mirror of
https://github.com/aljazceru/hummingbot-dashboard.git
synced 2026-01-07 15:34:23 +01:00
(feat) add trend follower v1 strategy
This commit is contained in:
66
quants_lab/controllers/trend_follower_v1.py
Normal file
66
quants_lab/controllers/trend_follower_v1.py
Normal file
@@ -0,0 +1,66 @@
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
import pandas as pd
|
||||
from pydantic import Field
|
||||
|
||||
from hummingbot.smart_components.executors.position_executor.position_executor import PositionExecutor
|
||||
from hummingbot.smart_components.strategy_frameworks.data_types import OrderLevel
|
||||
from hummingbot.smart_components.strategy_frameworks.directional_trading.directional_trading_controller_base import (
|
||||
DirectionalTradingControllerBase,
|
||||
DirectionalTradingControllerConfigBase,
|
||||
)
|
||||
|
||||
|
||||
class TrendFollowerConfig(DirectionalTradingControllerConfigBase):
|
||||
strategy_name: str = "trend_follower"
|
||||
sma_fast: int = Field(default=20, ge=10, le=150)
|
||||
sma_slow: int = Field(default=100, ge=50, le=400)
|
||||
bb_length: int = Field(default=100, ge=30, le=200)
|
||||
bb_std: float = Field(default=2.0, ge=1.0, le=3.0)
|
||||
bb_threshold: float = Field(default=0.2, ge=0.7, le=0.3)
|
||||
|
||||
|
||||
class TrendFollower(DirectionalTradingControllerBase):
|
||||
|
||||
def __init__(self, config: TrendFollowerConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
def early_stop_condition(self, executor: PositionExecutor, order_level: OrderLevel) -> bool:
|
||||
# If an executor has an active position, should we close it based on a condition. This feature is not available
|
||||
# for the backtesting yet
|
||||
return False
|
||||
|
||||
def cooldown_condition(self, executor: PositionExecutor, order_level: OrderLevel) -> bool:
|
||||
# After finishing an order, the executor will be in cooldown for a certain amount of time.
|
||||
# This prevents the executor from creating a new order immediately after finishing one and execute a lot
|
||||
# of orders in a short period of time from the same side.
|
||||
if executor.close_timestamp and executor.close_timestamp + order_level.cooldown_time > time.time():
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_processed_data(self) -> pd.DataFrame:
|
||||
df = self.candles[0].candles_df
|
||||
df.ta.sma(length=self.config.sma_fast, append=True)
|
||||
df.ta.sma(length=self.config.sma_slow, append=True)
|
||||
df.ta.bbands(length=self.config.bb_length, std=2.0, append=True)
|
||||
|
||||
|
||||
# Generate long and short conditions
|
||||
bbp = df[f"BBP_{self.config.bb_length}_2.0"]
|
||||
inside_bounds_condition = (bbp < 0.5 + self.config.bb_threshold) & (bbp > 0.5 - self.config.bb_threshold)
|
||||
|
||||
long_cond = (df[f'SMA_{self.config.sma_fast}'] > df[f'SMA_{self.config.sma_slow}'])
|
||||
short_cond = (df[f'SMA_{self.config.sma_fast}'] < df[f'SMA_{self.config.sma_slow}'])
|
||||
|
||||
# Choose side
|
||||
df['signal'] = 0
|
||||
df.loc[long_cond & inside_bounds_condition, 'signal'] = 1
|
||||
df.loc[short_cond & inside_bounds_condition, 'signal'] = -1
|
||||
return df
|
||||
|
||||
def extra_columns_to_show(self):
|
||||
return [f"BBP_{self.config.bb_length}_{self.config.bb_std}",
|
||||
f"SMA_{self.config.sma_fast}",
|
||||
f"SMA_{self.config.sma_slow}"]
|
||||
Reference in New Issue
Block a user