mirror of
https://github.com/stakwork/sphinx-key.git
synced 2026-02-20 07:05:04 +01:00
Remove crypter, crypter-ffi modules, point deps to sphinx-rs
This commit is contained in:
@@ -10,7 +10,5 @@ members = [
|
||||
|
||||
exclude = [
|
||||
"sphinx-key",
|
||||
"crypter",
|
||||
"crypter-ffi",
|
||||
"persister",
|
||||
]
|
||||
|
||||
2
crypter-ffi/.gitignore
vendored
2
crypter-ffi/.gitignore
vendored
@@ -1,2 +0,0 @@
|
||||
notes.md
|
||||
src/crypter.uniffi.rs
|
||||
@@ -1,26 +0,0 @@
|
||||
[package]
|
||||
name = "crypter-ffi"
|
||||
version = "0.1.0"
|
||||
authors = ["Evan Feenstra <evanfeenstra@gmail.com>"]
|
||||
edition = "2018"
|
||||
|
||||
[lib]
|
||||
name = "crypter"
|
||||
crate-type = ["staticlib", "cdylib"]
|
||||
|
||||
[dependencies]
|
||||
sphinx-key-crypter = { path = "../crypter" }
|
||||
uniffi = "0.19.2"
|
||||
hex = "0.4.3"
|
||||
thiserror = "1.0.31"
|
||||
|
||||
[build-dependencies]
|
||||
uniffi_build = "0.19.2"
|
||||
|
||||
[profile.release]
|
||||
opt-level = 'z' # Optimize for size.
|
||||
lto = true # Enable Link Time Optimization
|
||||
codegen-units = 1 # Reduce number of codegen units to increase optimizations.
|
||||
# panic = 'abort' # Abort on panic
|
||||
debug = true # Enable debug symbols. For example, we can use `dwarfdump` to check crash traces.
|
||||
|
||||
@@ -1,38 +0,0 @@
|
||||
echo "=> creating C FFI scaffolding"
|
||||
uniffi-bindgen scaffolding src/crypter.udl
|
||||
|
||||
echo "=> creating kotlin bindings"
|
||||
uniffi-bindgen generate src/crypter.udl --language kotlin
|
||||
|
||||
echo "=> renaming uniffi_crypter to crypter"
|
||||
sed -i '' 's/return "uniffi_crypter"/return "crypter"/' src/uniffi/crypter/crypter.kt
|
||||
|
||||
echo "=> building i686-linux-android"
|
||||
cross build --target i686-linux-android --release
|
||||
echo "=> building aarch64-linux-android"
|
||||
cross build --target aarch64-linux-android --release
|
||||
echo "=> building arm-linux-androideabi"
|
||||
cross build --target arm-linux-androideabi --release
|
||||
echo "=> building armv7-linux-androideabi"
|
||||
cross build --target armv7-linux-androideabi --release
|
||||
echo "=> building x86_64-linux-android"
|
||||
cross build --target x86_64-linux-android --release
|
||||
|
||||
echo "=> renaming files"
|
||||
|
||||
mkdir -p target/out
|
||||
mkdir -p target/out/x86
|
||||
mkdir -p target/out/arm64-v8a
|
||||
mkdir -p target/out/armeabi
|
||||
mkdir -p target/out/armeabi-v7a
|
||||
mkdir -p target/out/x86_64
|
||||
|
||||
mv target/i686-linux-android/release/libcrypter.so target/out/x86/libcrypter.so
|
||||
mv target/aarch64-linux-android/release/libcrypter.so target/out/arm64-v8a/libcrypter.so
|
||||
mv target/arm-linux-androideabi/release/libcrypter.so target/out/armeabi/libcrypter.so
|
||||
mv target/armv7-linux-androideabi/release/libcrypter.so target/out/armeabi-v7a/libcrypter.so
|
||||
mv target/x86_64-linux-android/release/libcrypter.so target/out/x86_64/libcrypter.so
|
||||
|
||||
zip -r target/kotlin-libraries.zip target/out
|
||||
|
||||
echo "=> done!"
|
||||
@@ -1,18 +0,0 @@
|
||||
echo "=> creating C FFI scaffolding"
|
||||
uniffi-bindgen scaffolding src/crypter.udl
|
||||
|
||||
echo "=> creating swift bindings"
|
||||
uniffi-bindgen generate src/crypter.udl --language swift
|
||||
|
||||
echo "=> creating swift bindings"
|
||||
sed -i '' 's/module\ crypterFFI/framework\ module\ crypterFFI/' src/crypterFFI.modulemap
|
||||
|
||||
echo "=> building x86_64-apple-ios"
|
||||
cross build --target=x86_64-apple-ios --release
|
||||
echo "=> building aarch64-apple-ios"
|
||||
cross build --target=aarch64-apple-ios --release
|
||||
|
||||
echo "=> combining into a universal lib"
|
||||
lipo -create target/x86_64-apple-ios/release/libcrypter.a target/aarch64-apple-ios/release/libcrypter.a -output target/universal-crypter.a
|
||||
|
||||
echo "=> done!"
|
||||
@@ -1,23 +0,0 @@
|
||||
uniffi-bindgen --version
|
||||
|
||||
should match the uniffi version in Cargo.toml
|
||||
|
||||
### build the C ffi
|
||||
|
||||
uniffi-bindgen scaffolding src/crypter.udl
|
||||
|
||||
### kotlin
|
||||
|
||||
rustup target add aarch64-linux-android armv7-linux-androideabi i686-linux-android x86_64-linux-android arm-linux-androideabi
|
||||
|
||||
./build-kotlin.sh
|
||||
|
||||
### swift
|
||||
|
||||
rustup target add aarch64-apple-ios x86_64-apple-ios
|
||||
|
||||
armv7-apple-ios
|
||||
armv7s-apple-ios
|
||||
i386-apple-ios
|
||||
|
||||
./build-swift.sh
|
||||
@@ -1,512 +0,0 @@
|
||||
// This file was autogenerated by some hot garbage in the `uniffi` crate.
|
||||
// Trust me, you don't want to mess with it!
|
||||
import Foundation
|
||||
|
||||
// Depending on the consumer's build setup, the low-level FFI code
|
||||
// might be in a separate module, or it might be compiled inline into
|
||||
// this module. This is a bit of light hackery to work with both.
|
||||
#if canImport(crypterFFI)
|
||||
import crypterFFI
|
||||
#endif
|
||||
|
||||
fileprivate extension RustBuffer {
|
||||
// Allocate a new buffer, copying the contents of a `UInt8` array.
|
||||
init(bytes: [UInt8]) {
|
||||
let rbuf = bytes.withUnsafeBufferPointer { ptr in
|
||||
RustBuffer.from(ptr)
|
||||
}
|
||||
self.init(capacity: rbuf.capacity, len: rbuf.len, data: rbuf.data)
|
||||
}
|
||||
|
||||
static func from(_ ptr: UnsafeBufferPointer<UInt8>) -> RustBuffer {
|
||||
try! rustCall { ffi_crypter_9c38_rustbuffer_from_bytes(ForeignBytes(bufferPointer: ptr), $0) }
|
||||
}
|
||||
|
||||
// Frees the buffer in place.
|
||||
// The buffer must not be used after this is called.
|
||||
func deallocate() {
|
||||
try! rustCall { ffi_crypter_9c38_rustbuffer_free(self, $0) }
|
||||
}
|
||||
}
|
||||
|
||||
fileprivate extension ForeignBytes {
|
||||
init(bufferPointer: UnsafeBufferPointer<UInt8>) {
|
||||
self.init(len: Int32(bufferPointer.count), data: bufferPointer.baseAddress)
|
||||
}
|
||||
}
|
||||
|
||||
// For every type used in the interface, we provide helper methods for conveniently
|
||||
// lifting and lowering that type from C-compatible data, and for reading and writing
|
||||
// values of that type in a buffer.
|
||||
|
||||
// Helper classes/extensions that don't change.
|
||||
// Someday, this will be in a libray of its own.
|
||||
|
||||
fileprivate extension Data {
|
||||
init(rustBuffer: RustBuffer) {
|
||||
// TODO: This copies the buffer. Can we read directly from a
|
||||
// Rust buffer?
|
||||
self.init(bytes: rustBuffer.data!, count: Int(rustBuffer.len))
|
||||
}
|
||||
}
|
||||
|
||||
// A helper class to read values out of a byte buffer.
|
||||
fileprivate class Reader {
|
||||
let data: Data
|
||||
var offset: Data.Index
|
||||
|
||||
init(data: Data) {
|
||||
self.data = data
|
||||
self.offset = 0
|
||||
}
|
||||
|
||||
// Reads an integer at the current offset, in big-endian order, and advances
|
||||
// the offset on success. Throws if reading the integer would move the
|
||||
// offset past the end of the buffer.
