mirror of
https://github.com/aljazceru/turso.git
synced 2026-01-09 19:24:21 +01:00
Move vector out of extensions
This commit is contained in:
@@ -1,22 +0,0 @@
|
||||
[package]
|
||||
name = "limbo_vector"
|
||||
version.workspace = true
|
||||
authors.workspace = true
|
||||
edition.workspace = true
|
||||
license.workspace = true
|
||||
repository.workspace = true
|
||||
|
||||
[lib]
|
||||
crate-type = ["cdylib", "lib"]
|
||||
|
||||
[features]
|
||||
static= [ "limbo_ext/static" ]
|
||||
default = ["quickcheck/default"]
|
||||
|
||||
[dependencies]
|
||||
limbo_ext = { path = "../core", features = ["static"] }
|
||||
|
||||
[dev-dependencies]
|
||||
quickcheck = { version = "1.0", default-features = false }
|
||||
quickcheck_macros = { version = "1.0", default-features = false }
|
||||
rand = "0.8" # Required for quickcheck
|
||||
@@ -1,77 +0,0 @@
|
||||
use limbo_ext::{register_extension, scalar, ResultCode, Value};
|
||||
|
||||
mod vector;
|
||||
|
||||
use vector::*;
|
||||
|
||||
#[derive(Debug)]
|
||||
enum Error {
|
||||
InvalidType,
|
||||
InvalidFormat,
|
||||
InvalidDimensions,
|
||||
}
|
||||
|
||||
type Result<T> = std::result::Result<T, Error>;
|
||||
|
||||
#[scalar(name = "vector32", alias = "vector")]
|
||||
fn vector32(args: &[Value]) -> Value {
|
||||
if args.len() != 1 {
|
||||
return Value::error(ResultCode::Error);
|
||||
}
|
||||
let Ok(x) = parse_vector(&args[0], Some(VectorType::Float32)) else {
|
||||
return Value::error(ResultCode::Error);
|
||||
};
|
||||
vector_serialize_f32(x)
|
||||
}
|
||||
|
||||
#[scalar(name = "vector64")]
|
||||
fn vector64(args: &[Value]) -> Value {
|
||||
if args.len() != 1 {
|
||||
return Value::error(ResultCode::Error);
|
||||
}
|
||||
let Ok(x) = parse_vector(&args[0], Some(VectorType::Float64)) else {
|
||||
return Value::error(ResultCode::Error);
|
||||
};
|
||||
vector_serialize_f64(x)
|
||||
}
|
||||
|
||||
#[scalar(name = "vector_extract")]
|
||||
fn vector_extract(args: &[Value]) -> Value {
|
||||
if args.len() != 1 {
|
||||
return Value::error(ResultCode::Error);
|
||||
}
|
||||
let Some(blob) = args[0].to_blob() else {
|
||||
return Value::error(ResultCode::Error);
|
||||
};
|
||||
if blob.is_empty() {
|
||||
return Value::from_text("[]".to_string());
|
||||
}
|
||||
let Ok(vector_type) = vector_type(&blob) else {
|
||||
return Value::error(ResultCode::Error);
|
||||
};
|
||||
let Ok(vector) = vector_deserialize(vector_type, &blob) else {
|
||||
return Value::error(ResultCode::Error);
|
||||
};
|
||||
Value::from_text(vector_to_text(&vector))
|
||||
}
|
||||
|
||||
#[scalar(name = "vector_distance_cos")]
|
||||
fn vector_distance_cos(args: &[Value]) -> Value {
|
||||
if args.len() != 2 {
|
||||
return Value::error(ResultCode::Error);
|
||||
}
|
||||
let Ok(x) = parse_vector(&args[0], None) else {
|
||||
return Value::error(ResultCode::Error);
|
||||
};
|
||||
let Ok(y) = parse_vector(&args[1], None) else {
|
||||
return Value::error(ResultCode::Error);
|
||||
};
|
||||
let Ok(dist) = do_vector_distance_cos(&x, &y) else {
|
||||
return Value::error(ResultCode::Error);
|
||||
};
|
||||
Value::from_float(dist)
|
||||
}
|
||||
|
||||
register_extension! {
|
||||
scalars: { vector32, vector64, vector_extract, vector_distance_cos },
|
||||
}
|
||||
@@ -1,601 +0,0 @@
|
||||
use limbo_ext::{Value, ValueType};
|
||||
|
||||
use crate::{Error, Result};
|
||||
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub enum VectorType {
|
||||
Float32,
|
||||
Float64,
|
||||
}
|
||||
|
||||
impl VectorType {
|
||||
pub fn size_to_dims(&self, size: usize) -> usize {
|
||||
match self {
|
||||
VectorType::Float32 => size / 4,
|
||||
VectorType::Float64 => size / 8,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Vector {
|
||||
pub vector_type: VectorType,
|
||||
pub dims: usize,
|
||||
pub data: Vec<u8>,
|
||||
}
|
||||
|
||||
impl Vector {
|
||||
pub fn as_f32_slice(&self) -> &[f32] {
|
||||
unsafe { std::slice::from_raw_parts(self.data.as_ptr() as *const f32, self.dims) }
|
||||
}
|
||||
|
||||
pub fn as_f64_slice(&self) -> &[f64] {
|
||||
unsafe { std::slice::from_raw_parts(self.data.as_ptr() as *const f64, self.dims) }
|
||||
}
|
||||
}
|
||||
|
||||
/// Parse a vector in text representation into a Vector.
