(feat) first version of strategy performance

This commit is contained in:
cardosofede
2023-04-21 17:37:44 -03:00
parent 84a97a31fa
commit f8513db0b4

View File

@@ -0,0 +1,137 @@
import os
import sqlite3
from datetime import datetime
import ccxt
import numpy as np
import pandas as pd
import streamlit as st
from utils.data_manipulation import BotData
from utils.graphs import CandlesGraph
st.set_page_config(
page_title="Hummingbot Dashboard",
page_icon=":bar_chart:",
layout="wide",
initial_sidebar_state="collapsed"
)
st.title("🚀 Strategy Performance")
intervals = {
"1m": 60,
"3m": 60 * 3,
"30m": 60 * 30,
"1h": 60 * 60,
"6h": 60 * 60 * 6,
"1d": 60 * 60 * 24,
}
@st.cache_resource
def get_data(db_name: str):
path = os.path.join("data", db_name)
conn = sqlite3.connect(path)
order_df = pd.read_sql_query("SELECT * FROM 'Order'", conn)
order_status_df = pd.read_sql_query("SELECT * FROM OrderStatus", conn)
trade_fill_df = pd.read_sql_query("SELECT * FROM TradeFill", conn)
order_df['creation_timestamp'] = pd.to_datetime(order_df['creation_timestamp'], unit="ms")
order_df['last_update_timestamp'] = pd.to_datetime(order_df['last_update_timestamp'], unit="ms")
trade_fill_df["timestamp"] = pd.to_datetime(trade_fill_df["timestamp"], unit="ms")
# TODO: GitHub issue #8
trade_fill_df["price"] = trade_fill_df["price"] / 1000000
trade_fill_df["amount"] = trade_fill_df["amount"] / 1000000
conn.close()
return BotData(order_df, order_status_df, trade_fill_df)
@st.cache_data(ttl=60)
def get_ohlc(trading_pair: str, exchange: str, interval: str, start_timestamp: int, end_timestamp: int):
exchange = eval("ccxt." + exchange + "()")
limit = (end_timestamp - start_timestamp) / intervals[interval]
bars = exchange.fetch_ohlcv(trading_pair, timeframe=interval, since=start_timestamp * 1000, limit=int(limit))
df = pd.DataFrame(bars, columns=["timestamp", "open", "high", "low", "close", "volume"])
df["datetime"] = pd.to_datetime(df["timestamp"], unit="ms")
return df
col11, col12 = st.columns(2)
with col11:
db_names = [db_name for db_name in os.listdir("data") if db_name.endswith(".sqlite")]
selected_db_name = st.selectbox("Select a database to use:", db_names)
all_bots_data = get_data(selected_db_name)
with col12:
selected_config_file = st.selectbox("Select a config file to analyze:",
all_bots_data.trade_fill["config_file_path"].unique())
if selected_config_file is not None:
strategy_data = all_bots_data.get_strategy_data(
selected_config_file)
row = st.container()
col11, col12, col13 = st.columns([1, 2, 3])
with row:
with col11:
st.header(f"🏦 Market")
st.metric(label="Exchange", value=strategy_data.market.capitalize())
st.metric(label="Trading pair", value=strategy_data.symbol)
with col12:
st.header("📋 General stats")
col121, col122 = st.columns(2)
with col121:
st.metric(label='Start date', value=strategy_data.start_time.strftime("%Y-%m-%d %H:%M"))
st.metric(label='End date', value=strategy_data.end_time.strftime("%Y-%m-%d %H:%M"))
st.metric(label='Duration (Days)', value=round(strategy_data.duration_minutes / (60 * 24), 4))
with col122:
st.metric(label='Start Price', value=round(strategy_data.start_price, 4))
st.metric(label='End Price', value=round(strategy_data.end_price, 4))
st.metric(label='Price change', value=f"{round(strategy_data.price_change * 100, 2)} %")
with col13:
st.header("📈 Performance")
col131, col132, col133 = st.columns(3)
with col131:
st.metric(label='Total Trades', value=strategy_data.total_orders)
st.metric(label='Total Buy Trades', value=strategy_data.total_buy_trades)
st.metric(label='Total Sell Trades', value=strategy_data.total_sell_trades)
with col132:
st.metric(label='Inventory change in Base asset', value=round(strategy_data.inventory_change_base_asset, 4))
st.metric(label='Total Buy Trades Amount', value=strategy_data.total_buy_amount)
st.metric(label='Total Sell Trades Amount', value=strategy_data.total_sell_amount)
with col133:
st.metric(label='Trade PNL USD', value=round(strategy_data.trade_pnl_usd, 2))
st.metric(label='Average Buy Price', value=round(strategy_data.average_buy_price, 4))
st.metric(label='Average Sell Price', value=round(strategy_data.average_sell_price, 4))
col41, col42, col43 = st.columns(3)
exchange_name = strategy_data.orders["market"].unique().item().split("_")[0]
trading_pair = strategy_data.orders["symbol"].unique().item().replace("-", "")
c1, c2 = st.columns([1, 5])
with c1:
interval = st.selectbox("Candles Interval:", intervals.keys(), index=3)
date_array = pd.date_range(start=strategy_data.start_time, end=strategy_data.end_time, periods=60)
ohlc_extra_time = 60 * 60 * 24
with st.spinner("Loading candles..."):
candles_df = get_ohlc(trading_pair, exchange_name, interval, int(strategy_data.start_time.timestamp() - ohlc_extra_time),
int(strategy_data.end_time.timestamp() + ohlc_extra_time))
start_time, end_time = st.select_slider("Select a time range to analyze", options=date_array.tolist(), value=(date_array[0], date_array[-1]))
candles_df_filtered = candles_df[(candles_df["timestamp"] >= int(start_time.timestamp() * 1000)) & (candles_df["timestamp"] <= int(end_time.timestamp() * 1000))]
strategy_data_filtered = strategy_data.get_filtered_strategy_data(start_time, end_time)
cg = CandlesGraph(candles_df_filtered, show_volume=True, extra_rows=2)
cg.add_buy_trades(strategy_data_filtered.buys)
cg.add_sell_trades(strategy_data_filtered.sells)
cg.add_base_inventory_change(strategy_data_filtered)
cg.add_trade_pnl(strategy_data_filtered)
fig = cg.figure()
st.plotly_chart(fig, use_container_width=True)
st.subheader("💵Trades")
st.write(strategy_data_filtered.trade_fill)
st.subheader("📩 Orders")
st.write(strategy_data_filtered.orders)
st.subheader("⌕ Order Status")
st.write(strategy_data_filtered.order_status)