Merge pull request #52 from penberg/lockfree

database: drop the mutex
This commit is contained in:
Pekka Enberg
2023-06-12 13:09:12 +03:00
committed by GitHub
3 changed files with 363 additions and 187 deletions

View File

@@ -2,12 +2,9 @@ use crate::clock::LogicalClock;
use crate::errors::DatabaseError;
use crate::persistent_storage::Storage;
use crossbeam_skiplist::{SkipMap, SkipSet};
use parking_lot::Mutex;
use serde::{Deserialize, Serialize};
use std::cell::RefCell;
use std::collections::BTreeMap;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::{Arc, RwLock};
use std::sync::RwLock;
pub type Result<T> = std::result::Result<T, DatabaseError>;
@@ -150,7 +147,8 @@ impl std::fmt::Display for Transaction {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::result::Result<(), std::fmt::Error> {
write!(
f,
"{{ id: {}, begin_ts: {}, write_set: {:?}, read_set: {:?}",
"{{ state: {}, id: {}, begin_ts: {}, write_set: {:?}, read_set: {:?}",
self.state,
self.tx_id,
self.begin_ts,
// FIXME: I'm sorry, we obviously shouldn't be cloning here.
@@ -171,30 +169,41 @@ impl std::fmt::Display for Transaction {
enum TransactionState {
Active,
Preparing,
Committed,
Committed(u64),
Aborted,
Terminated,
}
/// A database with MVCC.
impl std::fmt::Display for TransactionState {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::result::Result<(), std::fmt::Error> {
match self {
TransactionState::Active => write!(f, "Active"),
TransactionState::Preparing => write!(f, "Preparing"),
TransactionState::Committed(ts) => write!(f, "Committed({ts})"),
TransactionState::Aborted => write!(f, "Aborted"),
TransactionState::Terminated => write!(f, "Terminated"),
}
}
}
#[derive(Debug)]
pub struct Database<Clock: LogicalClock> {
inner: Arc<Mutex<DatabaseInner<Clock>>>,
rows: SkipMap<RowID, RwLock<Vec<RowVersion>>>,
txs: SkipMap<TxID, RwLock<Transaction>>,
tx_ids: AtomicU64,
clock: Clock,
storage: Storage,
}
impl<Clock: LogicalClock> Database<Clock> {
/// Creates a new database.
pub fn new(clock: Clock, storage: Storage) -> Self {
let inner = DatabaseInner {
Self {
rows: SkipMap::new(),
txs: SkipMap::new(),
tx_timestamps: RefCell::new(BTreeMap::new()),
tx_ids: AtomicU64::new(1), // let's reserve transaction 0 for special purposes
clock,
storage,
};
Self {
inner: Arc::new(Mutex::new(inner)),
}
}
@@ -209,8 +218,23 @@ impl<Clock: LogicalClock> Database<Clock> {
/// * `row` - the row object containing the values to be inserted.
///
pub fn insert(&self, tx_id: TxID, row: Row) -> Result<()> {
let inner = self.inner.lock();
inner.insert(tx_id, row)
let tx = self
.txs
.get(&tx_id)
.ok_or(DatabaseError::NoSuchTransactionID(tx_id))?;
let mut tx = tx.value().write().unwrap();
assert!(tx.state == TransactionState::Active);
let id = row.id;
let row_version = RowVersion {
begin: TxTimestampOrID::TxID(tx.tx_id),
end: None,
row,
};
let versions = self.rows.get_or_insert_with(id, || RwLock::new(Vec::new()));
let mut versions = versions.value().write().unwrap();
versions.push(row_version);
tx.insert_to_write_set(id);
Ok(())
}
/// Updates a row in the database with new values.
@@ -254,123 +278,6 @@ impl<Clock: LogicalClock> Database<Clock> {
/// Returns `true` if the row was successfully deleted, and `false` otherwise.
///
pub fn delete(&self, tx_id: TxID, id: RowID) -> Result<bool> {
let inner = self.inner.lock();
inner.delete(tx_id, id)
}
/// Retrieves a row from the table with the given `id`.
///
/// This operation is performed within the scope of the transaction identified
/// by `tx_id`.
