(feat) add mean reversion notebook

This commit is contained in:
cardosofede
2023-06-23 20:44:16 +01:00
parent af7850dcfa
commit b05ab6a76e

View File

@@ -0,0 +1,150 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true,
"ExecuteTime": {
"end_time": "2023-06-23T18:54:06.001204Z",
"start_time": "2023-06-23T18:54:05.418412Z"
}
},
"outputs": [],
"source": [
"import pandas_ta as ta\n",
"\n",
"from quants_lab.utils import data_management\n",
"from quants_lab.backtesting.backtesting import Backtesting\n",
"from quants_lab.backtesting.backtesting_analysis import BacktestingAnalysis\n",
"\n",
"df = data_management.get_dataframe(\n",
" exchange='binance_perpetual',\n",
" trading_pair='ETH-USDT',\n",
" interval='3m',\n",
")\n",
"\n",
"def bbands_strategy(df):\n",
" df.ta.bbands(length=100, std=3, append=True)\n",
" df[\"side\"] = 0\n",
" long_condition = df[\"BBP_100_3.0\"] < 0.0\n",
" short_condition = df[\"BBP_100_3.0\"] > 1.0\n",
" df.loc[long_condition, \"side\"] = 1\n",
" df.loc[short_condition, \"side\"] = -1\n",
" return df"
]
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"backtesting = Backtesting(candles_df=df)\n",
"\n",
"positions = backtesting.run_backtesting(\n",
" strategy=bbands_strategy,\n",
" order_amount=50,\n",
" leverage=20,\n",
" initial_portfolio=100,\n",
" take_profit_multiplier=0.5,\n",
" stop_loss_multiplier=5.0,\n",
" time_limit=60 * 60 * 1,\n",
" std_span=None,\n",
")\n",
"backtesting_report = BacktestingAnalysis(df, positions, extra_rows=1, show_volume=False)\n"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-06-23T18:54:08.381976Z",
"start_time": "2023-06-23T18:54:06.002029Z"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Strategy Performance Report:\n",
" - Net Profit: -4.07 USD (-4.07%)\n",
" - Total Positions: 978\n",
" - Win Signals: 581\n",
" - Loss Signals: 397\n",
" - Accuracy: 0.59%\n",
" - Profit Factor: 0.97\n",
" - Max Drawdown: -13.85 USD | -13.85%\n",
" - Sharpe Ratio: -0.01\n",
" - Duration: 6,478.55 Hours\n",
" - Average Trade Duration: 48.62 minutes\n",
" \n"
]
}
],
"source": [
"print(backtesting_report.text_report())"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-06-23T18:54:09.658773Z",
"start_time": "2023-06-23T18:54:09.628910Z"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"# Set the backend to Plotly\n",
"pd.options.plotting.backend = \"plotly\"\n",
"\n",
"positions[\"ret_usd\"].cumsum().plot()"
],
"metadata": {
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
"start_time": "2023-06-23T18:54:11.277722Z"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}