|
||||
func readInt<T: FixedWidthInteger>() throws -> T {
|
||||
let range = offset..<offset + MemoryLayout<T>.size
|
||||
guard data.count >= range.upperBound else {
|
||||
throw UniffiInternalError.bufferOverflow
|
||||
}
|
||||
if T.self == UInt8.self {
|
||||
let value = data[offset]
|
||||
offset += 1
|
||||
return value as! T
|
||||
}
|
||||
var value: T = 0
|
||||
let _ = withUnsafeMutableBytes(of: &value, { data.copyBytes(to: $0, from: range)})
|
||||
offset = range.upperBound
|
||||
return value.bigEndian
|
||||
}
|
||||
|
||||
// Reads an arbitrary number of bytes, to be used to read
|
||||
// raw bytes, this is useful when lifting strings
|
||||
func readBytes(count: Int) throws -> Array<UInt8> {
|
||||
let range = offset..<(offset+count)
|
||||
guard data.count >= range.upperBound else {
|
||||
throw UniffiInternalError.bufferOverflow
|
||||
}
|
||||
var value = [UInt8](repeating: 0, count: count)
|
||||
value.withUnsafeMutableBufferPointer({ buffer in
|
||||
data.copyBytes(to: buffer, from: range)
|
||||
})
|
||||
offset = range.upperBound
|
||||
return value
|
||||
}
|
||||
|
||||
// Reads a float at the current offset.
|
||||
@inlinable
|
||||
func readFloat() throws -> Float {
|
||||
return Float(bitPattern: try readInt())
|
||||
}
|
||||
|
||||
// Reads a float at the current offset.
|
||||
@inlinable
|
||||
func readDouble() throws -> Double {
|
||||
return Double(bitPattern: try readInt())
|
||||
}
|
||||
|
||||
// Indicates if the offset has reached the end of the buffer.
|
||||
@inlinable
|
||||
func hasRemaining() -> Bool {
|
||||
return offset < data.count
|
||||
}
|
||||
}
|
||||
|
||||
// A helper class to write values into a byte buffer.
|
||||
fileprivate class Writer {
|
||||
var bytes: [UInt8]
|
||||
var offset: Array<UInt8>.Index
|
||||
|
||||
init() {
|
||||
self.bytes = []
|
||||
self.offset = 0
|
||||
}
|
||||
|
||||
func writeBytes<S>(_ byteArr: S) where S: Sequence, S.Element == UInt8 {
|
||||
bytes.append(contentsOf: byteArr)
|
||||
}
|
||||
|
||||
// Writes an integer in big-endian order.
|
||||
//
|
||||
// Warning: make sure what you are trying to write
|
||||
// is in the correct type!
|
||||
func writeInt<T: FixedWidthInteger>(_ value: T) {
|
||||
var value = value.bigEndian
|
||||
withUnsafeBytes(of: &value) { bytes.append(contentsOf: $0) }
|
||||
}
|
||||
|
||||
@inlinable
|
||||
func writeFloat(_ value: Float) {
|
||||
writeInt(value.bitPattern)
|
||||
}
|
||||
|
||||
@inlinable
|
||||
func writeDouble(_ value: Double) {
|
||||
writeInt(value.bitPattern)
|
||||
}
|
||||
}
|
||||
|
||||
// Protocol for types that transfer other types across the FFI. This is
|
||||
// analogous go the Rust trait of the same name.
|
||||
fileprivate protocol FfiConverter {
|
||||
associatedtype FfiType
|
||||
associatedtype SwiftType
|
||||
|
||||
static func lift(_ value: FfiType) throws -> SwiftType
|
||||
static func lower(_ value: SwiftType) -> FfiType
|
||||
static func read(from buf: Reader) throws -> SwiftType
|
||||
static func write(_ value: SwiftType, into buf: Writer)
|
||||
}
|
||||
|
||||
// Types conforming to `Primitive` pass themselves directly over the FFI.
|
||||
fileprivate protocol FfiConverterPrimitive: FfiConverter where FfiType == SwiftType { }
|
||||
|
||||
extension FfiConverterPrimitive {
|
||||
static func lift(_ value: FfiType) throws -> SwiftType {
|
||||
return value
|
||||
}
|
||||
|
||||
static func lower(_ value: SwiftType) -> FfiType {
|
||||
return value
|
||||
}
|
||||
}
|
||||
|
||||
// Types conforming to `FfiConverterRustBuffer` lift and lower into a `RustBuffer`.
|
||||
// Used for complex types where it's hard to write a custom lift/lower.
|
||||
fileprivate protocol FfiConverterRustBuffer: FfiConverter where FfiType == RustBuffer {}
|
||||
|
||||
extension FfiConverterRustBuffer {
|
||||
static func lift(_ buf: RustBuffer) throws -> SwiftType {
|
||||
let reader = Reader(data: Data(rustBuffer: buf))
|
||||
let value = try read(from: reader)
|
||||
if reader.hasRemaining() {
|
||||
throw UniffiInternalError.incompleteData
|
||||
}
|
||||
buf.deallocate()
|
||||
return value
|
||||
}
|
||||
|
||||
static func lower(_ value: SwiftType) -> RustBuffer {
|
||||
let writer = Writer()
|
||||
write(value, into: writer)
|
||||
return RustBuffer(bytes: writer.bytes)
|
||||
}
|
||||
}
|
||||
// An error type for FFI errors. These errors occur at the UniFFI level, not
|
||||
// the library level.
|
||||
fileprivate enum UniffiInternalError: LocalizedError {
|
||||
case bufferOverflow
|
||||
case incompleteData
|
||||
case unexpectedOptionalTag
|
||||
case unexpectedEnumCase
|
||||
case unexpectedNullPointer
|
||||
case unexpectedRustCallStatusCode
|
||||
case unexpectedRustCallError
|
||||
case unexpectedStaleHandle
|
||||
case rustPanic(_ message: String)
|
||||
|
||||
public var errorDescription: String? {
|
||||
switch self {
|
||||
case .bufferOverflow: return "Reading the requested value would read past the end of the buffer"
|
||||
case .incompleteData: return "The buffer still has data after lifting its containing value"
|
||||
case .unexpectedOptionalTag: return "Unexpected optional tag; should be 0 or 1"
|
||||
case .unexpectedEnumCase: return "Raw enum value doesn't match any cases"
|
||||
case .unexpectedNullPointer: return "Raw pointer value was null"
|
||||
case .unexpectedRustCallStatusCode: return "Unexpected RustCallStatus code"
|
||||
case .unexpectedRustCallError: return "CALL_ERROR but no errorClass specified"
|
||||
case .unexpectedStaleHandle: return "The object in the handle map has been dropped already"
|
||||
case let .rustPanic(message): return message
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fileprivate let CALL_SUCCESS: Int8 = 0
|
||||
fileprivate let CALL_ERROR: Int8 = 1
|
||||
fileprivate let CALL_PANIC: Int8 = 2
|
||||
|
||||
fileprivate extension RustCallStatus {
|
||||
init() {
|
||||
self.init(
|
||||
code: CALL_SUCCESS,
|
||||
errorBuf: RustBuffer.init(
|
||||
capacity: 0,
|
||||
len: 0,
|
||||
data: nil
|
||||
)
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
private func rustCall<T>(_ callback: (UnsafeMutablePointer<RustCallStatus>) -> T) throws -> T {
|
||||
try makeRustCall(callback, errorHandler: {
|
||||
$0.deallocate()
|
||||
return UniffiInternalError.unexpectedRustCallError
|
||||
})
|
||||
}
|
||||
|
||||
private func rustCallWithError<T, F: FfiConverter>
|
||||
(_ errorFfiConverter: F.Type, _ callback: (UnsafeMutablePointer<RustCallStatus>) -> T) throws -> T
|
||||
where F.SwiftType: Error, F.FfiType == RustBuffer
|
||||
{
|
||||
try makeRustCall(callback, errorHandler: { return try errorFfiConverter.lift($0) })
|
||||
}
|
||||
|
||||
private func makeRustCall<T>(_ callback: (UnsafeMutablePointer<RustCallStatus>) -> T, errorHandler: (RustBuffer) throws -> Error) throws -> T {
|
||||
var callStatus = RustCallStatus.init()
|
||||
let returnedVal = callback(&callStatus)
|
||||
switch callStatus.code {
|
||||
case CALL_SUCCESS:
|
||||
return returnedVal
|
||||
|
||||
case CALL_ERROR:
|
||||
throw try errorHandler(callStatus.errorBuf)
|
||||
|
||||
case CALL_PANIC:
|
||||
// When the rust code sees a panic, it tries to construct a RustBuffer
|
||||
// with the message. But if that code panics, then it just sends back
|
||||
// an empty buffer.
|
||||
if callStatus.errorBuf.len > 0 {
|
||||
throw UniffiInternalError.rustPanic(try FfiConverterString.lift(callStatus.errorBuf))
|
||||
} else {
|
||||
callStatus.errorBuf.deallocate()
|
||||
throw UniffiInternalError.rustPanic("Rust panic")
|
||||
}
|
||||
|
||||
default:
|
||||
throw UniffiInternalError.unexpectedRustCallStatusCode
|
||||
}
|
||||
}
|
||||
|
||||
// Public interface members begin here.
|
||||
|
||||
|
||||
fileprivate struct FfiConverterString: FfiConverter {
|
||||
typealias SwiftType = String
|
||||
typealias FfiType = RustBuffer
|
||||
|
||||
static func lift(_ value: RustBuffer) throws -> String {
|
||||
defer {
|
||||
value.deallocate()
|
||||
}
|
||||
if value.data == nil {
|
||||
return String()
|
||||
}
|
||||
let bytes = UnsafeBufferPointer<UInt8>(start: value.data!, count: Int(value.len))
|
||||
return String(bytes: bytes, encoding: String.Encoding.utf8)!
|
||||
}
|
||||
|
||||
static func lower(_ value: String) -> RustBuffer {
|
||||
return value.utf8CString.withUnsafeBufferPointer { ptr in
|
||||
// The swift string gives us int8_t, we want uint8_t.
