self) -> Result<Vec<LogRecord<T>>> {
match self {
Self::Noop => Err(DatabaseError::Io(
"cannot read from Noop storage".to_string(),
)),
}
}
}

View File

@@ -0,0 +1,19 @@
# Design
## Persistent storage
Persistent storage must implement the `Storage` trait that the MVCC module uses for transaction logging.
Figure 1 shows an example of write-ahead log across three transactions.
The first transaction T0 executes a `INSERT (id) VALUES (1)` statement, which results in a log record with `id` set to `1`, begin timestamp to 0 (which is the transaction ID) and end timestamp as infinity (meaning the row version is still visible).
The second transaction T1 executes another `INSERT` statement, which adds another log record to the transaction log with `id` set to `2`, begin timesstamp to 1 and end timestamp as infinity, similar to what T0 did.
Finally, a third transaction T2 executes two statements: `DELETE WHERE id = 1` and `INSERT (id) VALUES (3)`. The first one results in a log record with `id` set to `1` and begin timestamp set to 0 (which is the transaction that created the entry). However, the end timestamp is now set to 2 (the current transaction), which means the entry is now deleted.
The second statement results in an entry in the transaction log similar to the `INSERT` statements in T0 and T1.
![Transactions](figures/transactions.png)
<p align="center">
Figure 1. Transaction log of three transactions.
</p>
When MVCC bootstraps or recovers, it simply redos the transaction log.
If the transaction log grows big, we can checkpoint it it by dropping all entries that are no longer visible after the the latest transaction and create a snapshot.

View File

@@ -0,0 +1,656 @@
{
"type": "excalidraw",
"version": 2,
"source": "https://excalidraw.com",
"elements": [
{
"id": "tFvpBUMWe3qPFUTQVV14X",
"type": "text",
"x": 233.14035848761839,
"y": 205.73272444200816,
"width": 278.57781982421875,
"height": 25,
"angle": 0,
"strokeColor": "#087f5b",
"backgroundColor": "#82c91e",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"roundness": null,
"seed": 94988319,
"version": 510,
"versionNonce": 1210831775,
"isDeleted": false,
"boundElements": null,
"updated": 1683370319070,
"link": null,
"locked": false,
"text": "<tx=0, id=1, begin=0, end=∞>",
"fontSize": 20,
"fontFamily": 1,
"textAlign": "left",
"verticalAlign": "top",
"baseline": 18,
"containerId": null,
"originalText": "<tx=0, id=1, begin=0, end=∞>",
"lineHeight": 1.25
},
{
"type": "text",
"version": 515,
"versionNonce": 1881893969,
"isDeleted": false,
"id": "7i88n1PIb89NxUbVQmTTi",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 938.4614491858606,
"y": 311.23272444200813,
"strokeColor": "#0b7285",
"backgroundColor": "#82c91e",
"width": 279.0400085449219,
"height": 25,
"seed": 1123646321,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370316909,
"link": null,
"locked": false,
"fontSize": 20,
"fontFamily": 1,
"text": "<tx=2, id=1, begin=0, end=2>",
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "<tx=2, id=1, begin=0, end=2>",
"lineHeight": 1.25,
"baseline": 18
},
{
"type": "text",
"version": 556,
"versionNonce": 153125934,
"isDeleted": false,
"id": "Yh8XLtKqXUUYmcmG4SEXn",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 581.1603475012903,
"y": 256.23272444200813,
"strokeColor": "#e67700",
"backgroundColor": "#82c91e",
"width": 270.71783447265625,
"height": 25,
"seed": 1685524017,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683371076075,
"link": null,
"locked": false,
"fontSize": 20,
"fontFamily": 1,
"text": "<tx=1, id=2, begin=1, end=∞>",
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "<tx=1, id=2, begin=1, end=∞>",
"lineHeight": 1.25,
"baseline": 18
},
{
"id": "8l0CCJzCAtOLt_2GRcNpa",
"type": "text",
"x": 256.1403584876185,
"y": 409.73272444200813,
"width": 234.41998291015625,
"height": 75,
"angle": 0,
"strokeColor": "#087f5b",
"backgroundColor": "#82c91e",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"roundness": null,
"seed": 583129809,
"version": 570,
"versionNonce": 561756721,
"isDeleted": false,
"boundElements": null,
"updated": 1683370316909,
"link": null,
"locked": false,
