(feat) remove analyze v2

This commit is contained in:
cardosofede
2023-10-09 13:44:10 -03:00
parent 73dc2be0a1
commit 63c822f371
2 changed files with 2 additions and 230 deletions

View File

@@ -27,16 +27,15 @@ if st.session_state["authentication_status"]:
Page("main.py", "Hummingbot Dashboard", "📊"),
Section("Bot Orchestration", "🐙"),
Page("pages/master_conf/app.py", "Credentials", "🗝️"),
Page("pages/launch_bot/app.py", "Launch Bot", "🙌"),
Page("pages/bot_orchestration/app.py", "Instances", "🦅"),
Page("pages/file_manager/app.py", "Strategy Configs", "🗂"),
Page("pages/file_manager/app.py", "File Explorer", "🗂"),
Section("Backtest Manager", "⚙️"),
Page("pages/candles_downloader/app.py", "Get Data", "💾"),
Page("pages/backtest_manager/create.py", "Create", "⚔️"),
Page("pages/backtest_manager/optimize.py", "Optimize", "🧪"),
Page("pages/backtest_manager/analyze.py", "Analyze", "🔬"),
Page("pages/backtest_manager/analyze_v2.py", "Analyze v2", "🔬"),
Page("pages/backtest_manager/simulate.py", "Simulate", "📈"),
Page("pages/launch_bot/app.py", "Deploy", "🙌"),
Section("Community Pages", "👨‍👩‍👧‍👦"),
Page("pages/strategy_performance/app.py", "Strategy Performance", "🚀"),
Page("pages/db_inspector/app.py", "DB Inspector", "🔍"),