|
||||
ptr.withMemoryRebound(to: UInt8.self) { ptr in
|
||||
// The swift string gives us a trailing null byte, we don't want it.
|
||||
let buf = UnsafeBufferPointer(rebasing: ptr.prefix(upTo: ptr.count - 1))
|
||||
return RustBuffer.from(buf)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static func read(from buf: Reader) throws -> String {
|
||||
let len: Int32 = try buf.readInt()
|
||||
return String(bytes: try buf.readBytes(count: Int(len)), encoding: String.Encoding.utf8)!
|
||||
}
|
||||
|
||||
static func write(_ value: String, into buf: Writer) {
|
||||
let len = Int32(value.utf8.count)
|
||||
buf.writeInt(len)
|
||||
buf.writeBytes(value.utf8)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public enum CrypterError {
|
||||
|
||||
|
||||
|
||||
// Simple error enums only carry a message
|
||||
case DerivePublicKey(message: String)
|
||||
|
||||
// Simple error enums only carry a message
|
||||
case DeriveSharedSecret(message: String)
|
||||
|
||||
// Simple error enums only carry a message
|
||||
case Encrypt(message: String)
|
||||
|
||||
// Simple error enums only carry a message
|
||||
case Decrypt(message: String)
|
||||
|
||||
// Simple error enums only carry a message
|
||||
case BadPubkey(message: String)
|
||||
|
||||
// Simple error enums only carry a message
|
||||
case BadSecret(message: String)
|
||||
|
||||
// Simple error enums only carry a message
|
||||
case BadNonce(message: String)
|
||||
|
||||
// Simple error enums only carry a message
|
||||
case BadCiper(message: String)
|
||||
|
||||
}
|
||||
|
||||
fileprivate struct FfiConverterTypeCrypterError: FfiConverterRustBuffer {
|
||||
typealias SwiftType = CrypterError
|
||||
|
||||
static func read(from buf: Reader) throws -> CrypterError {
|
||||
let variant: Int32 = try buf.readInt()
|
||||
switch variant {
|
||||
|
||||
|
||||
|
||||
|
||||
case 1: return .DerivePublicKey(
|
||||
message: try FfiConverterString.read(from: buf)
|
||||
)
|
||||
|
||||
case 2: return .DeriveSharedSecret(
|
||||
message: try FfiConverterString.read(from: buf)
|
||||
)
|
||||
|
||||
case 3: return .Encrypt(
|
||||
message: try FfiConverterString.read(from: buf)
|
||||
)
|
||||
|
||||
case 4: return .Decrypt(
|
||||
message: try FfiConverterString.read(from: buf)
|
||||
)
|
||||
|
||||
case 5: return .BadPubkey(
|
||||
message: try FfiConverterString.read(from: buf)
|
||||
)
|
||||
|
||||
case 6: return .BadSecret(
|
||||
message: try FfiConverterString.read(from: buf)
|
||||
)
|
||||
|
||||
case 7: return .BadNonce(
|
||||
message: try FfiConverterString.read(from: buf)
|
||||
)
|
||||
|
||||
case 8: return .BadCiper(
|
||||
message: try FfiConverterString.read(from: buf)
|
||||
)
|
||||
|
||||
|
||||
default: throw UniffiInternalError.unexpectedEnumCase
|
||||
}
|
||||
}
|
||||
|
||||
static func write(_ value: CrypterError, into buf: Writer) {
|
||||
switch value {
|
||||
|
||||
|
||||
|
||||
|
||||
case let .DerivePublicKey(message):
|
||||
buf.writeInt(Int32(1))
|
||||
FfiConverterString.write(message, into: buf)
|
||||
case let .DeriveSharedSecret(message):
|
||||
buf.writeInt(Int32(2))
|
||||
FfiConverterString.write(message, into: buf)
|
||||
case let .Encrypt(message):
|
||||
buf.writeInt(Int32(3))
|
||||
FfiConverterString.write(message, into: buf)
|
||||
case let .Decrypt(message):
|
||||
buf.writeInt(Int32(4))
|
||||
FfiConverterString.write(message, into: buf)
|
||||
case let .BadPubkey(message):
|
||||
buf.writeInt(Int32(5))
|
||||
FfiConverterString.write(message, into: buf)
|
||||
case let .BadSecret(message):
|
||||
buf.writeInt(Int32(6))
|
||||
FfiConverterString.write(message, into: buf)
|
||||
case let .BadNonce(message):
|
||||
buf.writeInt(Int32(7))
|
||||
FfiConverterString.write(message, into: buf)
|
||||
case let .BadCiper(message):
|
||||
buf.writeInt(Int32(8))
|
||||
FfiConverterString.write(message, into: buf)
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
extension CrypterError: Equatable, Hashable {}
|
||||
|
||||
extension CrypterError: Error { }
|
||||
|
||||
public func pubkeyFromSecretKey(mySecretKey: String) throws -> String {
|
||||
return try FfiConverterString.lift(
|
||||
try
|
||||
|
||||
rustCallWithError(FfiConverterTypeCrypterError.self) {
|
||||
|
||||
crypter_9c38_pubkey_from_secret_key(
|
||||
FfiConverterString.lower(mySecretKey), $0)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
|
||||
public func deriveSharedSecret(theirPubkey: String, mySecretKey: String) throws -> String {
|
||||
return try FfiConverterString.lift(
|
||||
try
|
||||
|
||||
rustCallWithError(FfiConverterTypeCrypterError.self) {
|
||||
|
||||
crypter_9c38_derive_shared_secret(
|
||||
FfiConverterString.lower(theirPubkey),
|
||||
FfiConverterString.lower(mySecretKey), $0)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
|
||||
public func encrypt(plaintext: String, secret: String, nonce: String) throws -> String {
|
||||
return try FfiConverterString.lift(
|
||||
try
|
||||
|
||||
rustCallWithError(FfiConverterTypeCrypterError.self) {
|
||||
|
||||
crypter_9c38_encrypt(
|
||||
FfiConverterString.lower(plaintext),
|
||||
FfiConverterString.lower(secret),
|
||||
FfiConverterString.lower(nonce), $0)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
|
||||
public func decrypt(ciphertext: String, secret: String) throws -> String {
|
||||
return try FfiConverterString.lift(
|
||||
try
|
||||
|
||||
rustCallWithError(FfiConverterTypeCrypterError.self) {
|
||||
|
||||
crypter_9c38_decrypt(
|
||||
FfiConverterString.lower(ciphertext),
|
||||
FfiConverterString.lower(secret), $0)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Top level initializers and tear down methods.
|
||||
*
|
||||
* This is generated by uniffi.
|
||||
*/
|
||||
public enum CrypterLifecycle {
|
||||
/**
|
||||
* Initialize the FFI and Rust library. This should be only called once per application.
|
||||
*/
|
||||
func initialize() {
|
||||
}
|
||||
}
|
||||
@@ -1,22 +0,0 @@
|
||||
[Error]
|
||||
enum CrypterError {
|
||||
"DerivePublicKey",
|
||||
"DeriveSharedSecret",
|
||||
"Encrypt",
|
||||
"Decrypt",
|
||||
"BadPubkey",
|
||||
"BadSecret",
|
||||
"BadNonce",
|
||||
"BadCiper",
|
||||
};
|
||||
|
||||
namespace crypter {
|
||||
[Throws=CrypterError]
|
||||
string pubkey_from_secret_key(string my_secret_key);
|
||||
[Throws=CrypterError]
|
||||
string derive_shared_secret(string their_pubkey, string my_secret_key);
|
||||
[Throws=CrypterError]
|
||||
string encrypt(string plaintext, string secret, string nonce);
|
||||
[Throws=CrypterError]
|
||||
string decrypt(string ciphertext, string secret);
|
||||
};
|
||||
@@ -1,80 +0,0 @@
|
||||
// This file was autogenerated by some hot garbage in the `uniffi` crate.
|
||||
// Trust me, you don't want to mess with it!
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
// The following structs are used to implement the lowest level
|
||||
// of the FFI, and thus useful to multiple uniffied crates.
|
||||
// We ensure they are declared exactly once, with a header guard, UNIFFI_SHARED_H.
|
||||
#ifdef UNIFFI_SHARED_H
|
||||
// We also try to prevent mixing versions of shared uniffi header structs.
