Merge pull request #51 from hummingbot/feat/strategy-performance-pagination

Feat/strategy performance pagination
This commit is contained in:
dardonacci
2023-08-01 23:52:24 +02:00
committed by GitHub
4 changed files with 151 additions and 82 deletions

View File

@@ -1,6 +1,7 @@
import os
import pandas as pd
import streamlit as st
import math
from utils.database_manager import DatabaseManager
from utils.graphs import CandlesGraph
@@ -23,86 +24,125 @@ intervals = {
@st.cache_resource
def get_database(db_name: str):
db_manager = DatabaseManager(db_name)
return db_manager
def get_databases():
sqlite_files = [db_name for db_name in os.listdir("data") if db_name.endswith(".sqlite")]
databases_list = [DatabaseManager(db) for db in sqlite_files]
return {database.db_name: database for database in databases_list}
with st.container():
col1, col2 = st.columns(2)
def download_csv(df: pd.DataFrame, filename: str, key: str):
csv = df.to_csv(index=False).encode('utf-8')
return st.download_button(
label="Press to Download",
data=csv,
file_name=f"{filename}.csv",
mime="text/csv",
key=key
)
st.session_state["dbs"] = get_databases()
db_names = [x.db_name for x in st.session_state["dbs"].values() if x.status == 'OK']
if not db_names:
st.warning("No trades have been recorded in the selected database")
selected_db_name = None
selected_db = None
else:
st.subheader("⚙️ Filters")
col1, col2, col3, col4 = st.columns(4)
with col1:
db_names = [db_name for db_name in os.listdir("data") if db_name.endswith(".sqlite")]
selected_db_name = st.selectbox("Select a database to use:",
db_names if len(db_names) > 0 else ["No databases found"])
if selected_db_name == "No databases found":
st.warning("No databases available to analyze. Please run a backtesting first.")
else:
db_manager = get_database(selected_db_name)
config_files = db_manager.get_config_files()
if config_files == []:
with col1:
st.warning('No trades have been recorded in the selected database')
with col2:
selected_config_file = st.selectbox("Select a config file to analyze:", config_files)
if selected_config_file is not None:
exchanges_trading_pairs = db_manager.get_exchanges_trading_pairs_by_config_file(selected_config_file)
strategy_data = db_manager.get_strategy_data(selected_config_file)
selected_db_name = st.selectbox("Select a database to use:", db_names)
st.session_state["selected_db"] = st.session_state["dbs"][selected_db_name]
with col2:
if st.session_state.selected_db:
st.session_state.selected_config_file = st.selectbox("Select a config file to analyze:", st.session_state.selected_db.config_files)
else:
st.session_state.selected_config_file = None
with col3:
if st.session_state.selected_config_file:
st.session_state.selected_exchange = st.selectbox("Exchange:", st.session_state.selected_db.configs[st.session_state.selected_config_file].keys())
with col4:
if st.session_state.selected_exchange:
st.session_state.selected_trading_pair = st.selectbox("Trading Pair:", options=st.session_state.selected_db.configs[st.session_state.selected_config_file][st.session_state.selected_exchange])
single_market = True
if single_market:
strategy_data = st.session_state["dbs"][selected_db_name].get_strategy_data(st.session_state.selected_config_file)
single_market_strategy_data = strategy_data.get_single_market_strategy_data(st.session_state.selected_exchange, st.session_state.selected_trading_pair)
date_array = pd.date_range(start=strategy_data.start_time, end=strategy_data.end_time, periods=60)
start_time, end_time = st.select_slider("Select a time range to analyze",
options=date_array.tolist(),
value=(date_array[0], date_array[-1]))
strategy_data_filtered = single_market_strategy_data.get_filtered_strategy_data(start_time, end_time)
st.markdown("<hr>", unsafe_allow_html=True)
with st.container():
col1, col2, col3 = st.columns(3)
col1, col2 = st.columns(2)
with col1:
selected_exchange = st.selectbox("Select an exchange:", [] if selected_config_file is None else list(exchanges_trading_pairs.keys()))
st.subheader(f"🏦 Market")
with col2:
selected_trading_pair = st.selectbox("Select a trading pair:", [] if selected_config_file is None else exchanges_trading_pairs[selected_exchange])
st.subheader("📋 General stats")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(label="Exchange", value=strategy_data_filtered.exchange.capitalize())
with col2:
st.metric(label="Trading pair", value=strategy_data_filtered.trading_pair.upper())
with col3:
interval = st.selectbox("Candles Interval:", intervals.keys(), index=2)
st.metric(label='Start date', value=strategy_data_filtered.start_time.strftime("%Y-%m-%d %H:%M"))
st.metric(label='End date', value=strategy_data_filtered.end_time.strftime("%Y-%m-%d %H:%M"))
with col4:
st.metric(label='Duration (Hours)', value=round(strategy_data_filtered.duration_seconds / 3600, 2))
st.metric(label='Price change', value=f"{round(strategy_data_filtered.price_change * 100, 2)} %")
if selected_exchange and selected_trading_pair:
single_market_strategy_data = strategy_data.get_single_market_strategy_data(selected_exchange,
selected_trading_pair)
date_array = pd.date_range(start=strategy_data.start_time, end=strategy_data.end_time, periods=60)
start_time, end_time = st.select_slider("Select a time range to analyze", options=date_array.tolist(),
value=(date_array[0], date_array[-1]))
st.markdown("<hr>", unsafe_allow_html=True)
st.subheader("📈 Performance")
col131, col132, col133, col134 = st.columns(4)
with col131:
st.metric(label=f'Net PNL {strategy_data_filtered.quote_asset}',
value=round(strategy_data_filtered.net_pnl_quote, 2))
st.metric(label=f'Trade PNL {strategy_data_filtered.quote_asset}',
value=round(strategy_data_filtered.trade_pnl_quote, 2))
st.metric(label=f'Fees {strategy_data_filtered.quote_asset}',
