(feat) create analyze page

This commit is contained in:
drupman
2023-08-06 23:11:50 -03:00
parent ce4d801eae
commit 699682f4aa

View File

@@ -1,16 +1,70 @@
import constants
from utils.st_utils import initialize_st_page
from utils.optuna_database_manager import OptunaDBManager
import pandas as pd
import os
import json
import streamlit as st
from quants_lab.strategy.strategy_analysis import StrategyAnalysis
import plotly.graph_objs as go
from utils.os_utils import load_directional_strategies
initialize_st_page(title="Analyze", icon="🔬", initial_sidebar_state="collapsed")
def load_params(df: pd.DataFrame):
trial_id_col = 'trial_id'
param_name_col = 'param_name'
param_value_col = 'param_value'
distribution_json_col = 'distribution_json'
nested_dict = {}
for _, row in df.iterrows():
trial_id = row[trial_id_col]
param_name = row[param_name_col]
param_value = row[param_value_col]
distribution_json = row[distribution_json_col]
if trial_id not in nested_dict:
nested_dict[trial_id] = {}
dist_json = json.loads(distribution_json)
nested_dict[trial_id][param_name] = {
'param_name': param_name,
'param_value': param_value,
'step': dist_json["attributes"]["step"],
'low': dist_json["attributes"]["low"],
'high': dist_json["attributes"]["high"],
'log': dist_json["attributes"]["log"],
}
return nested_dict
def load_studies(df: pd.DataFrame):
study_id_col = 'study_id'
trial_id_col = 'trial_id'
nested_dict = {}
for _, row in df.iterrows():
study_id = row[study_id_col]
trial_id = row[trial_id_col]
data_dict = row.drop([study_id_col, trial_id_col]).to_dict()
if study_id not in nested_dict:
nested_dict[study_id] = {}
nested_dict[study_id][trial_id] = data_dict
return nested_dict
@st.cache_resource
def get_databases():
sqlite_files = [db_name for db_name in os.listdir("data/backtesting") if db_name.endswith(".db")]
databases_list = [OptunaDBManager(db) for db in sqlite_files]
return {database.db_name: database for database in databases_list}
def pnl_vs_maxdrawdown(df: pd.DataFrame):
fig = go.Figure()
fig.add_trace(go.Scatter(name="Pnl vs Max Drawdown",
x=100 * df["max_drawdown_pct"],
x=-100 * df["max_drawdown_pct"],
y=100 * df["net_profit_pct"],
mode="markers",
text=None,
@@ -25,5 +79,167 @@ def pnl_vs_maxdrawdown(df: pd.DataFrame):
return fig
opt_db = OptunaDBManager("backtesting_report.db")
st.plotly_chart(pnl_vs_maxdrawdown(opt_db.merged_df), use_container_width=True)
def initialize_session_state_vars():
if "strategy_params" not in st.session_state:
st.session_state.strategy_params = {}
initialize_session_state_vars()
dbs = get_databases()
db_names = [x.db_name for x in dbs.values() if x.status == 'OK']
if not db_names:
st.warning("No trades have been recorded in the selected database")
selected_db_name = None
selected_db = None
else:
selected_db = st.selectbox("Select your database:", db_names)
opt_db = OptunaDBManager(selected_db)
st.plotly_chart(pnl_vs_maxdrawdown(opt_db.merged_df), use_container_width=True)
strategies = load_directional_strategies(constants.DIRECTIONAL_STRATEGIES_PATH)
studies = load_studies(opt_db.merged_df)
study_selected = st.selectbox("Select a study:", studies.keys())
trials = studies[study_selected]
trial_selected = st.selectbox("Select a trial to backtest", list(trials.keys()))
trial = trials[trial_selected]
trial_config = json.loads(trial["config"])
strategy = strategies[trial_config["name"]]
strategy_config = strategy["config"]
field_schema = strategy_config.schema()["properties"]
st.write("## Strategy parameters")
c1, c2 = st.columns([5, 1])
with c1:
columns = st.columns(4)
column_index = 0
for field_name, properties in field_schema.items():
field_type = properties["type"]
field_value = trial_config[field_name]
with columns[column_index]:
if field_type in ["number", "integer"]:
field_value = st.number_input(field_name,
value=field_value,
min_value=properties.get("minimum"),
max_value=properties.get("maximum"),
key=field_name)
elif field_type == "string":
field_value = st.text_input(field_name, value=field_value)
elif field_type == "boolean":
# TODO: Add support for boolean fields in optimize tab
field_value = st.checkbox(field_name, value=field_value)
else:
raise ValueError(f"Field type {field_type} not supported")
try:
st.session_state["strategy_params"][field_name] = field_value
except KeyError as e:
pass
column_index = (column_index + 1) % 4
with c2:
add_positions = st.checkbox("Add positions", value=True)
add_volume = st.checkbox("Add volume", value=True)
add_pnl = st.checkbox("Add PnL", value=True)
st.subheader("Position config")
position_configs = load_params(opt_db.trial_params)