|
||||
///
|
||||
/// The format of a vector in text representation looks as follows:
|
||||
///
|
||||
/// ```console
|
||||
/// [1.0, 2.0, 3.0]
|
||||
/// ```
|
||||
pub fn parse_string_vector(vector_type: VectorType, value: &Value) -> Result<Vector> {
|
||||
let Some(text) = value.to_text() else {
|
||||
return Err(Error::InvalidFormat);
|
||||
};
|
||||
let text = text.trim();
|
||||
let mut chars = text.chars();
|
||||
if chars.next() != Some('[') || chars.last() != Some(']') {
|
||||
return Err(Error::InvalidFormat);
|
||||
}
|
||||
let mut data: Vec<u8> = Vec::new();
|
||||
let text = &text[1..text.len() - 1];
|
||||
if text.trim().is_empty() {
|
||||
return Ok(Vector {
|
||||
vector_type,
|
||||
dims: 0,
|
||||
data,
|
||||
});
|
||||
}
|
||||
let xs = text.split(',');
|
||||
for x in xs {
|
||||
let x = x.trim();
|
||||
if x.is_empty() {
|
||||
return Err(Error::InvalidFormat);
|
||||
}
|
||||
match vector_type {
|
||||
VectorType::Float32 => {
|
||||
let x = x.parse::<f32>().map_err(|_| Error::InvalidFormat)?;
|
||||
if !x.is_finite() {
|
||||
return Err(Error::InvalidFormat);
|
||||
}
|
||||
data.extend_from_slice(&x.to_le_bytes());
|
||||
}
|
||||
VectorType::Float64 => {
|
||||
let x = x.parse::<f64>().map_err(|_| Error::InvalidFormat)?;
|
||||
if !x.is_finite() {
|
||||
return Err(Error::InvalidFormat);
|
||||
}
|
||||
data.extend_from_slice(&x.to_le_bytes());
|
||||
}
|
||||
};
|
||||
}
|
||||
let dims = vector_type.size_to_dims(data.len());
|
||||
Ok(Vector {
|
||||
vector_type,
|
||||
dims,
|
||||
data,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn parse_vector(value: &Value, vec_ty: Option<VectorType>) -> Result<Vector> {
|
||||
match value.value_type() {
|
||||
ValueType::Text => parse_string_vector(vec_ty.unwrap_or(VectorType::Float32), value),
|
||||
ValueType::Blob => {
|
||||
let Some(blob) = value.to_blob() else {
|
||||
return Err(Error::InvalidFormat);
|
||||
};
|
||||
let vector_type = vector_type(&blob)?;
|
||||
if let Some(vec_ty) = vec_ty {
|
||||
if vec_ty != vector_type {
|
||||
return Err(Error::InvalidType);
|
||||
}
|
||||
}
|
||||
vector_deserialize(vector_type, &blob)
|
||||
}
|
||||
_ => Err(Error::InvalidType),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn vector_to_text(vector: &Vector) -> String {
|
||||
let mut text = String::new();
|
||||
text.push('[');
|
||||
match vector.vector_type {
|
||||
VectorType::Float32 => {
|
||||
let data = vector.as_f32_slice();
|
||||
for i in 0..vector.dims {
|
||||
text.push_str(&data[i].to_string());
|
||||
if i < vector.dims - 1 {
|
||||
text.push(',');
|
||||
}
|
||||
}
|
||||
}
|
||||
VectorType::Float64 => {
|
||||
let data = vector.as_f64_slice();
|
||||
for i in 0..vector.dims {
|
||||
text.push_str(&data[i].to_string());
|
||||
if i < vector.dims - 1 {
|
||||
text.push(',');
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
text.push(']');
|
||||
text
|
||||
}
|
||||
|
||||
pub fn vector_deserialize(vector_type: VectorType, blob: &[u8]) -> Result<Vector> {
|
||||
match vector_type {
|
||||
VectorType::Float32 => vector_deserialize_f32(blob),
|
||||
VectorType::Float64 => vector_deserialize_f64(blob),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn vector_serialize_f64(x: Vector) -> Value {