///
/// # Arguments
///
/// * `tx_id` - The ID of the transaction to perform the read operation in.
/// * `id` - The ID of the row to retrieve.
///
/// # Returns
///
/// Returns `Some(row)` with the row data if the row with the given `id` exists,
/// and `None` otherwise.
pub fn read(&self, tx_id: TxID, id: RowID) -> Result<Option<Row>> {
let inner = self.inner.lock();
inner.read(tx_id, id)
}
pub fn scan_row_ids(&self) -> Result<Vec<RowID>> {
let inner = self.inner.lock();
inner.scan_row_ids()
}
pub fn scan_row_ids_for_table(&self, table_id: u64) -> Result<Vec<RowID>> {
let inner = self.inner.lock();
inner.scan_row_ids_for_table(table_id)
}
/// Begins a new transaction in the database.
///
/// This function starts a new transaction in the database and returns a `TxID` value
/// that you can use to perform operations within the transaction. All changes made within the
/// transaction are isolated from other transactions until you commit the transaction.
pub fn begin_tx(&self) -> TxID {
let mut inner = self.inner.lock();
inner.begin_tx()
}
/// Commits a transaction with the specified transaction ID.
///
/// This function commits the changes made within the specified transaction and finalizes the
/// transaction. Once a transaction has been committed, all changes made within the transaction
/// are visible to other transactions that access the same data.
///
/// # Arguments
///
/// * `tx_id` - The ID of the transaction to commit.
pub fn commit_tx(&self, tx_id: TxID) -> Result<()> {
let mut inner = self.inner.lock();
inner.commit_tx(tx_id)
}
/// Rolls back a transaction with the specified ID.
///
/// This function rolls back a transaction with the specified `tx_id` by
/// discarding any changes made by the transaction.
///
/// # Arguments
///
/// * `tx_id` - The ID of the transaction to abort.
pub fn rollback_tx(&self, tx_id: TxID) {
let inner = self.inner.lock();
inner.rollback_tx(tx_id);
}
/// Drops all unused row versions from the database.
///
/// A version is considered unused if it is not visible to any active transaction
/// and it is not the most recent version of the row.
pub fn drop_unused_row_versions(&self) {
let inner = self.inner.lock();
inner.drop_unused_row_versions();
}
pub fn recover(&self) -> Result<()> {
let inner = self.inner.lock();
inner.recover()
}
}
#[derive(Debug)]
pub struct DatabaseInner<Clock: LogicalClock> {
rows: SkipMap<RowID, RwLock<Vec<RowVersion>>>,
txs: SkipMap<TxID, RwLock<Transaction>>,
tx_timestamps: RefCell<BTreeMap<u64, usize>>,
tx_ids: AtomicU64,
clock: Clock,
storage: Storage,
}
impl<Clock: LogicalClock> DatabaseInner<Clock> {
fn insert(&self, tx_id: TxID, row: Row) -> Result<()> {
let tx = self
.txs
.get(&tx_id)
.ok_or(DatabaseError::NoSuchTransactionID(tx_id))?;
let mut tx = tx.value().write().unwrap();
assert!(tx.state == TransactionState::Active);
let id = row.id;
let row_version = RowVersion {
begin: TxTimestampOrID::TxID(tx.tx_id),
end: None,
row,
};
let versions = self.rows.get_or_insert_with(id, || RwLock::new(Vec::new()));
let mut versions = versions.value().write().unwrap();
versions.push(row_version);
tx.insert_to_write_set(id);
Ok(())
}
fn delete(&self, tx_id: TxID, id: RowID) -> Result<bool> {
let row_versions_opt = self.rows.get(&id);
if let Some(ref row_versions) = row_versions_opt {
let mut row_versions = row_versions.value().write().unwrap();
@@ -404,7 +311,21 @@ impl<Clock: LogicalClock> DatabaseInner<Clock> {
Ok(false)
}
fn read(&self, tx_id: TxID, id: RowID) -> Result<Option<Row>> {
/// Retrieves a row from the table with the given `id`.
///
/// This operation is performed within the scope of the transaction identified
/// by `tx_id`.
