mirror of
https://github.com/aljazceru/mcp-python-sdk.git
synced 2025-12-25 01:34:26 +01:00
340 lines
9.3 KiB
Markdown
340 lines
9.3 KiB
Markdown
# MCP Python SDK
|
|
|
|
<div align="center">
|
|
|
|
<strong>Python implementation of the Model Context Protocol (MCP)</strong>
|
|
|
|
[![PyPI][pypi-badge]][pypi-url]
|
|
[![MIT licensed][mit-badge]][mit-url]
|
|
[![Python Version][python-badge]][python-url]
|
|
[![Documentation][docs-badge]][docs-url]
|
|
[![Specification][spec-badge]][spec-url]
|
|
[![GitHub Discussions][discussions-badge]][discussions-url]
|
|
|
|
</div>
|
|
|
|
<!-- omit in toc -->
|
|
## Table of Contents
|
|
|
|
- [Overview](#overview)
|
|
- [Installation](#installation)
|
|
- [Quickstart](#quickstart)
|
|
- [What is MCP?](#what-is-mcp)
|
|
- [Core Concepts](#core-concepts)
|
|
- [Server](#server)
|
|
- [Resources](#resources)
|
|
- [Tools](#tools)
|
|
- [Prompts](#prompts)
|
|
- [Images](#images)
|
|
- [Context](#context)
|
|
- [Running Your Server](#running-your-server)
|
|
- [Development Mode](#development-mode)
|
|
- [Claude Desktop Integration](#claude-desktop-integration)
|
|
- [Direct Execution](#direct-execution)
|
|
- [Examples](#examples)
|
|
- [Echo Server](#echo-server)
|
|
- [SQLite Explorer](#sqlite-explorer)
|
|
- [Documentation](#documentation)
|
|
- [Contributing](#contributing)
|
|
- [License](#license)
|
|
|
|
[pypi-badge]: https://img.shields.io/pypi/v/mcp.svg
|
|
[pypi-url]: https://pypi.org/project/mcp/
|
|
[mit-badge]: https://img.shields.io/pypi/l/mcp.svg
|
|
[mit-url]: https://github.com/modelcontextprotocol/python-sdk/blob/main/LICENSE
|
|
[python-badge]: https://img.shields.io/pypi/pyversions/mcp.svg
|
|
[python-url]: https://www.python.org/downloads/
|
|
[docs-badge]: https://img.shields.io/badge/docs-modelcontextprotocol.io-blue.svg
|
|
[docs-url]: https://modelcontextprotocol.io
|
|
[spec-badge]: https://img.shields.io/badge/spec-spec.modelcontextprotocol.io-blue.svg
|
|
[spec-url]: https://spec.modelcontextprotocol.io
|
|
[discussions-badge]: https://img.shields.io/github/discussions/modelcontextprotocol/python-sdk
|
|
[discussions-url]: https://github.com/modelcontextprotocol/python-sdk/discussions
|
|
|
|
## Overview
|
|
|
|
The Model Context Protocol allows applications to provide context for LLMs in a standardized way, separating the concerns of providing context from the actual LLM interaction. This Python SDK implements the full MCP specification, making it easy to:
|
|
|
|
- Build MCP clients that can connect to any MCP server
|
|
- Create MCP servers that expose resources, prompts and tools
|
|
- Use standard transports like stdio and SSE
|
|
- Handle all MCP protocol messages and lifecycle events
|
|
|
|
## Installation
|
|
|
|
We recommend using [uv](https://docs.astral.sh/uv/) to manage your Python projects:
|
|
|
|
```bash
|
|
uv add "mcp[cli]"
|
|
```
|
|
|
|
Alternatively:
|
|
```bash
|
|
pip install mcp
|
|
```
|
|
|
|
## Quickstart
|
|
|
|
Let's create a simple MCP server that exposes a calculator tool and some data:
|
|
|
|
```python
|
|
# server.py
|
|
from mcp.server.fastmcp import FastMCP
|
|
|
|
# Create an MCP server
|
|
mcp = FastMCP("Demo")
|
|
|
|
# Add an addition tool
|
|
@mcp.tool()
|
|
def add(a: int, b: int) -> int:
|
|
"""Add two numbers"""
|
|
return a + b
|
|
|
|
# Add a dynamic greeting resource
|
|
@mcp.resource("greeting://{name}")
|
|
def get_greeting(name: str) -> str:
|
|
"""Get a personalized greeting"""
|
|
return f"Hello, {name}!"