|
||||
let mut blob = Vec::with_capacity(x.dims * 8 + 1);
|
||||
blob.extend_from_slice(&x.data);
|
||||
blob.push(2);
|
||||
Value::from_blob(blob)
|
||||
}
|
||||
|
||||
pub fn vector_deserialize_f64(blob: &[u8]) -> Result<Vector> {
|
||||
Ok(Vector {
|
||||
vector_type: VectorType::Float64,
|
||||
dims: (blob.len() - 1) / 8,
|
||||
data: blob[..blob.len() - 1].to_vec(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn vector_serialize_f32(x: Vector) -> Value {
|
||||
Value::from_blob(x.data)
|
||||
}
|
||||
|
||||
pub fn vector_deserialize_f32(blob: &[u8]) -> Result<Vector> {
|
||||
Ok(Vector {
|
||||
vector_type: VectorType::Float32,
|
||||
dims: blob.len() / 4,
|
||||
data: blob.to_vec(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn do_vector_distance_cos(v1: &Vector, v2: &Vector) -> Result<f64> {
|
||||
match v1.vector_type {
|
||||
VectorType::Float32 => vector_f32_distance_cos(v1, v2),
|
||||
VectorType::Float64 => vector_f64_distance_cos(v1, v2),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn vector_f32_distance_cos(v1: &Vector, v2: &Vector) -> Result<f64> {
|
||||
if v1.dims != v2.dims {
|
||||
return Err(Error::InvalidDimensions);
|
||||
}
|
||||
if v1.vector_type != v2.vector_type {
|
||||
return Err(Error::InvalidType);
|
||||
}
|
||||
let (mut dot, mut norm1, mut norm2) = (0.0, 0.0, 0.0);
|
||||
let v1_data = v1.as_f32_slice();
|
||||
let v2_data = v2.as_f32_slice();
|
||||
|
||||
// Check for non-finite values
|
||||
if v1_data.iter().any(|x| !x.is_finite()) || v2_data.iter().any(|x| !x.is_finite()) {
|
||||
return Err(Error::InvalidFormat);
|
||||
}
|
||||
|
||||
for i in 0..v1.dims {
|
||||
let e1 = v1_data[i];
|
||||
let e2 = v2_data[i];
|
||||
dot += e1 * e2;
|
||||
norm1 += e1 * e1;
|
||||
norm2 += e2 * e2;
|
||||
}
|
||||
|
||||
// Check for zero norms to avoid division by zero
|
||||
if norm1 == 0.0 || norm2 == 0.0 {
|
||||
return Err(Error::InvalidFormat);
|
||||
}
|
||||
|
||||
Ok(1.0 - (dot / (norm1 * norm2).sqrt()) as f64)
|
||||
}
|
||||
|
||||
pub fn vector_f64_distance_cos(v1: &Vector, v2: &Vector) -> Result<f64> {
|
||||
if v1.dims != v2.dims {
|
||||
return Err(Error::InvalidDimensions);
|
||||
}
|
||||
if v1.vector_type != v2.vector_type {
|
||||
return Err(Error::InvalidType);
|
||||
}
|
||||
let (mut dot, mut norm1, mut norm2) = (0.0, 0.0, 0.0);
|
||||
let v1_data = v1.as_f64_slice();
|
||||
let v2_data = v2.as_f64_slice();
|
||||
|
||||
// Check for non-finite values
|
||||
if v1_data.iter().any(|x| !x.is_finite()) || v2_data.iter().any(|x| !x.is_finite()) {
|
||||
return Err(Error::InvalidFormat);
|
||||
}
|
||||
|
||||
for i in 0..v1.dims {
|
||||
let e1 = v1_data[i];
|
||||
let e2 = v2_data[i];
|
||||
dot += e1 * e2;
|
||||
norm1 += e1 * e1;
|
||||
norm2 += e2 * e2;
|
||||
}
|
||||
|
||||
// Check for zero norms
|
||||
if norm1 == 0.0 || norm2 == 0.0 {
|
||||
return Err(Error::InvalidFormat);
|
||||
}
|
||||
|
||||
Ok(1.0 - (dot / (norm1 * norm2).sqrt()))
|
||||
}
|
||||
|
||||
pub fn vector_type(blob: &[u8]) -> Result<VectorType> {
|
||||
if blob.is_empty() {
|
||||
return Err(Error::InvalidFormat);
|
||||
}
|
||||
// Even-sized blobs are always float32.