///
/// # Arguments
///
/// * `tx_id` - The ID of the transaction to perform the read operation in.
/// * `id` - The ID of the row to retrieve.
///
/// # Returns
///
/// Returns `Some(row)` with the row data if the row with the given `id` exists,
/// and `None` otherwise.
pub fn read(&self, tx_id: TxID, id: RowID) -> Result<Option<Row>> {
let tx = self.txs.get(&tx_id).unwrap();
let tx = tx.value().read().unwrap();
assert!(tx.state == TransactionState::Active);
@@ -420,12 +341,14 @@ impl<Clock: LogicalClock> DatabaseInner<Clock> {
Ok(None)
}
fn scan_row_ids(&self) -> Result<Vec<RowID>> {
/// Gets all row ids in the database.
pub fn scan_row_ids(&self) -> Result<Vec<RowID>> {
let keys = self.rows.iter().map(|entry| *entry.key());
Ok(keys.collect())
}
fn scan_row_ids_for_table(&self, table_id: u64) -> Result<Vec<RowID>> {
/// Gets all row ids in the database for a given table.
pub fn scan_row_ids_for_table(&self, table_id: u64) -> Result<Vec<RowID>> {
Ok(self
.rows
.range(
@@ -441,18 +364,30 @@ impl<Clock: LogicalClock> DatabaseInner<Clock> {
.collect())
}
fn begin_tx(&mut self) -> TxID {
/// Begins a new transaction in the database.
///
/// This function starts a new transaction in the database and returns a `TxID` value
/// that you can use to perform operations within the transaction. All changes made within the
/// transaction are isolated from other transactions until you commit the transaction.
pub fn begin_tx(&self) -> TxID {
let tx_id = self.get_tx_id();
let begin_ts = self.get_timestamp();
let tx = Transaction::new(tx_id, begin_ts);
tracing::trace!("BEGIN {tx}");
let mut tx_timestamps = self.tx_timestamps.borrow_mut();
self.txs.insert(tx_id, RwLock::new(tx));
*tx_timestamps.entry(begin_ts).or_insert(0) += 1;
tx_id
}
fn commit_tx(&mut self, tx_id: TxID) -> Result<()> {
/// Commits a transaction with the specified transaction ID.
///
/// This function commits the changes made within the specified transaction and finalizes the
/// transaction. Once a transaction has been committed, all changes made within the transaction
/// are visible to other transactions that access the same data.
///
/// # Arguments
///
/// * `tx_id` - The ID of the transaction to commit.
pub fn commit_tx(&self, tx_id: TxID) -> Result<()> {
let end_ts = self.get_timestamp();
let tx = self.txs.get(&tx_id).unwrap();
let mut tx = tx.value().write().unwrap();
@@ -464,6 +399,84 @@ impl<Clock: LogicalClock> DatabaseInner<Clock> {
}
tx.state = TransactionState::Preparing;
tracing::trace!("PREPARE {tx}");
/* TODO: The code we have here is sufficient for snapshot isolation.
** In order to implement serializability, we need the following steps:
**
** 1. Validate if all read versions are still visible by inspecting the read_set
** 2. Validate if there are no phantoms by walking the scans from scan_set (which we don't even have yet)
** - a phantom is a version that became visible in the middle of our transaction,
** but wasn't taken into account during one of the scans from the scan_set
** 3. Wait for commit dependencies, which we don't even track yet...
** Excerpt from what's a commit dependency and how it's tracked in the original paper:
** """
A transaction T1 has a commit dependency on another transaction
T2, if T1 is allowed to commit only if T2 commits. If T2 aborts,
T1 must also abort, so cascading aborts are possible. T1 acquires a
commit dependency either by speculatively reading or speculatively ignoring a version,
instead of waiting for T2 to commit.
We implement commit dependencies by a register-and-report
approach: T1 registers its dependency with T2 and T2 informs T1
when it has committed or aborted. Each transaction T contains a
counter, CommitDepCounter, that counts how many unresolved
commit dependencies it still has. A transaction cannot commit
until this counter is zero. In addition, T has a Boolean variable
AbortNow that other transactions can set to tell T to abort. Each
transaction T also has a set, CommitDepSet, that stores transaction IDs
of the transactions that depend on T.