View File

@@ -1,227 +0,0 @@
from hummingbot.core.data_type.common import PositionMode, TradeType, OrderType
from hummingbot.data_feed.candles_feed.candles_factory import CandlesConfig
from hummingbot.smart_components.strategy_frameworks.data_types import OrderLevel, TripleBarrierConf
from hummingbot.smart_components.strategy_frameworks.directional_trading import DirectionalTradingBacktestingEngine
from hummingbot.smart_components.utils import ConfigEncoderDecoder
import constants
import os
import json
import streamlit as st
from decimal import Decimal
from quants_lab.strategy.strategy_analysis import StrategyAnalysis
from utils.graphs import BacktestingGraphs
from utils.optuna_database_manager import OptunaDBManager
from utils.os_utils import load_controllers
from utils.st_utils import initialize_st_page
initialize_st_page(title="Analyze", icon="🔬", initial_sidebar_state="collapsed")
@st.cache_resource
def get_databases():
sqlite_files = [db_name for db_name in os.listdir("data/backtesting") if db_name.endswith(".db")]
databases_list = [OptunaDBManager(db) for db in sqlite_files]
databases_dict = {database.db_name: database for database in databases_list}
return [x.db_name for x in databases_dict.values() if x.status == 'OK']
def initialize_session_state_vars():
if "strategy_params" not in st.session_state:
st.session_state.strategy_params = {}
if "backtesting_params" not in st.session_state:
st.session_state.backtesting_params = {}
initialize_session_state_vars()
dbs = get_databases()
if not dbs:
st.warning("We couldn't find any Optuna database.")
selected_db_name = None
selected_db = None
else:
# Select database from selectbox
selected_db = st.selectbox("Select your database:", dbs)
# Instantiate database manager
opt_db = OptunaDBManager(selected_db)
# Load studies
studies = opt_db.load_studies()
# Choose study
study_selected = st.selectbox("Select a study:", studies.keys())
# Filter trials from selected study
merged_df = opt_db.merged_df[opt_db.merged_df["study_name"] == study_selected]
filters_column, scatter_column = st.columns([1, 6])
with filters_column:
accuracy = st.slider("Accuracy", min_value=0.0, max_value=1.0, value=[0.4, 1.0], step=0.01)
net_profit = st.slider("Net PNL (%)", min_value=merged_df["net_pnl_pct"].min(), max_value=merged_df["net_pnl_pct"].max(),
value=[merged_df["net_pnl_pct"].min(), merged_df["net_pnl_pct"].max()], step=0.01)
max_drawdown = st.slider("Max Drawdown (%)", min_value=merged_df["max_drawdown_pct"].min(), max_value=merged_df["max_drawdown_pct"].max(),
value=[merged_df["max_drawdown_pct"].min(), merged_df["max_drawdown_pct"].max()], step=0.01)
total_positions = st.slider("Total Positions", min_value=merged_df["total_positions"].min(), max_value=merged_df["total_positions"].max(),
value=[merged_df["total_positions"].min(), merged_df["total_positions"].max()], step=1)
net_profit_filter = (merged_df["net_pnl_pct"] >= net_profit[0]) & (merged_df["net_pnl_pct"] <= net_profit[1])
accuracy_filter = (merged_df["accuracy"] >= accuracy[0]) & (merged_df["accuracy"] <= accuracy[1])
max_drawdown_filter = (merged_df["max_drawdown_pct"] >= max_drawdown[0]) & (merged_df["max_drawdown_pct"] <= max_drawdown[1])
total_positions_filter = (merged_df["total_positions"] >= total_positions[0]) & (merged_df["total_positions"] <= total_positions[1])
with scatter_column:
bt_graphs = BacktestingGraphs(merged_df[net_profit_filter & accuracy_filter & max_drawdown_filter & total_positions_filter])
# Show and compare all of the study trials
st.plotly_chart(bt_graphs.pnl_vs_maxdrawdown(), use_container_width=True)
# Get study trials
trials = studies[study_selected]
# Choose trial
trial_selected = st.selectbox("Select a trial to backtest", list(trials.keys()))
trial = trials[trial_selected]
# Transform trial config in a dictionary
encoder_decoder = ConfigEncoderDecoder(TradeType, OrderType, PositionMode)
trial_config = encoder_decoder.decode(json.loads(trial["config"]))
# Strategy parameters section
st.write("## Strategy parameters")
# Load strategies (class, config, module)
controllers = load_controllers(constants.CONTROLLERS_PATH)
# Select strategy
controller = controllers[trial_config["strategy_name"]]
# Get field schema
field_schema = controller["config"].schema()["properties"]
columns = st.columns(4)
column_index = 0
for field_name, properties in field_schema.items():
field_type = properties.get("type", "string")
field_value = trial_config[field_name]
if field_name not in ["candles_config", "order_levels", "position_mode"]:
with columns[column_index]:
if field_type in ["number", "integer"]:
field_value = st.number_input(field_name,
value=field_value,
min_value=properties.get("minimum"),
max_value=properties.get("maximum"),
key=field_name)
elif field_type == "string":
field_value = st.text_input(field_name, value=field_value)
elif field_type == "boolean":
# TODO: Add support for boolean fields in optimize tab
field_value = st.checkbox(field_name, value=field_value)