|
||||
// If you add anything to the #else block, you must increment the version suffix in UNIFFI_SHARED_HEADER_V4
|
||||
#ifndef UNIFFI_SHARED_HEADER_V4
|
||||
#error Combining helper code from multiple versions of uniffi is not supported
|
||||
#endif // ndef UNIFFI_SHARED_HEADER_V4
|
||||
#else
|
||||
#define UNIFFI_SHARED_H
|
||||
#define UNIFFI_SHARED_HEADER_V4
|
||||
// ⚠️ Attention: If you change this #else block (ending in `#endif // def UNIFFI_SHARED_H`) you *must* ⚠️
|
||||
// ⚠️ increment the version suffix in all instances of UNIFFI_SHARED_HEADER_V4 in this file. ⚠️
|
||||
|
||||
typedef struct RustBuffer
|
||||
{
|
||||
int32_t capacity;
|
||||
int32_t len;
|
||||
uint8_t *_Nullable data;
|
||||
} RustBuffer;
|
||||
|
||||
typedef int32_t (*ForeignCallback)(uint64_t, int32_t, RustBuffer, RustBuffer *_Nonnull);
|
||||
|
||||
typedef struct ForeignBytes
|
||||
{
|
||||
int32_t len;
|
||||
const uint8_t *_Nullable data;
|
||||
} ForeignBytes;
|
||||
|
||||
// Error definitions
|
||||
typedef struct RustCallStatus {
|
||||
int8_t code;
|
||||
RustBuffer errorBuf;
|
||||
} RustCallStatus;
|
||||
|
||||
// ⚠️ Attention: If you change this #else block (ending in `#endif // def UNIFFI_SHARED_H`) you *must* ⚠️
|
||||
// ⚠️ increment the version suffix in all instances of UNIFFI_SHARED_HEADER_V4 in this file. ⚠️
|
||||
#endif // def UNIFFI_SHARED_H
|
||||
|
||||
RustBuffer crypter_9c38_pubkey_from_secret_key(
|
||||
RustBuffer my_secret_key,
|
||||
RustCallStatus *_Nonnull out_status
|
||||
);
|
||||
RustBuffer crypter_9c38_derive_shared_secret(
|
||||
RustBuffer their_pubkey,RustBuffer my_secret_key,
|
||||
RustCallStatus *_Nonnull out_status
|
||||
);
|
||||
RustBuffer crypter_9c38_encrypt(
|
||||
RustBuffer plaintext,RustBuffer secret,RustBuffer nonce,
|
||||
RustCallStatus *_Nonnull out_status
|
||||
);
|
||||
RustBuffer crypter_9c38_decrypt(
|
||||
RustBuffer ciphertext,RustBuffer secret,
|
||||
RustCallStatus *_Nonnull out_status
|
||||
);
|
||||
RustBuffer ffi_crypter_9c38_rustbuffer_alloc(
|
||||
int32_t size,
|
||||
RustCallStatus *_Nonnull out_status
|
||||
);
|
||||
RustBuffer ffi_crypter_9c38_rustbuffer_from_bytes(
|
||||
ForeignBytes bytes,
|
||||
RustCallStatus *_Nonnull out_status
|
||||
);
|
||||
void ffi_crypter_9c38_rustbuffer_free(
|
||||
RustBuffer buf,
|
||||
RustCallStatus *_Nonnull out_status
|
||||
);
|
||||
RustBuffer ffi_crypter_9c38_rustbuffer_reserve(
|
||||
RustBuffer buf,int32_t additional,
|
||||
RustCallStatus *_Nonnull out_status
|
||||
);
|
||||
@@ -1,6 +0,0 @@
|
||||
// This file was autogenerated by some hot garbage in the `uniffi` crate.
|
||||
// Trust me, you don't want to mess with it!
|
||||
framework module crypterFFI {
|
||||
header "crypterFFI.h"
|
||||
export *
|
||||
}
|
||||
@@ -1,121 +0,0 @@
|
||||
mod parse;
|
||||
|
||||
use sphinx_key_crypter::chacha::{decrypt as chacha_decrypt, encrypt as chacha_encrypt};
|
||||
use sphinx_key_crypter::ecdh::derive_shared_secret_from_slice;
|
||||
use sphinx_key_crypter::secp256k1::{PublicKey, Secp256k1, SecretKey};
|
||||
|
||||
include!("crypter.uniffi.rs");
|
||||
|
||||
pub type Result<T> = std::result::Result<T, CrypterError>;
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
pub enum CrypterError {
|
||||
#[error("Failed to derive public key")]
|
||||
DerivePublicKey,
|
||||
#[error("Failed to derive shared secret")]
|
||||
DeriveSharedSecret,
|
||||
#[error("Failed to encrypt")]
|
||||
Encrypt,
|
||||
#[error("Failed to decrypt")]
|
||||
Decrypt,
|
||||
#[error("Bad pubkey")]
|
||||
BadPubkey,
|
||||
#[error("Bad secret")]
|
||||
BadSecret,
|
||||
#[error("Bad nonce")]
|
||||
BadNonce,
|
||||
#[error("Bad cipher")]
|
||||
BadCiper,
|
||||
}
|
||||
|
||||
pub fn pubkey_from_secret_key(my_secret_key: String) -> Result<String> {
|
||||
let secret_key = parse::parse_secret_string(my_secret_key)?;
|
||||
let sk = match SecretKey::from_slice(&secret_key[..]) {
|
||||
Ok(s) => s,
|
||||
Err(_) => return Err(CrypterError::BadSecret),
|
||||
};
|
||||
let ctx = Secp256k1::new();
|
||||
let pk = PublicKey::from_secret_key(&ctx, &sk).serialize();
|
||||
Ok(hex::encode(pk))
|
||||
}
|
||||
|
||||
// their_pubkey: 33 bytes
|
||||
// my_secret_key: 32 bytes
|
||||
// return shared secret: 32 bytes
|
||||
pub fn derive_shared_secret(their_pubkey: String, my_secret_key: String) -> Result<String> {
|
||||
let pubkey = parse::parse_public_key_string(their_pubkey)?;
|
||||
let secret_key = parse::parse_secret_string(my_secret_key)?;
|
||||
let secret = match derive_shared_secret_from_slice(pubkey, secret_key) {
|
||||
Ok(s) => s,
|
||||
Err(_) => return Err(CrypterError::DeriveSharedSecret),
|
||||
};
|
||||
Ok(hex::encode(secret))
|
||||
}
|
||||
|
||||
// plaintext: 32 bytes
|
||||
// secret: 32 bytes
|
||||
// nonce: 8 bytes
|
||||
// return ciphertext: 56 bytes
|
||||
pub fn encrypt(plaintext: String, secret: String, nonce: String) -> Result<String> {
|
||||
let plain = parse::parse_secret_string(plaintext)?;
|
||||
let sec = parse::parse_secret_string(secret)?;
|
||||
let non = parse::parse_nonce_string(nonce)?;
|
||||
let cipher = match chacha_encrypt(plain, sec, non) {
|
||||
Ok(c) => c,
|
||||
Err(_) => return Err(CrypterError::Encrypt),
|
||||
};
|
||||
Ok(hex::encode(cipher))
|
||||
}
|
||||
|
||||
// ciphertext: 56 bytes
|
||||
// secret: 32 bytes
|
||||
// return plaintext: 32 bytes
|
||||
pub fn decrypt(ciphertext: String, secret: String) -> Result<String> {
|
||||
let cipher = parse::parse_cipher_string(ciphertext)?;
|
||||
let sec = parse::parse_secret_string(secret)?;
|
||||
let plain = match chacha_decrypt(cipher, sec) {
|
||||
Ok(c) => c,
|
||||
Err(_) => return Err(CrypterError::Decrypt),
|
||||
};
|
||||
Ok(hex::encode(plain))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{decrypt, derive_shared_secret, encrypt, pubkey_from_secret_key, Result};
|
||||
|
||||
#[test]
|
||||
fn test_crypter() -> Result<()> {
|
||||
let sk1 = "86c8977989592a97beb409bc27fde76e981ce3543499fd61743755b832e92a3e";
|
||||
let pk1 = "0362a684901b8d065fb034bc44ea972619a409aeafc2a698016a74f6eee1008aca";
|
||||
|
||||
let sk2 = "21c2d41c7394b0a87dae89576bee2552aedb54a204cdcdbf5cdceb0b4c1c2a17";
|
||||
let pk2 = "027dd6297aff570a409fe05032b6e1dab39f309daa8c438a65c32e3d7b4722b7c3";
|
||||
|
||||
// derive shared secrets
|
||||
let sec1 = derive_shared_secret(pk2.to_string(), sk1.to_string())?;
|
||||
let sec2 = derive_shared_secret(pk1.to_string(), sk2.to_string())?;
|
||||
assert_eq!(sec1, sec2);
|
||||
|
||||
// encrypt plaintext with sec1
|
||||
let plaintext = "59ff446bec1d96dc7d1a69232cd69ca409e069294e983df7f1e3e5fb3c95c41c";
|
||||
let nonce = "0da01cc0c0a73ad3";
|
||||
let cipher = encrypt(plaintext.to_string(), sec1, nonce.to_string())?;
|
||||
|
||||
// decrypt with sec2
|
||||
let plain = decrypt(cipher, sec2)?;
|
||||
assert_eq!(plaintext, plain);
|
||||
|
||||
println!("PLAINTEXT MATCHES!");
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_derive_pubkey() -> Result<()> {
|
||||
let sk1 = "86c8977989592a97beb409bc27fde76e981ce3543499fd61743755b832e92a3e";
|
||||
let pk1 = "0362a684901b8d065fb034bc44ea972619a409aeafc2a698016a74f6eee1008aca";
|
||||
let pk = pubkey_from_secret_key(sk1.to_string())?;
|
||||
assert_eq!(pk, pk1);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -1,65 +0,0 @@
|
||||
use crate::{Result, CrypterError};
|
||||
|
||||
use sphinx_key_crypter::ecdh::PUBLIC_KEY_LEN;
|
||||
use sphinx_key_crypter::chacha::{NONCE_END_LEN, KEY_LEN, CIPHER_LEN};
|
||||
use std::convert::TryInto;
|
||||
|
||||
pub(crate) fn parse_secret_string(sk: String) -> Result<[u8; KEY_LEN]> {
|
||||
if sk.len() != KEY_LEN * 2 {
|
||||
return Err(CrypterError::BadSecret)
|
||||
}
|
||||