|
|
```
|
|
|
|
You can install this server in [Claude Desktop](https://claude.ai/download) and interact with it right away by running:
|
|
```bash
|
|
mcp install server.py
|
|
```
|
|
|
|
Alternatively, you can test it with the MCP Inspector:
|
|
```bash
|
|
mcp dev server.py
|
|
```
|
|
|
|
## What is MCP?
|
|
|
|
The [Model Context Protocol (MCP)](https://modelcontextprotocol.io) lets you build servers that expose data and functionality to LLM applications in a secure, standardized way. Think of it like a web API, but specifically designed for LLM interactions. MCP servers can:
|
|
|
|
- Expose data through **Resources** (think of these sort of like GET endpoints; they are used to load information into the LLM's context)
|
|
- Provide functionality through **Tools** (sort of like POST endpoints; they are used to execute code or otherwise produce a side effect)
|
|
- Define interaction patterns through **Prompts** (reusable templates for LLM interactions)
|
|
- And more!
|
|
|
|
## Core Concepts
|
|
|
|
### Server
|
|
|
|
The FastMCP server is your core interface to the MCP protocol. It handles connection management, protocol compliance, and message routing:
|
|
|
|
```python
|
|
from mcp.server.fastmcp import FastMCP
|
|
|
|
# Create a named server
|
|
mcp = FastMCP("My App")
|
|
|
|
# Specify dependencies for deployment and development
|
|
mcp = FastMCP("My App", dependencies=["pandas", "numpy"])
|
|
```
|
|
|
|
### Resources
|
|
|
|
Resources are how you expose data to LLMs. They're similar to GET endpoints in a REST API - they provide data but shouldn't perform significant computation or have side effects:
|
|
|
|
```python
|
|
@mcp.resource("config://app")
|
|
def get_config() -> str:
|
|
"""Static configuration data"""
|
|
return "App configuration here"
|
|
|
|
@mcp.resource("users://{user_id}/profile")
|
|
def get_user_profile(user_id: str) -> str:
|
|
"""Dynamic user data"""
|
|
return f"Profile data for user {user_id}"
|
|
```
|
|
|
|
### Tools
|
|
|
|
Tools let LLMs take actions through your server. Unlike resources, tools are expected to perform computation and have side effects:
|
|
|
|
```python
|
|
@mcp.tool()
|
|
def calculate_bmi(weight_kg: float, height_m: float) -> float:
|
|
"""Calculate BMI given weight in kg and height in meters"""
|
|
return weight_kg / (height_m ** 2)
|
|
|
|
@mcp.tool()
|
|
async def fetch_weather(city: str) -> str:
|
|
"""Fetch current weather for a city"""
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.get(f"https://api.weather.com/{city}")
|
|
return response.text
|
|
```
|
|
|
|
### Prompts
|
|
|
|
Prompts are reusable templates that help LLMs interact with your server effectively:
|
|
|
|
```python
|
|
@mcp.prompt()
|
|
def review_code(code: str) -> str:
|
|
return f"Please review this code:\n\n{code}"
|
|
|
|
@mcp.prompt()
|
|
def debug_error(error: str) -> list[Message]:
|
|
return [
|
|
UserMessage("I'm seeing this error:"),
|
|
UserMessage(error),
|
|
AssistantMessage("I'll help debug that. What have you tried so far?")
|
|
]
|
|
```
|
|
|
|
### Images
|
|
|
|
FastMCP provides an `Image` class that automatically handles image data:
|
|
|
|
```python
|
|
from mcp.server.fastmcp import FastMCP, Image
|
|
from PIL import Image as PILImage
|
|
|
|
@mcp.tool()
|
|
def create_thumbnail(image_path: str) -> Image:
|
|
"""Create a thumbnail from an image"""
|
|
img = PILImage.open(image_path)
|
|
img.thumbnail((100, 100))
|
|
return Image(data=img.tobytes(), format="png")
|
|
```
|
|
|
|
### Context
|
|
|
|
The Context object gives your tools and resources access to MCP capabilities:
|
|
|
|
```python
|
|
from mcp.server.fastmcp import FastMCP, Context
|
|
|
|
@mcp.tool()
|
|
async def long_task(files: list[str], ctx: Context) -> str:
|
|
"""Process multiple files with progress tracking"""
|
|
for i, file in enumerate(files):
|
|
ctx.info(f"Processing {file}")
|
|
await ctx.report_progress(i, len(files))
|
|
data = await ctx.read_resource(f"file://{file}")
|
|
return "Processing complete"
|
|
```
|
|
|
|
## Running Your Server
|
|
|
|
### Development Mode
|
|
|
|
The fastest way to test and debug your server is with the MCP Inspector:
|
|
|
|
```bash
|
|
mcp dev server.py
|
|
|
|
# Add dependencies
|
|
mcp dev server.py --with pandas --with numpy
|
|
|
|
# Mount local code
|
|
mcp dev server.py --with-editable .