To take a commit dependency on a transaction T2, T1 increments
its CommitDepCounter and adds its transaction ID to T2s CommitDepSet.
When T2 has committed, it locates each transaction in
its CommitDepSet and decrements their CommitDepCounter. If
T2 aborted, it tells the dependent transactions to also abort by
setting their AbortNow flags. If a dependent transaction is not
found, this means that it has already aborted.
Note that a transaction with commit dependencies may not have to
wait at all - the dependencies may have been resolved before it is
ready to commit. Commit dependencies consolidate all waits into
a single wait and postpone the wait to just before commit.
Some transactions may have to wait before commit.
Waiting raises a concern of deadlocks.
However, deadlocks cannot occur because an older transaction never
waits on a younger transaction. In
a wait-for graph the direction of edges would always be from a
younger transaction (higher end timestamp) to an older transaction
(lower end timestamp) so cycles are impossible.
"""
** If you're wondering when a speculative read happens, here you go:
** Case 1: speculative read of TB:
"""
If transaction TB is in the Preparing state, it has acquired an end
timestamp TS which will be Vs begin timestamp if TB commits.
A safe approach in this situation would be to have transaction T
wait until transaction TB commits. However, we want to avoid all
blocking during normal processing so instead we continue with
the visibility test and, if the test returns true, allow T to
speculatively read V. Transaction T acquires a commit dependency on
TB, restricting the serialization order of the two transactions. That
is, T is allowed to commit only if TB commits.
"""
** Case 2: speculative ignore of TE:
"""
If TEs state is Preparing, it has an end timestamp TS that will become
the end timestamp of V if TE does commit. If TS is greater than the read
time RT, it is obvious that V will be visible if TE commits. If TE
aborts, V will still be visible, because any transaction that updates
V after TE has aborted will obtain an end timestamp greater than
TS. If TS is less than RT, we have a more complicated situation:
if TE commits, V will not be visible to T but if TE aborts, it will
be visible. We could handle this by forcing T to wait until TE
commits or aborts but we want to avoid all blocking during normal processing.
Instead we allow T to speculatively ignore V and
proceed with its processing. Transaction T acquires a commit
dependency (see Section 2.7) on TE, that is, T is allowed to commit
only if TE commits.
"""
*/
tx.state = TransactionState::Committed(end_ts);
tracing::trace!("COMMIT {tx}");
// Postprocessing: inserting row versions and logging the transaction to persistent storage.
// TODO: we should probably save to persistent storage first, and only then update the in-memory structures.
let mut log_record: LogRecord = LogRecord::new(end_ts);
for id in &tx.write_set {
let id = id.value();
@@ -485,21 +498,14 @@ impl<Clock: LogicalClock> DatabaseInner<Clock> {
}
}
}
tx.state = TransactionState::Committed;
tracing::trace!("COMMIT {tx}");
// We have now updated all the versions with a reference to the
// transaction ID to a timestamp and can, therefore, remove the
// transaction. Please note that when we move to lockless, the
// invariant doesn't necessarily hold anymore because another thread
// might have speculatively read a version that we want to remove.
// But that's a problem for another day.
let mut tx_timestamps = self.tx_timestamps.borrow_mut();
if let Some(timestamp_entry) = tx_timestamps.get_mut(&tx.begin_ts) {
*timestamp_entry -= 1;
if timestamp_entry == &0 {
tx_timestamps.remove(&tx.begin_ts);
}
}
// FIXME: it actually just become a problem for today!!!
// TODO: test that reproduces this failure, and then a fix
self.txs.remove(&tx_id);
if !log_record.row_versions.is_empty() {
self.storage.log_tx(log_record)?;
@@ -507,7 +513,15 @@ impl<Clock: LogicalClock> DatabaseInner<Clock> {
Ok(())
}
fn rollback_tx(&self, tx_id: TxID) {
/// Rolls back a transaction with the specified ID.
///
/// This function rolls back a transaction with the specified `tx_id` by
/// discarding any changes made by the transaction.