|
||||
if blob.len() % 2 == 0 {
|
||||
return Ok(VectorType::Float32);
|
||||
}
|
||||
// Odd-sized blobs have type byte at the end
|
||||
let (data_blob, type_byte) = blob.split_at(blob.len() - 1);
|
||||
let vector_type = type_byte[0];
|
||||
match vector_type {
|
||||
1 => {
|
||||
if data_blob.len() % 4 != 0 {
|
||||
return Err(Error::InvalidFormat);
|
||||
}
|
||||
Ok(VectorType::Float32)
|
||||
}
|
||||
2 => {
|
||||
if data_blob.len() % 8 != 0 {
|
||||
return Err(Error::InvalidFormat);
|
||||
}
|
||||
Ok(VectorType::Float64)
|
||||
}
|
||||
_ => Err(Error::InvalidType),
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
use quickcheck_macros::quickcheck;
|
||||
|
||||
// Helper to generate arbitrary vectors of specific type and dimensions
|
||||
#[derive(Debug, Clone)]
|
||||
struct ArbitraryVector<const DIMS: usize> {
|
||||
vector_type: VectorType,
|
||||
data: Vec<u8>,
|
||||
}
|
||||
|
||||
/// How to create an arbitrary vector of DIMS dims.
|
||||
impl<const DIMS: usize> ArbitraryVector<DIMS> {
|
||||
fn generate_f32_vector(g: &mut Gen) -> Vec<f32> {
|
||||
(0..DIMS)
|
||||
.map(|_| {
|
||||
loop {
|
||||
let f = f32::arbitrary(g);
|
||||
// f32::arbitrary() can generate "problem values" like NaN, infinity, and very small values
|
||||
// Skip these values
|
||||
if f.is_finite() && f.abs() >= 1e-6 {
|
||||
// Scale to [-1, 1] range
|
||||
return f % 2.0 - 1.0;
|
||||
}
|
||||
}
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn generate_f64_vector(g: &mut Gen) -> Vec<f64> {
|
||||
(0..DIMS)
|
||||
.map(|_| {
|
||||
loop {
|
||||
let f = f64::arbitrary(g);
|
||||
// f64::arbitrary() can generate "problem values" like NaN, infinity, and very small values
|
||||
// Skip these values
|
||||
if f.is_finite() && f.abs() >= 1e-6 {
|
||||
// Scale to [-1, 1] range
|
||||
return f % 2.0 - 1.0;
|
||||
}
|
||||
}
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert an ArbitraryVector to a Vector.
|
||||
impl<const DIMS: usize> From<ArbitraryVector<DIMS>> for Vector {
|
||||
fn from(v: ArbitraryVector<DIMS>) -> Self {
|
||||
Vector {
|
||||
vector_type: v.vector_type,
|
||||
dims: DIMS,
|
||||
data: v.data,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement the quickcheck Arbitrary trait for ArbitraryVector.
|
||||
impl<const DIMS: usize> Arbitrary for ArbitraryVector<DIMS> {
|
||||
fn arbitrary(g: &mut Gen) -> Self {
|
||||
let vector_type = if bool::arbitrary(g) {
|
||||
VectorType::Float32
|
||||
} else {
|
||||
VectorType::Float64
|
||||
};
|
||||
|
||||
let data = match vector_type {
|
||||
VectorType::Float32 => {
|
||||
let floats = Self::generate_f32_vector(g);
|
||||
floats.iter().flat_map(|f| f.to_le_bytes()).collect()
|
||||
}
|
||||
VectorType::Float64 => {
|
||||
let floats = Self::generate_f64_vector(g);
|
||||
floats.iter().flat_map(|f| f.to_le_bytes()).collect()
|
||||
}
|
||||
};
|
||||
|
||||
ArbitraryVector { vector_type, data }
|
||||
}
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_type_identification_2d(v: ArbitraryVector<2>) -> bool {
|
||||
test_vector_type::<2>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_type_identification_3d(v: ArbitraryVector<3>) -> bool {
|
||||
test_vector_type::<3>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_type_identification_4d(v: ArbitraryVector<4>) -> bool {
|
||||
test_vector_type::<4>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_type_identification_100d(v: ArbitraryVector<100>) -> bool {
|
||||
test_vector_type::<100>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_type_identification_1536d(v: ArbitraryVector<1536>) -> bool {
|
||||
test_vector_type::<1536>(v.into())
|
||||
}
|
||||
|
||||
/// Test if the vector type identification is correct for a given vector.