value=round(strategy_data_filtered.cum_fees_in_quote, 2))
with col132:
st.metric(label='Total Trades', value=strategy_data_filtered.total_orders)
st.metric(label='Total Buy Trades', value=strategy_data_filtered.total_buy_trades)
st.metric(label='Total Sell Trades', value=strategy_data_filtered.total_sell_trades)
with col133:
st.metric(label='Inventory change in Base asset',
value=round(strategy_data_filtered.inventory_change_base_asset, 4))
st.metric(label='Total Buy Trades Amount',
value=round(strategy_data_filtered.total_buy_amount, 2))
st.metric(label='Total Sell Trades Amount',
value=round(strategy_data_filtered.total_sell_amount, 2))
with col134:
st.metric(label='End Price', value=round(strategy_data_filtered.end_price, 4))
st.metric(label='Average Buy Price', value=round(strategy_data_filtered.average_buy_price, 4))
st.metric(label='Average Sell Price', value=round(strategy_data_filtered.average_sell_price, 4))
strategy_data_filtered = single_market_strategy_data.get_filtered_strategy_data(start_time, end_time)
row = st.container()
col11, col12, col13 = st.columns([1, 2, 3])
with row:
with col11:
st.header(f"🏦 Market")
st.metric(label="Exchange", value=strategy_data_filtered.exchange.capitalize())
st.metric(label="Trading pair", value=strategy_data_filtered.trading_pair.upper())
with col12:
st.header("📋 General stats")
col121, col122 = st.columns(2)
with col121:
st.metric(label='Duration (Hours)', value=round(strategy_data_filtered.duration_seconds / 3600, 2))
st.metric(label='Start date', value=strategy_data_filtered.start_time.strftime("%Y-%m-%d %H:%M"))
st.metric(label='End date', value=strategy_data_filtered.end_time.strftime("%Y-%m-%d %H:%M"))
with col122:
st.metric(label='Price change', value=f"{round(strategy_data_filtered.price_change * 100, 2)} %")
with col13:
st.header("📈 Performance")
col131, col132, col133, col134 = st.columns(4)
with col131:
st.metric(label=f'Net PNL {strategy_data_filtered.quote_asset}', value=round(strategy_data_filtered.net_pnl_quote, 2))
st.metric(label=f'Trade PNL {strategy_data_filtered.quote_asset}', value=round(strategy_data_filtered.trade_pnl_quote, 2))
st.metric(label=f'Fees {strategy_data_filtered.quote_asset}', value=round(strategy_data_filtered.cum_fees_in_quote, 2))
with col132:
st.metric(label='Total Trades', value=strategy_data_filtered.total_orders)
st.metric(label='Total Buy Trades', value=strategy_data_filtered.total_buy_trades)
st.metric(label='Total Sell Trades', value=strategy_data_filtered.total_sell_trades)
with col133:
st.metric(label='Inventory change in Base asset',
value=round(strategy_data_filtered.inventory_change_base_asset, 4))
st.metric(label='Total Buy Trades Amount', value=round(strategy_data_filtered.total_buy_amount, 2))
st.metric(label='Total Sell Trades Amount', value=round(strategy_data_filtered.total_sell_amount, 2))
with col134:
st.metric(label='End Price', value=round(strategy_data_filtered.end_price, 4))
st.metric(label='Average Buy Price', value=round(strategy_data_filtered.average_buy_price, 4))
st.metric(label='Average Sell Price', value=round(strategy_data_filtered.average_sell_price, 4))
if strategy_data_filtered.market_data is not None:
candles_df = strategy_data_filtered.get_market_data_resampled(interval=f"{intervals[interval]}S")
st.markdown("<hr>", unsafe_allow_html=True)
st.subheader("🕯️ Candlestick")
if strategy_data_filtered.market_data is not None:
with st.expander("Market activity", expanded=True):
col1, col2, col3 = st.columns([1, 1, 2])
with col1:
interval = st.selectbox("Candles Interval:", intervals.keys(), index=2)
with col2:
rows_per_page = st.number_input("Candles per Page", value=100, min_value=1, max_value=5000)
with col3:
total_rows = len(strategy_data_filtered.get_market_data_resampled(interval=f"{intervals[interval]}S"))
total_pages = math.ceil(total_rows / rows_per_page)
if total_pages > 1:
selected_page = st.select_slider("Select page", list(range(total_pages)), key="page_slider")
else:
selected_page = 0
start_idx = selected_page * rows_per_page
end_idx = start_idx + rows_per_page
candles_df = strategy_data_filtered.get_market_data_resampled(interval=f"{intervals[interval]}S").iloc[
start_idx:end_idx]
start_time_page = candles_df.index.min()
end_time_page = candles_df.index.max()
page_data_filtered = single_market_strategy_data.get_filtered_strategy_data(start_time_page, end_time_page)
cg = CandlesGraph(candles_df, show_volume=False, extra_rows=2)
cg.add_buy_trades(strategy_data_filtered.buys)
cg.add_sell_trades(strategy_data_filtered.sells)
@@ -110,15 +150,17 @@ with st.container():
cg.add_base_inventory_change(strategy_data_filtered, row=3)
fig = cg.figure()
st.plotly_chart(fig, use_container_width=True)
else:
st.warning("Market data is not available so the candles graph is not going to be rendered. "
"Make sure that you are using the latest version of Hummingbot and market data recorder activated.")
st.subheader("💵Trades")
else:
st.warning("Market data is not available so the candles graph is not going to be rendered. "
"Make sure that you are using the latest version of Hummingbot and market data recorder activated.")
st.markdown("<hr>", unsafe_allow_html=True)
st.subheader("Tables")
with st.expander("💵 Trades"):
st.write(strategy_data_filtered.trade_fill)
st.subheader("📩 Orders")
download_csv(strategy_data_filtered.trade_fill, "trade_fill", "download-trades")
with st.expander("📩 Orders"):
st.write(strategy_data_filtered.orders)
st.subheader("⌕ Order Status")
download_csv(strategy_data_filtered.orders, "orders", "download-orders")
with st.expander("⌕ Order Status"):
st.write(strategy_data_filtered.order_status)
download_csv(strategy_data_filtered.order_status, "order_status", "download-order-status")