///
/// # Arguments
///
/// * `tx_id` - The ID of the transaction to abort.
pub fn rollback_tx(&self, tx_id: TxID) {
let tx = self.txs.get(&tx_id).unwrap();
let mut tx = tx.value().write().unwrap();
assert!(tx.state == TransactionState::Active);
@@ -527,39 +541,30 @@ impl<Clock: LogicalClock> DatabaseInner<Clock> {
tracing::trace!("TERMINATE {tx}");
}
fn get_tx_id(&mut self) -> u64 {
/// Generates next unique transaction id
pub fn get_tx_id(&self) -> u64 {
self.tx_ids.fetch_add(1, Ordering::SeqCst)
}
fn get_timestamp(&mut self) -> u64 {
/// Gets current timestamp
pub fn get_timestamp(&self) -> u64 {
self.clock.get_timestamp()
}
/// Drops all rows that are not visible to any transaction.
/// The logic is as follows. If a row version has an end marker
/// which denotes a transaction that is not active, then we can
/// drop the row version -- it is not visible to any transaction.
/// If a row version has an end marker that denotes a timestamp T_END,
/// then we can drop the row version only if all active transactions
/// have a begin timestamp that is greater than timestamp T_END.
/// FIXME: this function is a full scan over all rows and row versions.
/// We can do better by keeping an index of row versions ordered
/// by their end timestamps.
fn drop_unused_row_versions(&self) {
let tx_timestamps = self.tx_timestamps.borrow();
/// FIXME: implement in a lock-free manner
pub fn drop_unused_row_versions(&self) {
let mut to_remove = Vec::new();
for entry in self.rows.iter() {
let mut row_versions = entry.value().write().unwrap();
row_versions.retain(|rv| {
let should_stay = match rv.end {
Some(TxTimestampOrID::Timestamp(version_end_ts)) => {
match tx_timestamps.first_key_value() {
// a transaction started before this row version ended,
// ergo row version is needed
Some((begin_ts, _)) => version_end_ts >= *begin_ts,
// no transaction => row version is not needed
None => false,
}
// a transaction started before this row version ended,
// ergo row version is needed
// NOTICE: O(row_versions x transactions), but also lock-free, so sounds acceptable
self.txs
.iter()
.any(|tx| version_end_ts >= tx.value().read().unwrap().begin_ts)
}
// Let's skip potentially complex logic if the transaction is still
// active/tracked. We will drop the row version when the transaction
@@ -606,7 +611,7 @@ impl<Clock: LogicalClock> DatabaseInner<Clock> {
/// A write-write conflict happens when transaction T_m attempts to update a
/// row version that is currently being updated by an active transaction T_n.
fn is_write_write_conflict(
pub(crate) fn is_write_write_conflict(
txs: &SkipMap<TxID, RwLock<Transaction>>,
tx: &Transaction,
rv: &RowVersion,
@@ -618,7 +623,7 @@ fn is_write_write_conflict(
match te.state {
TransactionState::Active => tx.tx_id != te.tx_id,
TransactionState::Preparing => todo!(),
TransactionState::Committed => todo!(),
TransactionState::Committed(_end_ts) => todo!(),
TransactionState::Aborted => todo!(),
TransactionState::Terminated => todo!(),
}
@@ -628,7 +633,7 @@ fn is_write_write_conflict(
}
}
fn is_version_visible(
pub(crate) fn is_version_visible(
txs: &SkipMap<TxID, RwLock<Transaction>>,
tx: &Transaction,
rv: &RowVersion,
@@ -646,13 +651,22 @@ fn is_begin_visible(
TxTimestampOrID::TxID(rv_begin) => {
let tb = txs.get(&rv_begin).unwrap();
let tb = tb.value().read().unwrap();
match tb.state {
let visible = match tb.state {
TransactionState::Active => tx.tx_id == tb.tx_id && rv.end.is_none(),
TransactionState::Preparing => todo!(),
TransactionState::Committed => todo!(),
TransactionState::Aborted => todo!(),
TransactionState::Terminated => todo!(),
}
TransactionState::Preparing => false, // NOTICE: makes sense for snapshot isolation, not so much for serializable!