"text": "BEGIN\nINSERT (id) VALUEs (1)\nCOMMIT",
"fontSize": 20,
"fontFamily": 1,
"textAlign": "left",
"verticalAlign": "top",
"baseline": 68,
"containerId": null,
"originalText": "BEGIN\nINSERT (id) VALUEs (1)\nCOMMIT",
"lineHeight": 1.25
},
{
"type": "text",
"version": 628,
"versionNonce": 282656095,
"isDeleted": false,
"id": "3m7VluAP5tair6-60b_sp",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 962.0903554358606,
"y": 416.23272444200813,
"strokeColor": "#0b7285",
"backgroundColor": "#82c91e",
"width": 243.91998291015625,
"height": 100,
"seed": 479705617,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370316909,
"link": null,
"locked": false,
"fontSize": 20,
"fontFamily": 1,
"text": "BEGIN\nDELETE WHERE id =1\nINSERT (id) VALUES (3)\nCOMMIT",
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "BEGIN\nDELETE WHERE id =1\nINSERT (id) VALUES (3)\nCOMMIT",
"lineHeight": 1.25,
"baseline": 93
},
{
"type": "text",
"version": 574,
"versionNonce": 1128746001,
"isDeleted": false,
"id": "Z-Mh1kti2oC6sIMnuGluo",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 613.0903554358607,
"y": 417.23272444200813,
"strokeColor": "#e67700",
"backgroundColor": "#82c91e",
"width": 243.239990234375,
"height": 75,
"seed": 580440625,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370316909,
"link": null,
"locked": false,
"fontSize": 20,
"fontFamily": 1,
"text": "BEGIN\nINSERT (id) VALUEs (2)\nCOMMIT",
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "BEGIN\nINSERT (id) VALUEs (2)\nCOMMIT",
"lineHeight": 1.25,
"baseline": 68
},
{
"type": "line",
"version": 1502,
"versionNonce": 1835608607,
"isDeleted": false,
"id": "VuJNZCgz1Y0WEWwug7pGk",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"angle": 0,
"x": 226.3083636621349,
"y": 173.11701218356845,
"strokeColor": "#000000",
"backgroundColor": "transparent",
"width": 20.336010349032712,
"height": 203.23377930246647,
"seed": 1879839231,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370316909,
"link": null,
"locked": false,
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
-20.264781987976257,
-0.0011773927935071482
],
[
-20.336010349032712,
203.23260190967298
],
[
-0.07239358683375485,
203.135377672515
]
]
},
{
"type": "line",
"version": 1755,
"versionNonce": 1487752017,
"isDeleted": false,
"id": "GpZg3Rw4Hszxzxf38Q4Hn",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"angle": 3.141592653589793,
"x": 539.3083636621348,
"y": 178.11701218356845,
"strokeColor": "#000000",
"backgroundColor": "transparent",
"width": 20.336010349032712,
"height": 203.23377930246647,
"seed": 470135121,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370316909,
"link": null,
"locked": false,
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
-20.264781987976257,
-0.0011773927935071482
],
[
-20.336010349032712,
203.23260190967298
],
[
-0.07239358683375485,
203.135377672515
]
]
},
{
"type": "text",
"version": 528,
"versionNonce": 1276939839,
"isDeleted": false,
"id": "AGEyNvBxBm2cwm1WRW8n8",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 576.6403584876185,
"y": 210.23272444200816,
"strokeColor": "#087f5b",
"backgroundColor": "#82c91e",
"width": 278.57781982421875,
"height": 25,
"seed": 877528401,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370316909,
"link": null,
"locked": false,
"fontSize": 20,
"fontFamily": 1,
"text": "<tx=0, id=1, begin=0, end=∞>",
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "<tx=0, id=1, begin=0, end=∞>",
"lineHeight": 1.25,
"baseline": 18
},
{
"type": "line",
"version": 1557,
"versionNonce": 773679889,
"isDeleted": false,
"id": "Q8E0gAcLvq6VXqMDZhLdA",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"angle": 0,
"x": 581.8083636621351,
"y": 177.61701218356845,
"strokeColor": "#000000",
"backgroundColor": "transparent",
"width": 20.336010349032712,
"height": 203.23377930246647,
"seed": 153279217,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370316909,
"link": null,
"locked": false,
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
-20.264781987976257,
-0.0011773927935071482
],
[
-20.336010349032712,
203.23260190967298
],
[
-0.07239358683375485,
203.135377672515
]
]