let secret_key_bytes: Vec<u8> = match hex::decode(sk) {
|
||||
Ok(sk) => sk,
|
||||
Err(_) => return Err(CrypterError::BadSecret),
|
||||
};
|
||||
let secret_key: [u8; KEY_LEN] = match secret_key_bytes.try_into() {
|
||||
Ok(sk) => sk,
|
||||
Err(_) => return Err(CrypterError::BadSecret),
|
||||
};
|
||||
Ok(secret_key)
|
||||
}
|
||||
|
||||
pub(crate) fn parse_public_key_string(pk: String) -> Result<[u8; PUBLIC_KEY_LEN]> {
|
||||
if pk.len() != PUBLIC_KEY_LEN * 2 {
|
||||
return Err(CrypterError::BadPubkey)
|
||||
}
|
||||
let pubkey_bytes: Vec<u8> = match hex::decode(pk) {
|
||||
Ok(pk) => pk,
|
||||
Err(_) => return Err(CrypterError::BadPubkey),
|
||||
};
|
||||
let pubkey: [u8; PUBLIC_KEY_LEN] = match pubkey_bytes.try_into() {
|
||||
Ok(pk) => pk,
|
||||
Err(_) => return Err(CrypterError::BadPubkey),
|
||||
};
|
||||
Ok(pubkey)
|
||||
}
|
||||
|
||||
pub(crate) fn parse_nonce_string(n: String) -> Result<[u8; NONCE_END_LEN]> {
|
||||
if n.len() != NONCE_END_LEN * 2 {
|
||||
return Err(CrypterError::BadNonce)
|
||||
}
|
||||
let nonce_bytes: Vec<u8> = match hex::decode(n) {
|
||||
Ok(n) => n,
|
||||
Err(_) => return Err(CrypterError::BadNonce),
|
||||
};
|
||||
let nonce: [u8; NONCE_END_LEN] = match nonce_bytes.try_into() {
|
||||
Ok(n) => n,
|
||||
Err(_) => return Err(CrypterError::BadNonce),
|
||||
};
|
||||
Ok(nonce)
|
||||
}
|
||||
|
||||
pub(crate) fn parse_cipher_string(c: String) -> Result<[u8; CIPHER_LEN]> {
|
||||
if c.len() != CIPHER_LEN * 2 {
|
||||
return Err(CrypterError::BadCiper)
|
||||
}
|
||||
let cipher_bytes: Vec<u8> = match hex::decode(c) {
|
||||
Ok(n) => n,
|
||||
Err(_) => return Err(CrypterError::BadCiper),
|
||||
};
|
||||
let cipher: [u8; CIPHER_LEN] = match cipher_bytes.try_into() {
|
||||
Ok(n) => n,
|
||||
Err(_) => return Err(CrypterError::BadCiper),
|
||||
};
|
||||
Ok(cipher)
|
||||
}
|
||||
@@ -1,435 +0,0 @@
|
||||
// This file was autogenerated by some hot garbage in the `uniffi` crate.
|
||||
// Trust me, you don't want to mess with it!
|
||||
|
||||
@file:Suppress("NAME_SHADOWING")
|
||||
|
||||
package uniffi.crypter;
|
||||
|
||||
// Common helper code.
|
||||
//
|
||||
// Ideally this would live in a separate .kt file where it can be unittested etc
|
||||
// in isolation, and perhaps even published as a re-useable package.
|
||||
//
|
||||
// However, it's important that the detils of how this helper code works (e.g. the
|
||||
// way that different builtin types are passed across the FFI) exactly match what's
|
||||
// expected by the Rust code on the other side of the interface. In practice right
|
||||
// now that means coming from the exact some version of `uniffi` that was used to
|
||||
// compile the Rust component. The easiest way to ensure this is to bundle the Kotlin
|
||||
// helpers directly inline like we're doing here.
|
||||
|
||||
import com.sun.jna.Library
|
||||
import com.sun.jna.Native
|
||||
import com.sun.jna.Pointer
|
||||
import com.sun.jna.Structure
|
||||
import com.sun.jna.ptr.ByReference
|
||||
import java.nio.ByteBuffer
|
||||
import java.nio.ByteOrder
|
||||
|
||||
// This is a helper for safely working with byte buffers returned from the Rust code.
|
||||
// A rust-owned buffer is represented by its capacity, its current length, and a
|
||||
// pointer to the underlying data.
|
||||
|
||||
@Structure.FieldOrder("capacity", "len", "data")
|
||||
open class RustBuffer : Structure() {
|
||||
@JvmField var capacity: Int = 0
|
||||
@JvmField var len: Int = 0
|
||||
@JvmField var data: Pointer? = null
|
||||
|
||||
class ByValue : RustBuffer(), Structure.ByValue
|
||||
class ByReference : RustBuffer(), Structure.ByReference
|
||||
|
||||
companion object {
|
||||
internal fun alloc(size: Int = 0) = rustCall() { status ->
|
||||
_UniFFILib.INSTANCE.ffi_crypter_9c38_rustbuffer_alloc(size, status).also {
|
||||
if(it.data == null) {
|
||||
throw RuntimeException("RustBuffer.alloc() returned null data pointer (size=${size})")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
internal fun free(buf: RustBuffer.ByValue) = rustCall() { status ->
|
||||
_UniFFILib.INSTANCE.ffi_crypter_9c38_rustbuffer_free(buf, status)
|
||||
}
|
||||
}
|
||||
|
||||
@Suppress("TooGenericExceptionThrown")
|
||||
fun asByteBuffer() =
|
||||
this.data?.getByteBuffer(0, this.len.toLong())?.also {
|
||||
it.order(ByteOrder.BIG_ENDIAN)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* The equivalent of the `*mut RustBuffer` type.
|
||||
* Required for callbacks taking in an out pointer.
|
||||
*
|
||||
* Size is the sum of all values in the struct.
|
||||
*/
|
||||
class RustBufferByReference : ByReference(16) {
|
||||
/**
|
||||
* Set the pointed-to `RustBuffer` to the given value.
|
||||
*/
|
||||
fun setValue(value: RustBuffer.ByValue) {
|
||||
// NOTE: The offsets are as they are in the C-like struct.
|
||||
val pointer = getPointer()
|
||||
pointer.setInt(0, value.capacity)
|
||||
pointer.setInt(4, value.len)
|
||||
pointer.setPointer(8, value.data)
|
||||
}
|
||||
}
|
||||
|
||||
// This is a helper for safely passing byte references into the rust code.
|
||||
// It's not actually used at the moment, because there aren't many things that you
|
||||
// can take a direct pointer to in the JVM, and if we're going to copy something
|
||||
// then we might as well copy it into a `RustBuffer`. But it's here for API
|
||||
// completeness.
|
||||
|
||||
@Structure.FieldOrder("len", "data")
|
||||
open class ForeignBytes : Structure() {
|
||||
@JvmField var len: Int = 0
|
||||
@JvmField var data: Pointer? = null
|
||||
|
||||
class ByValue : ForeignBytes(), Structure.ByValue
|
||||
}
|
||||
// The FfiConverter interface handles converter types to and from the FFI
|
||||
//
|
||||
// All implementing objects should be public to support external types. When a
|
||||
// type is external we need to import it's FfiConverter.
|
||||
public interface FfiConverter<KotlinType, FfiType> {
|
||||
// Convert an FFI type to a Kotlin type
|
||||
fun lift(value: FfiType): KotlinType
|
||||
|
||||
// Convert an Kotlin type to an FFI type
|
||||
fun lower(value: KotlinType): FfiType
|
||||
|
||||
// Read a Kotlin type from a `ByteBuffer`
|
||||
fun read(buf: ByteBuffer): KotlinType
|
||||
|
||||
// Calculate bytes to allocate when creating a `RustBuffer`
|
||||
//
|
||||
// This must return at least as many bytes as the write() function will
|
||||
// write. It can return more bytes than needed, for example when writing
|
||||
// Strings we can't know the exact bytes needed until we the UTF-8
|
||||
// encoding, so we pessimistically allocate the largest size possible (3
|
||||
// bytes per codepoint). Allocating extra bytes is not really a big deal
|
||||
// because the `RustBuffer` is short-lived.
|
||||
fun allocationSize(value: KotlinType): Int
|
||||
|
||||
// Write a Kotlin type to a `ByteBuffer`
|
||||
fun write(value: KotlinType, buf: ByteBuffer)
|
||||
|
||||
// Lower a value into a `RustBuffer`
|
||||
//
|
||||
// This method lowers a value into a `RustBuffer` rather than the normal
|
||||
// FfiType. It's used by the callback interface code. Callback interface
|
||||
// returns are always serialized into a `RustBuffer` regardless of their
|
||||
// normal FFI type.
|
||||
fun lowerIntoRustBuffer(value: KotlinType): RustBuffer.ByValue {
|
||||
val rbuf = RustBuffer.alloc(allocationSize(value))
|
||||
try {
|
||||
val bbuf = rbuf.data!!.getByteBuffer(0, rbuf.capacity.toLong()).also {
|
||||
it.order(ByteOrder.BIG_ENDIAN)
|
||||
}
|
||||
write(value, bbuf)
|
||||
rbuf.writeField("len", bbuf.position())
|
||||
return rbuf
|
||||
} catch (e: Throwable) {
|
||||
RustBuffer.free(rbuf)
|
||||
throw e
|
||||
}
|
||||
}
|
||||
|
||||
// Lift a value from a `RustBuffer`.