TransactionState::Committed(committed_ts) => tx.begin_ts >= committed_ts,
TransactionState::Aborted => false,
TransactionState::Terminated => {
tracing::debug!("TODO: should reread rv's end field - it should have updated the timestamp in the row version by now");
false
}
};
tracing::trace!(
"is_begin_visible: tx={tx}, tb={tb} rv = {:?}-{:?} visible = {visible}",
rv.begin,
rv.end
);
visible
}
}
}
@@ -667,13 +681,22 @@ fn is_end_visible(
Some(TxTimestampOrID::TxID(rv_end)) => {
let te = txs.get(&rv_end).unwrap();
let te = te.value().read().unwrap();
match te.state {
let visible = match te.state {
TransactionState::Active => tx.tx_id != te.tx_id,
TransactionState::Preparing => todo!(),
TransactionState::Committed => todo!(),
TransactionState::Aborted => todo!(),
TransactionState::Terminated => todo!(),
}
TransactionState::Preparing => false, // NOTICE: makes sense for snapshot isolation, not so much for serializable!
TransactionState::Committed(committed_ts) => tx.begin_ts < committed_ts,
TransactionState::Aborted => false,
TransactionState::Terminated => {
tracing::debug!("TODO: should reread rv's end field - it should have updated the timestamp in the row version by now");
false
}
};
tracing::trace!(
"is_end_visible: tx={tx}, te={te} rv = {:?}-{:?} visible = {visible}",
rv.begin,
rv.end
);
visible
}
None => true,
}

View File

@@ -337,7 +337,6 @@ fn test_dirty_read() {
assert_eq!(row2, None);
}
#[ignore]
#[traced_test]
#[test]
fn test_dirty_read_deleted() {
@@ -777,3 +776,157 @@ fn test_storage1() {
"testme3"
);
}
/* States described in the Hekaton paper *for serializability*:
Table 1: Case analysis of action to take when version Vs
Begin field contains the ID of transaction TB
------------------------------------------------------------------------------------------------------
TBs state | TBs end timestamp | Action to take when transaction T checks visibility of version V.
------------------------------------------------------------------------------------------------------
Active | Not set | V is visible only if TB=T and Vs end timestamp equals infinity.
------------------------------------------------------------------------------------------------------
Preparing | TS | Vs begin timestamp will be TS ut V is not yet committed. Use TS
| as Vs begin time when testing visibility. If the test is true,
| allow T to speculatively read V. Committed TS Vs begin timestamp
| will be TS and V is committed. Use TS as Vs begin time to test
| visibility.
------------------------------------------------------------------------------------------------------
Committed | TS | Vs begin timestamp will be TS and V is committed. Use TS as Vs
| begin time to test visibility.
------------------------------------------------------------------------------------------------------
Aborted | Irrelevant | Ignore V; its a garbage version.
------------------------------------------------------------------------------------------------------
Terminated | Irrelevant | Reread Vs Begin field. TB has terminated so it must have finalized
or not found | | the timestamp.
------------------------------------------------------------------------------------------------------
Table 2: Case analysis of action to take when V's End field
contains a transaction ID TE.
------------------------------------------------------------------------------------------------------
TEs state | TEs end timestamp | Action to take when transaction T checks visibility of a version V
| | as of read time RT.
------------------------------------------------------------------------------------------------------
Active | Not set | V is visible only if TE is not T.
------------------------------------------------------------------------------------------------------
Preparing | TS | Vs end timestamp will be TS provided that TE commits. If TS > RT,
| V is visible to T. If TS < RT, T speculatively ignores V.
------------------------------------------------------------------------------------------------------
Committed | TS | Vs end timestamp will be TS and V is committed. Use TS as Vs end
| timestamp when testing visibility.
------------------------------------------------------------------------------------------------------
Aborted | Irrelevant | V is visible.
------------------------------------------------------------------------------------------------------
Terminated | Irrelevant | Reread Vs End field. TE has terminated so it must have finalized
or not found | | the timestamp.