|
||||
fn test_vector_type<const DIMS: usize>(v: Vector) -> bool {
|
||||
let vtype = v.vector_type.clone();
|
||||
let value = match &vtype {
|
||||
VectorType::Float32 => vector_serialize_f32(v),
|
||||
VectorType::Float64 => vector_serialize_f64(v),
|
||||
};
|
||||
|
||||
let blob = value.to_blob().unwrap();
|
||||
match vector_type(&blob) {
|
||||
Ok(detected_type) => detected_type == vtype,
|
||||
Err(_) => false,
|
||||
}
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_slice_conversion_safety_2d(v: ArbitraryVector<2>) -> bool {
|
||||
test_slice_conversion::<2>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_slice_conversion_safety_3d(v: ArbitraryVector<3>) -> bool {
|
||||
test_slice_conversion::<3>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_slice_conversion_safety_4d(v: ArbitraryVector<4>) -> bool {
|
||||
test_slice_conversion::<4>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_slice_conversion_safety_100d(v: ArbitraryVector<100>) -> bool {
|
||||
test_slice_conversion::<100>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_slice_conversion_safety_1536d(v: ArbitraryVector<1536>) -> bool {
|
||||
test_slice_conversion::<1536>(v.into())
|
||||
}
|
||||
|
||||
/// Test if the slice conversion is safe for a given vector:
|
||||
/// - The slice length matches the dimensions
|
||||
/// - The data length is correct (4 bytes per float for f32, 8 bytes per float for f64)
|
||||
fn test_slice_conversion<const DIMS: usize>(v: Vector) -> bool {
|
||||
match v.vector_type {
|
||||
VectorType::Float32 => {
|
||||
let slice = v.as_f32_slice();
|
||||
// Check if the slice length matches the dimensions and the data length is correct (4 bytes per float)
|
||||
slice.len() == DIMS && (slice.len() * 4 == v.data.len())
|
||||
}
|
||||
VectorType::Float64 => {
|
||||
let slice = v.as_f64_slice();
|
||||
// Check if the slice length matches the dimensions and the data length is correct (8 bytes per float)
|
||||
slice.len() == DIMS && (slice.len() * 8 == v.data.len())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Test size_to_dims calculation with different dimensions
|
||||
#[quickcheck]
|
||||
fn prop_size_to_dims_calculation_2d(v: ArbitraryVector<2>) -> bool {
|
||||
test_size_to_dims::<2>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_size_to_dims_calculation_3d(v: ArbitraryVector<3>) -> bool {
|
||||
test_size_to_dims::<3>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_size_to_dims_calculation_4d(v: ArbitraryVector<4>) -> bool {
|
||||
test_size_to_dims::<4>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_size_to_dims_calculation_100d(v: ArbitraryVector<100>) -> bool {
|
||||
test_size_to_dims::<100>(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_size_to_dims_calculation_1536d(v: ArbitraryVector<1536>) -> bool {
|
||||
test_size_to_dims::<1536>(v.into())
|
||||
}
|
||||
|
||||
/// Test if the size_to_dims calculation is correct for a given vector.