|
||||
//
|
||||
// This here mostly because of the symmetry with `lowerIntoRustBuffer()`.
|
||||
// It's currently only used by the `FfiConverterRustBuffer` class below.
|
||||
fun liftFromRustBuffer(rbuf: RustBuffer.ByValue): KotlinType {
|
||||
val byteBuf = rbuf.asByteBuffer()!!
|
||||
try {
|
||||
val item = read(byteBuf)
|
||||
if (byteBuf.hasRemaining()) {
|
||||
throw RuntimeException("junk remaining in buffer after lifting, something is very wrong!!")
|
||||
}
|
||||
return item
|
||||
} finally {
|
||||
RustBuffer.free(rbuf)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FfiConverter that uses `RustBuffer` as the FfiType
|
||||
public interface FfiConverterRustBuffer<KotlinType>: FfiConverter<KotlinType, RustBuffer.ByValue> {
|
||||
override fun lift(value: RustBuffer.ByValue) = liftFromRustBuffer(value)
|
||||
override fun lower(value: KotlinType) = lowerIntoRustBuffer(value)
|
||||
}
|
||||
// A handful of classes and functions to support the generated data structures.
|
||||
// This would be a good candidate for isolating in its own ffi-support lib.
|
||||
// Error runtime.
|
||||
@Structure.FieldOrder("code", "error_buf")
|
||||
internal open class RustCallStatus : Structure() {
|
||||
@JvmField var code: Int = 0
|
||||
@JvmField var error_buf: RustBuffer.ByValue = RustBuffer.ByValue()
|
||||
|
||||
fun isSuccess(): Boolean {
|
||||
return code == 0
|
||||
}
|
||||
|
||||
fun isError(): Boolean {
|
||||
return code == 1
|
||||
}
|
||||
|
||||
fun isPanic(): Boolean {
|
||||
return code == 2
|
||||
}
|
||||
}
|
||||
|
||||
class InternalException(message: String) : Exception(message)
|
||||
|
||||
// Each top-level error class has a companion object that can lift the error from the call status's rust buffer
|
||||
interface CallStatusErrorHandler<E> {
|
||||
fun lift(error_buf: RustBuffer.ByValue): E;
|
||||
}
|
||||
|
||||
// Helpers for calling Rust
|
||||
// In practice we usually need to be synchronized to call this safely, so it doesn't
|
||||
// synchronize itself
|
||||
|
||||
// Call a rust function that returns a Result<>. Pass in the Error class companion that corresponds to the Err
|
||||
private inline fun <U, E: Exception> rustCallWithError(errorHandler: CallStatusErrorHandler<E>, callback: (RustCallStatus) -> U): U {
|
||||
var status = RustCallStatus();
|
||||
val return_value = callback(status)
|
||||
if (status.isSuccess()) {
|
||||
return return_value
|
||||
} else if (status.isError()) {
|
||||
throw errorHandler.lift(status.error_buf)
|
||||
} else if (status.isPanic()) {
|
||||
// when the rust code sees a panic, it tries to construct a rustbuffer
|
||||
// with the message. but if that code panics, then it just sends back
|
||||
// an empty buffer.
|
||||
if (status.error_buf.len > 0) {
|
||||
throw InternalException(FfiConverterString.lift(status.error_buf))
|
||||
} else {
|
||||
throw InternalException("Rust panic")
|
||||
}
|
||||
} else {
|
||||
throw InternalException("Unknown rust call status: $status.code")
|
||||
}
|
||||
}
|
||||
|
||||
// CallStatusErrorHandler implementation for times when we don't expect a CALL_ERROR
|
||||
object NullCallStatusErrorHandler: CallStatusErrorHandler<InternalException> {
|
||||
override fun lift(error_buf: RustBuffer.ByValue): InternalException {
|
||||
RustBuffer.free(error_buf)
|
||||
return InternalException("Unexpected CALL_ERROR")
|
||||
}
|
||||
}
|
||||
|
||||
// Call a rust function that returns a plain value
|
||||
private inline fun <U> rustCall(callback: (RustCallStatus) -> U): U {
|
||||
return rustCallWithError(NullCallStatusErrorHandler, callback);
|
||||
}
|
||||
|
||||
// Contains loading, initialization code,
|
||||
// and the FFI Function declarations in a com.sun.jna.Library.
|
||||
@Synchronized
|
||||
private fun findLibraryName(componentName: String): String {
|
||||
val libOverride = System.getProperty("uniffi.component.$componentName.libraryOverride")
|
||||
if (libOverride != null) {
|
||||
return libOverride
|
||||
}
|
||||
return "crypter"
|
||||
}
|
||||
|
||||
private inline fun <reified Lib : Library> loadIndirect(
|
||||
componentName: String
|
||||
): Lib {
|
||||
return Native.load<Lib>(findLibraryName(componentName), Lib::class.java)
|
||||
}
|
||||
|
||||
// A JNA Library to expose the extern-C FFI definitions.
|
||||
// This is an implementation detail which will be called internally by the public API.
|
||||
|
||||
internal interface _UniFFILib : Library {
|
||||
companion object {
|
||||
internal val INSTANCE: _UniFFILib by lazy {
|
||||
loadIndirect<_UniFFILib>(componentName = "crypter")
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
fun crypter_9c38_pubkey_from_secret_key(`mySecretKey`: RustBuffer.ByValue,
|
||||
_uniffi_out_err: RustCallStatus
|
||||
): RustBuffer.ByValue
|
||||
|
||||
fun crypter_9c38_derive_shared_secret(`theirPubkey`: RustBuffer.ByValue,`mySecretKey`: RustBuffer.ByValue,
|
||||
_uniffi_out_err: RustCallStatus
|
||||
): RustBuffer.ByValue
|
||||
|
||||
fun crypter_9c38_encrypt(`plaintext`: RustBuffer.ByValue,`secret`: RustBuffer.ByValue,`nonce`: RustBuffer.ByValue,
|
||||
_uniffi_out_err: RustCallStatus
|
||||
): RustBuffer.ByValue
|
||||
|
||||
fun crypter_9c38_decrypt(`ciphertext`: RustBuffer.ByValue,`secret`: RustBuffer.ByValue,
|
||||
_uniffi_out_err: RustCallStatus
|
||||
): RustBuffer.ByValue
|
||||
|
||||
fun ffi_crypter_9c38_rustbuffer_alloc(`size`: Int,
|
||||
_uniffi_out_err: RustCallStatus
|
||||
): RustBuffer.ByValue
|
||||
|
||||
fun ffi_crypter_9c38_rustbuffer_from_bytes(`bytes`: ForeignBytes.ByValue,
|
||||
_uniffi_out_err: RustCallStatus
|
||||
): RustBuffer.ByValue
|
||||
|
||||
fun ffi_crypter_9c38_rustbuffer_free(`buf`: RustBuffer.ByValue,
|
||||
_uniffi_out_err: RustCallStatus
|
||||
): Unit
|
||||
|
||||
fun ffi_crypter_9c38_rustbuffer_reserve(`buf`: RustBuffer.ByValue,`additional`: Int,
|
||||
_uniffi_out_err: RustCallStatus
|
||||
): RustBuffer.ByValue
|
||||
|
||||
|
||||
}
|
||||
|
||||
// Public interface members begin here.
|
||||
|
||||
|
||||
public object FfiConverterString: FfiConverter<String, RustBuffer.ByValue> {
|
||||
// Note: we don't inherit from FfiConverterRustBuffer, because we use a
|
||||
// special encoding when lowering/lifting. We can use `RustBuffer.len` to
|
||||
// store our length and avoid writing it out to the buffer.
|
||||
override fun lift(value: RustBuffer.ByValue): String {
|
||||
try {
|
||||
val byteArr = ByteArray(value.len)
|
||||
value.asByteBuffer()!!.get(byteArr)
|
||||
return byteArr.toString(Charsets.UTF_8)
|
||||
} finally {
|
||||
RustBuffer.free(value)
|
||||
}
|
||||
}
|
||||
|
||||
override fun read(buf: ByteBuffer): String {
|
||||
val len = buf.getInt()
|
||||
val byteArr = ByteArray(len)
|
||||
buf.get(byteArr)
|
||||
return byteArr.toString(Charsets.UTF_8)
|
||||
}
|
||||
|
||||
override fun lower(value: String): RustBuffer.ByValue {
|
||||
val byteArr = value.toByteArray(Charsets.UTF_8)
|
||||
// Ideally we'd pass these bytes to `ffi_bytebuffer_from_bytes`, but doing so would require us
|
||||
// to copy them into a JNA `Memory`. So we might as well directly copy them into a `RustBuffer`.
|
||||
val rbuf = RustBuffer.alloc(byteArr.size)
|
||||
rbuf.asByteBuffer()!!.put(byteArr)
|
||||
return rbuf
|
||||
}
|
||||
|
||||
// We aren't sure exactly how many bytes our string will be once it's UTF-8
|
||||
// encoded. Allocate 3 bytes per unicode codepoint which will always be
|
||||
// enough.
|
||||
override fun allocationSize(value: String): Int {
|
||||
val sizeForLength = 4
|
||||
val sizeForString = value.length * 3
|
||||
return sizeForLength + sizeForString
|
||||
}
|
||||
|
||||
override fun write(value: String, buf: ByteBuffer) {
|
||||
val byteArr = value.toByteArray(Charsets.UTF_8)
|
||||
buf.putInt(byteArr.size)
|
||||
buf.put(byteArr)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
sealed class CrypterException(message: String): Exception(message) {
|
||||
// Each variant is a nested class
|
||||
// Flat enums carries a string error message, so no special implementation is necessary.