position_params = position_configs[trial_selected]
col1, col2, col3 = st.columns(3)
with col1:
selected_order_amount = st.number_input("Order amount", value=50.0, min_value=0.1, max_value=999999999.99)
selected_leverage = st.number_input("Leverage", value=10, min_value=1, max_value=200)
with col2:
selected_initial_portfolio = st.number_input("Initial portfolio", value=10000.00, min_value=1.00,
max_value=999999999.99)
selected_time_limit = st.number_input("Time Limit",
value=60 * 60 * position_params["time_limit"]["param_value"],
min_value=60 * 60 * float(position_params["time_limit"]["low"]),
max_value=60 * 60 * float(position_params["time_limit"]["high"]))
with col3:
selected_tp_multiplier = st.number_input("Take Profit Multiplier",
value=position_params["take_profit_multiplier"]["param_value"],
min_value=position_params["take_profit_multiplier"]["low"],
max_value=position_params["take_profit_multiplier"]["high"])
selected_sl_multiplier = st.number_input("Stop Loss Multiplier",
value=position_params["stop_loss_multiplier"]["param_value"],
min_value=position_params["stop_loss_multiplier"]["low"],
max_value=position_params["stop_loss_multiplier"]["high"])
run_backtesting_button = st.button("Run Backtesting!")
if run_backtesting_button:
config = strategy["config"](**st.session_state["strategy_params"])
strategy = strategy["class"](config=config)
try:
market_data, positions = strategy.run_backtesting(
start='2021-04-01',
order_amount=selected_order_amount,
leverage=selected_order_amount,
initial_portfolio=selected_initial_portfolio,
take_profit_multiplier=selected_tp_multiplier,
stop_loss_multiplier=selected_sl_multiplier,
time_limit=selected_time_limit,
std_span=None,
)
strategy_analysis = StrategyAnalysis(
positions=positions,
candles_df=market_data,
)
col1, col2 = st.columns(2)
with col1:
st.subheader("🏦 Market")
with col2:
st.subheader("📋 General stats")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Exchange", st.session_state["strategy_params"]["exchange"])
with col2:
st.metric("Trading Pair", st.session_state["strategy_params"]["trading_pair"])
with col3:
st.metric("Start date", strategy_analysis.start_date().strftime("%Y-%m-%d %H:%M"))
st.metric("End date", strategy_analysis.end_date().strftime("%Y-%m-%d %H:%M"))
with col4:
st.metric("Duration (hours)", f"{strategy_analysis.duration_in_minutes() / 60:.2f}")
st.metric("Price change", st.session_state["strategy_params"]["trading_pair"])
st.subheader("📈 Performance")
col1, col2, col3, col4, col5, col6, col7, col8 = st.columns(8)
with col1:
st.metric("Net PnL USD",
f"{strategy_analysis.net_profit_usd():.2f}",
delta=f"{100 * strategy_analysis.net_profit_pct():.2f}%",
help="The overall profit or loss achieved.")
with col2:
st.metric("Total positions",
f"{strategy_analysis.total_positions()}",
help="The total number of closed trades, winning and losing.")
with col3:
st.metric("% Profitable",
f"{(len(strategy_analysis.win_signals()) / strategy_analysis.total_positions()):.2f}",
help="The percentage of winning trades, the number of winning trades divided by the"
" total number of closed trades")
with col4:
st.metric("Profit factor",
f"{strategy_analysis.profit_factor():.2f}",
help="The amount of money the strategy made for every unit of money it lost, "
"gross profits divided by gross losses.")
with col5:
st.metric("Max Drawdown",
f"{strategy_analysis.max_drawdown_usd():.2f}",
delta=f"{strategy_analysis.max_drawdown_pct():.2f}%",
help="The greatest loss drawdown, i.e., the greatest possible loss the strategy had compared "
"to its highest profits")
with col6:
st.metric("Avg Profit",
f"{strategy_analysis.avg_profit():.2f}",
help="The sum of money gained or lost by the average trade, Net Profit divided by "
"the overall number of closed trades.")
with col7:
st.metric("Avg Minutes",
f"{strategy_analysis.avg_trading_time_in_minutes():.2f}",
help="The average number of minutes that elapsed during trades for all closed trades.")
with col8:
st.metric("Sharpe Ratio",
f"{strategy_analysis.sharpe_ratio():.2f}",
help="The Sharpe ratio is a measure that quantifies the risk-adjusted return of an investment"
" or portfolio. It compares the excess return earned above a risk-free rate per unit of"
" risk taken.")
st.plotly_chart(strategy_analysis.pnl_over_time(), use_container_width=True)
strategy_analysis.create_base_figure(volume=add_volume, positions=add_positions, trade_pnl=add_pnl)
st.plotly_chart(strategy_analysis.figure(), use_container_width=True)
except FileNotFoundError:
st.warning(f"The requested candles could not be found.")