|
||||
fn test_size_to_dims<const DIMS: usize>(v: Vector) -> bool {
|
||||
let size = v.data.len();
|
||||
let calculated_dims = v.vector_type.size_to_dims(size);
|
||||
calculated_dims == DIMS
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_distance_safety_2d(v1: ArbitraryVector<2>, v2: ArbitraryVector<2>) -> bool {
|
||||
test_vector_distance::<2>(&v1.into(), &v2.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_distance_safety_3d(v1: ArbitraryVector<3>, v2: ArbitraryVector<3>) -> bool {
|
||||
test_vector_distance::<3>(&v1.into(), &v2.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_distance_safety_4d(v1: ArbitraryVector<4>, v2: ArbitraryVector<4>) -> bool {
|
||||
test_vector_distance::<4>(&v1.into(), &v2.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_distance_safety_100d(
|
||||
v1: ArbitraryVector<100>,
|
||||
v2: ArbitraryVector<100>,
|
||||
) -> bool {
|
||||
test_vector_distance::<100>(&v1.into(), &v2.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_distance_safety_1536d(
|
||||
v1: ArbitraryVector<1536>,
|
||||
v2: ArbitraryVector<1536>,
|
||||
) -> bool {
|
||||
test_vector_distance::<1536>(&v1.into(), &v2.into())
|
||||
}
|
||||
|
||||
/// Test if the vector distance calculation is correct for a given pair of vectors:
|
||||
/// - The vectors have the same dimensions
|
||||
/// - The vectors have the same type
|
||||
/// - The distance must be between 0 and 2
|
||||
fn test_vector_distance<const DIMS: usize>(v1: &Vector, v2: &Vector) -> bool {
|
||||
if v1.vector_type != v2.vector_type {
|
||||
// Skip test if types are different
|
||||
return true;
|
||||
}
|
||||
match do_vector_distance_cos(&v1, &v2) {
|
||||
Ok(distance) => {
|
||||
// Cosine distance is always between 0 and 2
|
||||
distance >= 0.0 && distance <= 2.0
|
||||
}
|
||||
Err(_) => false,
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn parse_string_vector_zero_length() {
|
||||
let value = Value::from_text("[]".to_string());
|
||||
let vector = parse_string_vector(VectorType::Float32, &value).unwrap();
|
||||
assert_eq!(vector.dims, 0);
|
||||
assert_eq!(vector.vector_type, VectorType::Float32);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_string_vector_valid_whitespace() {
|
||||
let value = Value::from_text(" [ 1.0 , 2.0 , 3.0 ] ".to_string());
|
||||
let vector = parse_string_vector(VectorType::Float32, &value).unwrap();
|
||||
assert_eq!(vector.dims, 3);
|
||||
assert_eq!(vector.vector_type, VectorType::Float32);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_string_vector_valid() {
|
||||
let value = Value::from_text("[1.0, 2.0, 3.0]".to_string());
|
||||
let vector = parse_string_vector(VectorType::Float32, &value).unwrap();
|
||||
assert_eq!(vector.dims, 3);
|
||||
assert_eq!(vector.vector_type, VectorType::Float32);
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_text_roundtrip_2d(v: ArbitraryVector<2>) -> bool {
|
||||
test_vector_text_roundtrip(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_text_roundtrip_3d(v: ArbitraryVector<3>) -> bool {
|
||||
test_vector_text_roundtrip(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_text_roundtrip_4d(v: ArbitraryVector<4>) -> bool {
|
||||
test_vector_text_roundtrip(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_text_roundtrip_100d(v: ArbitraryVector<100>) -> bool {
|
||||
test_vector_text_roundtrip(v.into())
|
||||
}
|
||||
|
||||
#[quickcheck]
|
||||
fn prop_vector_text_roundtrip_1536d(v: ArbitraryVector<1536>) -> bool {
|
||||
test_vector_text_roundtrip(v.into())
|
||||
}
|
||||
|
||||
/// Test that a vector can be converted to text and back without loss of precision
|
||||
fn test_vector_text_roundtrip(v: Vector) -> bool {
|
||||
// Convert to text
|
||||
let text = vector_to_text(&v);
|
||||
|
||||
// Parse back from text
|
||||
let value = Value::from_text(text);
|
||||
let parsed = parse_string_vector(v.vector_type.clone(), &value);
|
||||
|
||||
match parsed {
|
||||
Ok(parsed_vector) => {
|
||||
// Check dimensions match
|
||||
if v.dims != parsed_vector.dims {
|
||||
return false;
|
||||
}
|
||||
|
||||
match v.vector_type {
|
||||
VectorType::Float32 => {
|
||||
let original = v.as_f32_slice();
|
||||
let parsed = parsed_vector.as_f32_slice();
|
||||
original.iter().zip(parsed.iter()).all(|(a, b)| a == b)
|
||||
}
|
||||
VectorType::Float64 => {
|
||||
let original = v.as_f64_slice();
|
||||
let parsed = parsed_vector.as_f64_slice();
|
||||
original.iter().zip(parsed.iter()).all(|(a, b)| a == b)
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(_) => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user