else:
raise ValueError(f"Field type {field_type} not supported")
else:
if field_name == "candles_config":
st.write("---")
st.write(f"## Candles Config:")
candles = []
for i, candles_config in enumerate(field_value):
st.write(f"#### Candle {i}:")
c11, c12, c13, c14 = st.columns(4)
with c11:
connector = st.text_input("Connector", value=candles_config["connector"])
with c12:
trading_pair = st.text_input("Trading pair", value=candles_config["trading_pair"])
with c13:
interval = st.text_input("Interval", value=candles_config["interval"])
with c14:
max_records = st.number_input("Max records", value=candles_config["max_records"])
st.write("---")
candles.append(CandlesConfig(connector=connector, trading_pair=trading_pair, interval=interval,
max_records=max_records))
field_value = candles
elif field_name == "order_levels":
new_levels = []
st.write(f"## Order Levels:")
for order_level in field_value:
st.write(f"### Level {order_level['level']} {order_level['side'].name}")
ol_c1, ol_c2 = st.columns([5, 1])
with ol_c1:
st.write("#### Triple Barrier config:")
c21, c22, c23, c24, c25 = st.columns(5)
triple_barrier_conf_level = order_level["triple_barrier_conf"]
with c21:
take_profit = st.number_input("Take profit", value=float(triple_barrier_conf_level["take_profit"]),
key=f"{order_level['level']}_{order_level['side'].name}_tp")
with c22:
stop_loss = st.number_input("Stop Loss", value=float(triple_barrier_conf_level["stop_loss"]),
key=f"{order_level['level']}_{order_level['side'].name}_sl")
with c23:
time_limit = st.number_input("Time Limit", value=triple_barrier_conf_level["time_limit"],
key=f"{order_level['level']}_{order_level['side'].name}_tl")
with c24:
ts_ap = st.number_input("Trailing Stop Activation Price", value=float(triple_barrier_conf_level["trailing_stop_activation_price_delta"]),
key=f"{order_level['level']}_{order_level['side'].name}_tsap", format="%.4f")
with c25:
ts_td = st.number_input("Trailing Stop Trailing Delta", value=float(triple_barrier_conf_level["trailing_stop_trailing_delta"]),
key=f"{order_level['level']}_{order_level['side'].name}_tstd", format="%.4f")
with ol_c2:
st.write("#### Position config:")
c31, c32 = st.columns(2)
with c31:
order_amount = st.number_input("Order amount USD", value=float(order_level["order_amount_usd"]),
key=f"{order_level['level']}_{order_level['side'].name}_oa")
with c32:
cooldown_time = st.number_input("Cooldown time", value=order_level["cooldown_time"],
key=f"{order_level['level']}_{order_level['side'].name}_cd")
triple_barrier_conf = TripleBarrierConf(stop_loss=Decimal(stop_loss), take_profit=Decimal(take_profit),
time_limit=time_limit,
trailing_stop_activation_price_delta=Decimal(ts_ap),
trailing_stop_trailing_delta=Decimal(ts_td),
open_order_type=OrderType.MARKET)
new_levels.append(OrderLevel(level=order_level["level"], side=order_level["side"],
order_amount_usd=order_amount, cooldown_time=cooldown_time,
triple_barrier_conf=triple_barrier_conf))
st.write("---")
field_value = new_levels
elif field_name == "position_mode":
field_value = PositionMode.HEDGE
else:
field_value = None
st.session_state["strategy_params"][field_name] = field_value
column_index = (column_index + 1) % 4
st.write("### Backtesting period")
col1, col2, col3, col4 = st.columns([1, 1, 1, 0.5])
with col1:
trade_cost = st.number_input("Trade cost",
value=0.0006,
min_value=0.0001, format="%.4f", )
with col2:
initial_portfolio_usd = st.number_input("Initial portfolio usd",
value=10000.00,
min_value=1.00,
max_value=999999999.99)
with col3:
start = st.text_input("Start", value="2023-01-01")
end = st.text_input("End", value="2023-08-01")
c1, c2 = st.columns([1, 1])
with col4:
add_positions = st.checkbox("Add positions", value=True)
add_volume = st.checkbox("Add volume", value=True)
add_pnl = st.checkbox("Add PnL", value=True)
save_config = st.button("💾Save controller config!")
config = controller["config"](**st.session_state["strategy_params"])
controller = controller["class"](config=config)
if save_config:
encoder_decoder = ConfigEncoderDecoder(TradeType, OrderType, PositionMode)
encoder_decoder.yaml_dump(config.dict(),
f"hummingbot_files/controller_configs/{config.strategy_name}_{trial_selected}.yml")
run_backtesting_button = st.button("Run Backtesting!")
if run_backtesting_button:
try:
engine = DirectionalTradingBacktestingEngine(controller=controller)
engine.load_controller_data("./data/candles")
backtesting_results = engine.run_backtesting(initial_portfolio_usd=initial_portfolio_usd,
trade_cost=trade_cost,
start=start, end=end)
strategy_analysis = StrategyAnalysis(
positions=backtesting_results["executors_df"],
candles_df=backtesting_results["processed_data"],
)
metrics_container = BacktestingGraphs(backtesting_results["processed_data"]).get_trial_metrics(
strategy_analysis,
add_positions=add_positions,
add_volume=add_volume)
except FileNotFoundError:
st.warning(f"The requested candles could not be found.")