*/
fn new_tx(tx_id: TxID, begin_ts: u64, state: TransactionState) -> RwLock<Transaction> {
RwLock::new(Transaction {
state,
tx_id,
begin_ts,
write_set: SkipSet::new(),
read_set: SkipSet::new(),
})
}
#[traced_test]
#[test]
fn test_snapshot_isolation_tx_visible1() {
let txs: SkipMap<TxID, RwLock<Transaction>> = SkipMap::from_iter([
(1, new_tx(1, 1, TransactionState::Committed(2))),
(2, new_tx(2, 2, TransactionState::Committed(5))),
(3, new_tx(3, 3, TransactionState::Aborted)),
(5, new_tx(5, 5, TransactionState::Preparing)),
(6, new_tx(6, 6, TransactionState::Committed(10))),
(7, new_tx(7, 7, TransactionState::Active)),
]);
let current_tx = new_tx(4, 4, TransactionState::Preparing);
let current_tx = current_tx.read().unwrap();
let rv_visible = |begin: TxTimestampOrID, end: Option<TxTimestampOrID>| {
let row_version = RowVersion {
begin,
end,
row: Row {
id: RowID {
table_id: 1,
row_id: 1,
},
data: "testme".to_string(),
},
};
tracing::debug!("Testing visibility of {row_version:?}");
is_version_visible(&txs, &current_tx, &row_version)
};
// begin visible: transaction committed with ts < current_tx.begin_ts
// end visible: inf
assert!(rv_visible(TxTimestampOrID::TxID(1), None));
// begin invisible: transaction committed with ts > current_tx.begin_ts
assert!(!rv_visible(TxTimestampOrID::TxID(2), None));
// begin invisible: transaction aborted
assert!(!rv_visible(TxTimestampOrID::TxID(3), None));
// begin visible: timestamp < current_tx.begin_ts
// end invisible: transaction committed with ts > current_tx.begin_ts
assert!(!rv_visible(
TxTimestampOrID::Timestamp(0),
Some(TxTimestampOrID::TxID(1))
));
// begin visible: timestamp < current_tx.begin_ts
// end visible: transaction committed with ts < current_tx.begin_ts
assert!(rv_visible(
TxTimestampOrID::Timestamp(0),
Some(TxTimestampOrID::TxID(2))
));
// begin visible: timestamp < current_tx.begin_ts
// end invisible: transaction aborted
assert!(!rv_visible(
TxTimestampOrID::Timestamp(0),
Some(TxTimestampOrID::TxID(3))
));
// begin invisible: transaction preparing
assert!(!rv_visible(TxTimestampOrID::TxID(5), None));
// begin invisible: transaction committed with ts > current_tx.begin_ts
assert!(!rv_visible(TxTimestampOrID::TxID(6), None));
// begin invisible: transaction active
assert!(!rv_visible(TxTimestampOrID::TxID(7), None));
// begin invisible: transaction committed with ts > current_tx.begin_ts
assert!(!rv_visible(TxTimestampOrID::TxID(6), None));
// begin invisible: transaction active
assert!(!rv_visible(TxTimestampOrID::TxID(7), None));
// begin visible: timestamp < current_tx.begin_ts
// end invisible: transaction preparing
assert!(!rv_visible(
TxTimestampOrID::Timestamp(0),
Some(TxTimestampOrID::TxID(5))
));
// begin invisible: timestamp > current_tx.begin_ts
assert!(!rv_visible(
TxTimestampOrID::Timestamp(6),
Some(TxTimestampOrID::TxID(6))
));
// begin visible: timestamp < current_tx.begin_ts
// end visible: some active transaction will eventually overwrite this version,
// but that hasn't happened
// (this is the https://avi.im/blag/2023/hekaton-paper-typo/ case, I believe!)
assert!(rv_visible(
TxTimestampOrID::Timestamp(0),
Some(TxTimestampOrID::TxID(7))
));
}

View File

@@ -27,7 +27,7 @@ impl Storage {
}
impl Storage {
pub fn log_tx(&mut self, m: LogRecord) -> Result<()> {
pub fn log_tx(&self, m: LogRecord) -> Result<()> {
match self {
Self::JsonOnDisk(path) => {
use std::io::Write;