|
|
```
|
|
|
|
### Claude Desktop Integration
|
|
|
|
Once your server is ready, install it in Claude Desktop:
|
|
|
|
```bash
|
|
mcp install server.py
|
|
|
|
# Custom name
|
|
mcp install server.py --name "My Analytics Server"
|
|
|
|
# Environment variables
|
|
mcp install server.py -e API_KEY=abc123 -e DB_URL=postgres://...
|
|
mcp install server.py -f .env
|
|
```
|
|
|
|
### Direct Execution
|
|
|
|
For advanced scenarios like custom deployments:
|
|
|
|
```python
|
|
from mcp.server.fastmcp import FastMCP
|
|
|
|
mcp = FastMCP("My App")
|
|
|
|
if __name__ == "__main__":
|
|
mcp.run()
|
|
```
|
|
|
|
Run it with:
|
|
```bash
|
|
python server.py
|
|
# or
|
|
mcp run server.py
|
|
```
|
|
|
|
## Examples
|
|
|
|
### Echo Server
|
|
|
|
A simple server demonstrating resources, tools, and prompts:
|
|
|
|
```python
|
|
from mcp.server.fastmcp import FastMCP
|
|
|
|
mcp = FastMCP("Echo")
|
|
|
|
@mcp.resource("echo://{message}")
|
|
def echo_resource(message: str) -> str:
|
|
"""Echo a message as a resource"""
|
|
return f"Resource echo: {message}"
|
|
|
|
@mcp.tool()
|
|
def echo_tool(message: str) -> str:
|
|
"""Echo a message as a tool"""
|
|
return f"Tool echo: {message}"
|
|
|
|
@mcp.prompt()
|
|
def echo_prompt(message: str) -> str:
|
|
"""Create an echo prompt"""
|
|
return f"Please process this message: {message}"
|
|
```
|
|
|
|
### SQLite Explorer
|
|
|
|
A more complex example showing database integration:
|
|
|
|
```python
|
|
from mcp.server.fastmcp import FastMCP
|
|
import sqlite3
|
|
|
|
mcp = FastMCP("SQLite Explorer")
|
|
|
|
@mcp.resource("schema://main")
|
|
def get_schema() -> str:
|
|
"""Provide the database schema as a resource"""
|
|
conn = sqlite3.connect("database.db")
|
|
schema = conn.execute(
|
|
"SELECT sql FROM sqlite_master WHERE type='table'"
|
|
).fetchall()
|
|
return "\n".join(sql[0] for sql in schema if sql[0])
|
|
|
|
@mcp.tool()
|
|
def query_data(sql: str) -> str:
|
|
"""Execute SQL queries safely"""
|
|
conn = sqlite3.connect("database.db")
|
|
try:
|
|
result = conn.execute(sql).fetchall()
|
|
return "\n".join(str(row) for row in result)
|
|
except Exception as e:
|
|
return f"Error: {str(e)}"
|
|
```
|
|
|
|
## Documentation
|
|
|
|
- [Model Context Protocol documentation](https://modelcontextprotocol.io)
|
|
- [Model Context Protocol specification](https://spec.modelcontextprotocol.io)
|
|
- [Officially supported servers](https://github.com/modelcontextprotocol/servers)
|
|
|
|
## Contributing
|
|
|
|
We are passionate about supporting contributors of all levels of experience and would love to see you get involved in the project. See the [contributing guide](CONTRIBUTING.md) to get started.
|
|
|
|
## License
|
|
|
|
This project is licensed under the MIT License - see the LICENSE file for details. |