|
||||
class DerivePublicKey(message: String) : CrypterException(message)
|
||||
class DeriveSharedSecret(message: String) : CrypterException(message)
|
||||
class Encrypt(message: String) : CrypterException(message)
|
||||
class Decrypt(message: String) : CrypterException(message)
|
||||
class BadPubkey(message: String) : CrypterException(message)
|
||||
class BadSecret(message: String) : CrypterException(message)
|
||||
class BadNonce(message: String) : CrypterException(message)
|
||||
class BadCiper(message: String) : CrypterException(message)
|
||||
|
||||
|
||||
companion object ErrorHandler : CallStatusErrorHandler<CrypterException> {
|
||||
override fun lift(error_buf: RustBuffer.ByValue): CrypterException = FfiConverterTypeCrypterError.lift(error_buf)
|
||||
}
|
||||
}
|
||||
|
||||
public object FfiConverterTypeCrypterError : FfiConverterRustBuffer<CrypterException> {
|
||||
override fun read(buf: ByteBuffer): CrypterException {
|
||||
|
||||
return when(buf.getInt()) {
|
||||
1 -> CrypterException.DerivePublicKey(FfiConverterString.read(buf))
|
||||
2 -> CrypterException.DeriveSharedSecret(FfiConverterString.read(buf))
|
||||
3 -> CrypterException.Encrypt(FfiConverterString.read(buf))
|
||||
4 -> CrypterException.Decrypt(FfiConverterString.read(buf))
|
||||
5 -> CrypterException.BadPubkey(FfiConverterString.read(buf))
|
||||
6 -> CrypterException.BadSecret(FfiConverterString.read(buf))
|
||||
7 -> CrypterException.BadNonce(FfiConverterString.read(buf))
|
||||
8 -> CrypterException.BadCiper(FfiConverterString.read(buf))
|
||||
else -> throw RuntimeException("invalid error enum value, something is very wrong!!")
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Suppress("UNUSED_PARAMETER")
|
||||
override fun allocationSize(value: CrypterException): Int {
|
||||
throw RuntimeException("Writing Errors is not supported")
|
||||
}
|
||||
|
||||
@Suppress("UNUSED_PARAMETER")
|
||||
override fun write(value: CrypterException, buf: ByteBuffer) {
|
||||
throw RuntimeException("Writing Errors is not supported")
|
||||
}
|
||||
|
||||
}
|
||||
@Throws(CrypterException::class)
|
||||
|
||||
fun `pubkeyFromSecretKey`(`mySecretKey`: String): String {
|
||||
return FfiConverterString.lift(
|
||||
rustCallWithError(CrypterException) { _status ->
|
||||
_UniFFILib.INSTANCE.crypter_9c38_pubkey_from_secret_key(FfiConverterString.lower(`mySecretKey`), _status)
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
@Throws(CrypterException::class)
|
||||
|
||||
fun `deriveSharedSecret`(`theirPubkey`: String, `mySecretKey`: String): String {
|
||||
return FfiConverterString.lift(
|
||||
rustCallWithError(CrypterException) { _status ->
|
||||
_UniFFILib.INSTANCE.crypter_9c38_derive_shared_secret(FfiConverterString.lower(`theirPubkey`), FfiConverterString.lower(`mySecretKey`), _status)
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
@Throws(CrypterException::class)
|
||||
|
||||
fun `encrypt`(`plaintext`: String, `secret`: String, `nonce`: String): String {
|
||||
return FfiConverterString.lift(
|
||||
rustCallWithError(CrypterException) { _status ->
|
||||
_UniFFILib.INSTANCE.crypter_9c38_encrypt(FfiConverterString.lower(`plaintext`), FfiConverterString.lower(`secret`), FfiConverterString.lower(`nonce`), _status)
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
@Throws(CrypterException::class)
|
||||
|
||||
fun `decrypt`(`ciphertext`: String, `secret`: String): String {
|
||||
return FfiConverterString.lift(
|
||||
rustCallWithError(CrypterException) { _status ->
|
||||
_UniFFILib.INSTANCE.crypter_9c38_decrypt(FfiConverterString.lower(`ciphertext`), FfiConverterString.lower(`secret`), _status)
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,17 +0,0 @@
|
||||
[package]
|
||||
name = "sphinx-key-crypter"
|
||||
version = "0.1.0"
|
||||
authors = ["Evan Feenstra <evanfeenstra@gmail.com>"]
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
anyhow = {version = "1", features = ["backtrace"]}
|
||||
secp256k1 = { version = "0.24.0", features = ["std", "rand-std", "lowmemory"] }
|
||||
rand = "0.8.5"
|
||||
|
||||
[dependencies.lightning]
|
||||
git = "https://github.com/lightningdevkit/rust-lightning.git"
|
||||
rev = "ea5b62fff69847941434fb51562e302eb4e7ff4b"
|
||||
default-features = false
|
||||
features = ["std", "grind_signatures"]
|
||||
|
||||
@@ -1,59 +0,0 @@
|
||||
use anyhow::anyhow;
|
||||
use lightning::util::chacha20poly1305rfc::ChaCha20Poly1305RFC;
|
||||
|
||||
pub const MSG_LEN: usize = 32;
|
||||
pub const KEY_LEN: usize = 32;
|
||||
pub const NONCE_END_LEN: usize = 8;
|
||||
pub const TAG_LEN: usize = 16;
|
||||
pub const CIPHER_LEN: usize = MSG_LEN + NONCE_END_LEN + TAG_LEN;
|
||||
|
||||
pub fn encrypt(
|
||||
plaintext: [u8; MSG_LEN],
|
||||
key: [u8; KEY_LEN],
|
||||
nonce_end: [u8; NONCE_END_LEN],
|
||||
) -> anyhow::Result<[u8; CIPHER_LEN]> {
|
||||
let mut nonce = [0; 4 + NONCE_END_LEN];
|
||||
nonce[4..].copy_from_slice(&nonce_end);
|
||||
let mut chacha = ChaCha20Poly1305RFC::new(&key, &nonce, &[0; 0]);
|
||||
let mut res = [0; MSG_LEN];
|
||||
let mut tag = [0; TAG_LEN];
|
||||
chacha.encrypt(&plaintext[..], &mut res[0..plaintext.len()], &mut tag);
|
||||
let mut ret = [0; CIPHER_LEN];
|
||||
ret[..MSG_LEN].copy_from_slice(&res);
|
||||
ret[MSG_LEN..MSG_LEN + NONCE_END_LEN].copy_from_slice(&nonce_end);
|
||||
ret[MSG_LEN + NONCE_END_LEN..].copy_from_slice(&tag);
|
||||
Ok(ret)
|
||||
}
|
||||
|
||||
pub fn decrypt(ciphertext: [u8; CIPHER_LEN], key: [u8; KEY_LEN]) -> anyhow::Result<[u8; MSG_LEN]> {
|
||||
let mut nonce = [0; 4 + NONCE_END_LEN];
|
||||
nonce[4..].copy_from_slice(&ciphertext[MSG_LEN..MSG_LEN + NONCE_END_LEN]);
|
||||
let mut tag = [0; TAG_LEN];
|
||||
tag.copy_from_slice(&ciphertext[MSG_LEN + NONCE_END_LEN..]);
|
||||
let mut chacha2 = ChaCha20Poly1305RFC::new(&key, &nonce, &[0; 0]);
|
||||
let mut dec = [0; MSG_LEN];
|
||||
let ok = chacha2.decrypt(&ciphertext[..MSG_LEN], &mut dec, &tag);
|
||||
if ok {
|
||||
Ok(dec)
|
||||
} else {
|
||||
Err(anyhow!("failed chacha authentication"))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::chacha::{decrypt, encrypt, KEY_LEN, MSG_LEN, NONCE_END_LEN};
|
||||
use rand::{rngs::OsRng, RngCore};
|
||||
|
||||
#[test]
|
||||
fn test_chacha() -> anyhow::Result<()> {
|
||||
let key = [9; KEY_LEN];
|
||||
let plaintext = [1; MSG_LEN];
|
||||
let mut nonce_end = [0; NONCE_END_LEN];
|
||||
OsRng.fill_bytes(&mut nonce_end);
|
||||
let cipher = encrypt(plaintext, key, nonce_end)?;
|
||||
let plain = decrypt(cipher, key)?;
|
||||
assert_eq!(plaintext, plain);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -1,47 +0,0 @@
|
||||
use secp256k1::ecdh::SharedSecret;
|
||||
use secp256k1::{SecretKey, PublicKey};
|
||||
use anyhow::Result;
|
||||
|
||||
pub const PUBLIC_KEY_LEN: usize = 33;
|
||||
pub const PRIVATE_KEY_LEN: usize = 32;
|
||||
pub const SECRET_LEN: usize = 32;
|
||||
|
||||
pub fn derive_shared_secret_from_slice(their_public_key: [u8; PUBLIC_KEY_LEN], my_private_key: [u8; PRIVATE_KEY_LEN]) -> Result<[u8; SECRET_LEN]> {
|
||||
let public_key = PublicKey::from_slice(&their_public_key[..])?;
|
||||
let private_key = SecretKey::from_slice(&my_private_key[..])?;
|
||||
