(feat) remove strategy with dynamic targets

This commit is contained in:
cardosofede
2023-10-03 00:09:00 -03:00
parent b5646cbff1
commit a3d96e2f70

View File

@@ -1,61 +0,0 @@
from typing import Optional
import pandas as pd
import pandas_ta as ta
from hummingbot.smart_components.executors.position_executor.position_executor import PositionExecutor
from hummingbot.smart_components.strategy_frameworks.data_types import OrderLevel
from hummingbot.smart_components.strategy_frameworks.directional_trading import DirectionalTradingControllerConfigBase, \
DirectionalTradingControllerBase
from pydantic import Field
class BollingerConf(DirectionalTradingControllerConfigBase):
strategy_name = "bollinger"
bb_length: int = Field(default=100, ge=2, le=1000)
bb_std: float = Field(default=2.0, ge=0.5, le=4.0)
bb_long_threshold: float = Field(default=0.0, ge=-3.0, le=0.5)
bb_short_threshold: float = Field(default=1.0, ge=0.5, le=3.0)
std_span: Optional[int] = Field(default=100, ge=100, le=400)
class Bollinger(DirectionalTradingControllerBase):
def __init__(self, config: BollingerConf):
super().__init__(config)
self.config = config
def early_stop_condition(self, executor: PositionExecutor, order_level: OrderLevel) -> bool:
"""
If an executor has an active position, should we close it based on a condition.
"""
return False
def cooldown_condition(self, executor: PositionExecutor, order_level: OrderLevel) -> bool:
"""
After finishing an order, the executor will be in cooldown for a certain amount of time.
This prevents the executor from creating a new order immediately after finishing one and execute a lot
of orders in a short period of time from the same side.
"""
if executor.close_timestamp and executor.close_timestamp + order_level.cooldown_time > time.time():
return True
return False
def get_processed_data(self) -> pd.DataFrame:
df = self.candles[0].candles_df
# Add indicators
df.ta.bbands(length=self.config.bb_length, std=self.config.bb_std, append=True)
# Generate signal
long_condition = df[f"BBP_{self.config.bb_length}_{self.config.bb_std}"] < self.config.bb_long_threshold
short_condition = df[f"BBP_{self.config.bb_length}_{self.config.bb_std}"] > self.config.bb_short_threshold
# Generate signal
df["signal"] = 0
df.loc[long_condition, "signal"] = 1
df.loc[short_condition, "signal"] = -1
# Optional: Generate spread multiplier
if self.config.std_span:
df["target"] = df["close"].rolling(self.config.std_span).std() / df["close"]
return df