View File

@@ -16,6 +16,28 @@ class DatabaseManager:
self.engine = create_engine(self.db_path, connect_args={'check_same_thread': False})
self.session_maker = sessionmaker(bind=self.engine)
@property
def status(self):
try:
with self.session_maker() as session:
query = 'SELECT DISTINCT config_file_path FROM TradeFill'
config_files = pd.read_sql_query(query, session.connection())
if len(config_files) > 0:
# TODO: improve error handling, think what to do with other cases
return "OK"
else:
return "No records found in the TradeFill table with non-null config_file_path"
except Exception as e:
return f"Error: {str(e)}"
@property
def config_files(self):
return self.get_config_files()
@property
def configs(self):
return {config_file: self.get_exchanges_trading_pairs_by_config_file(config_file) for config_file in self.config_files}
def get_config_files(self):
with self.session_maker() as session:
query = 'SELECT DISTINCT config_file_path FROM TradeFill'

View File

@@ -16,6 +16,8 @@ class CandlesGraph:
specs = [[{"secondary_y": True}]] * rows
self.base_figure = make_subplots(rows=rows, cols=1, shared_xaxes=True, vertical_spacing=0.005,
row_heights=heights, specs=specs)
self.min_time = candles_df.reset_index().timestamp.min()
self.max_time = candles_df.reset_index().timestamp.max()
self.add_candles_graph()
if self.show_volume:
self.add_volume()
@@ -231,7 +233,9 @@ class CandlesGraph:
x=1
),
height=1500,
xaxis_rangeslider_visible=False,
xaxis=dict(rangeslider_visible=False,
range=[self.min_time, self.max_time]),
yaxis=dict(range=[self.candles_df.low.min(), self.candles_df.high.max()]),
hovermode='x unified'
)
self.base_figure.update_yaxes(title_text="Price", row=1, col=1)

View File

@@ -5,11 +5,12 @@ import inspect
import streamlit as st
def initialize_st_page(title: str, icon: str, layout="wide"):
def initialize_st_page(title: str, icon: str, layout="wide", initial_sidebar_state="collapsed"):
st.set_page_config(
page_title=title,
page_icon=icon,
layout=layout,
initial_sidebar_state=initial_sidebar_state
)
st.title(f"{icon} {title}")
caller_frame = inspect.currentframe().f_back