},
{
"type": "line",
"version": 1810,
"versionNonce": 1561283199,
"isDeleted": false,
"id": "uhh3ZkPO6bwwf0-AI8syI",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"angle": 3.141592653589793,
"x": 894.8083636621349,
"y": 182.61701218356845,
"strokeColor": "#000000",
"backgroundColor": "transparent",
"width": 20.336010349032712,
"height": 203.23377930246647,
"seed": 315380945,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370316909,
"link": null,
"locked": false,
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
-20.264781987976257,
-0.0011773927935071482
],
[
-20.336010349032712,
203.23260190967298
],
[
-0.07239358683375485,
203.135377672515
]
]
},
{
"type": "text",
"version": 575,
"versionNonce": 910156017,
"isDeleted": false,
"id": "jI5YKyaOdGYYKiBWZmCMs",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 929.6403584876182,
"y": 215.23272444200813,
"strokeColor": "#087f5b",
"backgroundColor": "#82c91e",
"width": 278.57781982421875,
"height": 25,
"seed": 121503167,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370316909,
"link": null,
"locked": false,
"fontSize": 20,
"fontFamily": 1,
"text": "<tx=0, id=1, begin=0, end=∞>",
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "<tx=0, id=1, begin=0, end=∞>",
"lineHeight": 1.25,
"baseline": 18
},
{
"type": "line",
"version": 1604,
"versionNonce": 19920575,
"isDeleted": false,
"id": "QqIk7VTnRWYq499wkttvv",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"angle": 0,
"x": 934.8083636621348,
"y": 182.61701218356842,
"strokeColor": "#000000",
"backgroundColor": "transparent",
"width": 20.336010349032712,
"height": 203.23377930246647,
"seed": 2012037663,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370316909,
"link": null,
"locked": false,
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
-20.264781987976257,
-0.0011773927935071482
],
[
-20.336010349032712,
203.23260190967298
],
[
-0.07239358683375485,
203.135377672515
]
]
},
{
"type": "line",
"version": 1857,
"versionNonce": 1660885169,
"isDeleted": false,
"id": "gk89VsYpnf9Jby9KEUBd3",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"angle": 3.141592653589793,
"x": 1247.808363662135,
"y": 187.61701218356842,
"strokeColor": "#000000",
"backgroundColor": "transparent",
"width": 20.336010349032712,
"height": 203.23377930246647,
"seed": 509453887,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370316909,
"link": null,
"locked": false,
"startBinding": null,
"endBinding": null,
"lastCommittedPoint": null,
"startArrowhead": null,
"endArrowhead": null,
"points": [
[
0,
0
],
[
-20.264781987976257,
-0.0011773927935071482
],
[
-20.336010349032712,
203.23260190967298
],
[
-0.07239358683375485,
203.135377672515
]
]
},
{
"type": "text",
"version": 620,
"versionNonce": 1588681010,
"isDeleted": false,
"id": "a1c-iZI0SafCiy0u4xieZ",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 934.3714375891809,
"y": 261.23272444200813,
"strokeColor": "#e67700",
"backgroundColor": "#82c91e",
"width": 270.71783447265625,
"height": 25,
"seed": 1742829553,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683371080181,
"link": null,
"locked": false,
"fontSize": 20,
"fontFamily": 1,
"text": "<tx=1, id=2, begin=1, end=∞>",
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "<tx=1, id=2, begin=1, end=∞>",
"lineHeight": 1.25,
"baseline": 18
},
{
"type": "text",
"version": 564,
"versionNonce": 1968863633,
"isDeleted": false,
"id": "hdhhgp5nA06o5EcSgHQE8",
"fillStyle": "hachure",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"angle": 0,
"x": 937.6203542151575,
"y": 354.23272444200813,
"strokeColor": "#0b7285",
"backgroundColor": "#82c91e",
"width": 287.73785400390625,
"height": 25,
"seed": 309558367,
"groupIds": [],
"roundness": null,
"boundElements": [],
"updated": 1683370363648,
"link": null,
"locked": false,
"fontSize": 20,
"fontFamily": 1,
"text": "<tx=2, id=3, begin=2, end=∞>",
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "<tx=2, id=3, begin=2, end=∞>",
"lineHeight": 1.25,
"baseline": 18
}
],
"appState": {
"gridSize": null,
"viewBackgroundColor": "#ffffff"
},
"files": {}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 304 KiB