Ok(derive_shared_secret(&public_key, &private_key).secret_bytes())
|
||||
}
|
||||
|
||||
pub fn derive_shared_secret(their_public_key: &PublicKey, my_private_key: &SecretKey) -> SharedSecret {
|
||||
SharedSecret::new(their_public_key, my_private_key)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::ecdh::{derive_shared_secret, derive_shared_secret_from_slice};
|
||||
use rand::thread_rng;
|
||||
use secp256k1::Secp256k1;
|
||||
|
||||
#[test]
|
||||
fn test_ecdh() -> anyhow::Result<()> {
|
||||
let s = Secp256k1::new();
|
||||
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
|
||||
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
|
||||
let sec1 = derive_shared_secret(&pk2, &sk1);
|
||||
let sec2 = derive_shared_secret(&pk1, &sk2);
|
||||
assert_eq!(sec1, sec2);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ecdh_from_slice() -> anyhow::Result<()> {
|
||||
let s = Secp256k1::new();
|
||||
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
|
||||
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
|
||||
let sec1 = derive_shared_secret_from_slice(pk2.serialize(), sk1.secret_bytes())?;
|
||||
let sec2 = derive_shared_secret_from_slice(pk1.serialize(), sk2.secret_bytes())?;
|
||||
assert_eq!(sec1, sec2);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
}
|
||||
@@ -1,38 +0,0 @@
|
||||
pub mod chacha;
|
||||
pub mod ecdh;
|
||||
|
||||
pub use secp256k1;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::chacha::{decrypt, encrypt, MSG_LEN, NONCE_END_LEN};
|
||||
use crate::ecdh::derive_shared_secret_from_slice;
|
||||
use secp256k1::rand::{rngs::OsRng, thread_rng, RngCore};
|
||||
use secp256k1::Secp256k1;
|
||||
|
||||
#[test]
|
||||
fn test_crypter() -> anyhow::Result<()> {
|
||||
// two keypairs
|
||||
let s = Secp256k1::new();
|
||||
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
|
||||
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
|
||||
|
||||
// derive shared secrets
|
||||
let sec1 = derive_shared_secret_from_slice(pk2.serialize(), sk1.secret_bytes())?;
|
||||
let sec2 = derive_shared_secret_from_slice(pk1.serialize(), sk2.secret_bytes())?;
|
||||
assert_eq!(sec1, sec2);
|
||||
|
||||
// encrypt plaintext with sec1
|
||||
let plaintext = [1; MSG_LEN];
|
||||
let mut nonce_end = [0; NONCE_END_LEN];
|
||||
OsRng.fill_bytes(&mut nonce_end);
|
||||
let cipher = encrypt(plaintext, sec1, nonce_end)?;
|
||||
|
||||
// decrypt with sec2
|
||||
let plain = decrypt(cipher, sec2)?;
|
||||
assert_eq!(plaintext, plain);
|
||||
|
||||
println!("PLAINTEXT MATCHES!");
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -23,7 +23,7 @@ no_persist = []
|
||||
bitflags = "1.3.2"
|
||||
esp-idf-sys = { version = "0.31.6", features = ["binstart"] }
|
||||
sphinx-key-signer = { path = "../signer", optional = true }
|
||||
sphinx-key-crypter = { path = "../crypter" }
|
||||
sphinx-crypter = { git = "https://github.com/stakwork/sphinx-rs.git" }
|
||||
embedded-svc = "0.22.1"
|
||||
esp-idf-svc = "0.42.1"
|
||||
esp-idf-hal = "0.38.0"
|
||||
|
||||
@@ -10,10 +10,10 @@ use embedded_svc::wifi::*;
|
||||
use esp_idf_svc::nvs::*;
|
||||
use esp_idf_svc::wifi::*;
|
||||
|
||||
use sphinx_key_crypter::chacha::{decrypt, CIPHER_LEN};
|
||||
use sphinx_key_crypter::ecdh::{derive_shared_secret_from_slice, PUBLIC_KEY_LEN};
|
||||
use sphinx_key_crypter::secp256k1::rand::thread_rng;
|
||||
use sphinx_key_crypter::secp256k1::{Secp256k1, SecretKey, PublicKey};
|
||||
use sphinx_crypter::chacha::{decrypt, PAYLOAD_LEN};
|
||||
use sphinx_crypter::ecdh::{derive_shared_secret_from_slice, PUBLIC_KEY_LEN};
|
||||
use sphinx_crypter::secp256k1::rand::thread_rng;
|
||||
use sphinx_crypter::secp256k1::{Secp256k1, SecretKey, PublicKey};
|
||||
|
||||
#[derive(Clone, Debug, Deserialize, Serialize)]
|
||||
pub struct Config {
|
||||
@@ -56,7 +56,7 @@ pub fn decrypt_seed(dto: ConfigDTO, sk1: SecretKey) -> Result<Config> {
|
||||
derive_shared_secret_from_slice(their_pk_bytes, sk1.secret_bytes())?;
|
||||
// decrypt seed
|
||||
let cipher_seed = hex::decode(dto.seed)?;
|
||||
let cipher: [u8; CIPHER_LEN] = cipher_seed[..CIPHER_LEN].try_into()?;
|
||||
let cipher: [u8; PAYLOAD_LEN] = cipher_seed[..PAYLOAD_LEN].try_into()?;
|
||||
let seed = decrypt(cipher, shared_secret)?;
|
||||
|
||||
Ok(Config {
|
||||
|
||||
@@ -7,7 +7,7 @@ edition = "2018"
|
||||
[dependencies]
|
||||
sphinx-key-signer = { path = "../signer" }
|
||||
sphinx-key-parser = { path = "../parser" }
|
||||
sphinx-key-crypter = { path = "../crypter" }
|
||||
sphinx-crypter = { git = "https://github.com/stakwork/sphinx-rs.git" }
|
||||
anyhow = {version = "1", features = ["backtrace"]}
|
||||
log = "0.4"
|
||||
rumqttc = "0.12.0"
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
use dotenv::dotenv;
|
||||
use rand::{rngs::OsRng, thread_rng, RngCore};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use sphinx_key_crypter::chacha::{encrypt, MSG_LEN, NONCE_END_LEN};
|
||||
use sphinx_key_crypter::ecdh::{derive_shared_secret_from_slice, PUBLIC_KEY_LEN};
|
||||
use sphinx_key_crypter::secp256k1::Secp256k1;
|
||||
use sphinx_crypter::chacha::{encrypt, MSG_LEN, NONCE_LEN};
|
||||
use sphinx_crypter::ecdh::{derive_shared_secret_from_slice, PUBLIC_KEY_LEN};
|
||||
use sphinx_crypter::secp256k1::Secp256k1;
|
||||
use std::convert::TryInto;
|
||||
use std::env;
|
||||
use std::time::Duration;
|
||||
@@ -70,7 +70,7 @@ async fn main() -> anyhow::Result<()> {
|
||||
let their_pk_bytes: [u8; PUBLIC_KEY_LEN] = their_pk[..PUBLIC_KEY_LEN].try_into()?;
|
||||
let shared_secret = derive_shared_secret_from_slice(their_pk_bytes, sk1.secret_bytes())?;
|
||||
|
||||
let mut nonce_end = [0; NONCE_END_LEN];
|
||||
let mut nonce_end = [0; NONCE_LEN];
|
||||
OsRng.fill_bytes(&mut nonce_end);
|
||||
let cipher = encrypt(seed, shared_secret, nonce_end)?;
|
||||
|
||||
|
||||
@@ -5,11 +5,11 @@ use rocket::State;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::convert::TryInto;
|
||||
|
||||
use sphinx_key_crypter::chacha::{decrypt, CIPHER_LEN};
|
||||
use sphinx_key_crypter::ecdh::{derive_shared_secret_from_slice, PUBLIC_KEY_LEN};
|
||||
use sphinx_key_crypter::secp256k1::rand::thread_rng;
|
||||
use sphinx_key_crypter::secp256k1::Secp256k1;
|
||||
use sphinx_key_crypter::secp256k1::{PublicKey, SecretKey};
|
||||
use sphinx_crypter::chacha::{decrypt, PAYLOAD_LEN};
|
||||
use sphinx_crypter::ecdh::{derive_shared_secret_from_slice, PUBLIC_KEY_LEN};
|
||||
use sphinx_crypter::secp256k1::rand::thread_rng;
|
||||
use sphinx_crypter::secp256k1::Secp256k1;
|
||||
use sphinx_crypter::secp256k1::{PublicKey, SecretKey};
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct ConfigBody {
|
||||
@@ -54,7 +54,7 @@ pub fn decrypt_seed(dto: ConfigBody, sk1: SecretKey) -> anyhow::Result<Config> {
|
||||
let shared_secret = derive_shared_secret_from_slice(their_pk_bytes, sk1.secret_bytes())?;
|
||||
// decrypt seed
|
||||
let cipher_seed = hex::decode(dto.seed)?;
|
||||
let cipher: [u8; CIPHER_LEN] = cipher_seed[..CIPHER_LEN].try_into()?;
|
||||
let cipher: [u8; PAYLOAD_LEN] = cipher_seed[..PAYLOAD_LEN].try_into()?;
|
||||
let seed = decrypt(cipher, shared_secret)?;
|
||||
|
||||
Ok(Config {
|
||||
|
||||
Reference in New Issue
Block a user