mirror of
https://github.com/aljazceru/hummingbot-dashboard.git
synced 2026-01-08 16:04:23 +01:00
(feat) add supertrend controller
This commit is contained in:
52
quants_lab/controllers/supertrend.py
Normal file
52
quants_lab/controllers/supertrend.py
Normal file
@@ -0,0 +1,52 @@
|
||||
import time
|
||||
|
||||
import pandas as pd
|
||||
from pydantic import Field
|
||||
|
||||
from hummingbot.smart_components.executors.position_executor.position_executor import PositionExecutor
|
||||
from hummingbot.smart_components.strategy_frameworks.data_types import OrderLevel
|
||||
from hummingbot.smart_components.strategy_frameworks.directional_trading.directional_trading_controller_base import (
|
||||
DirectionalTradingControllerBase,
|
||||
DirectionalTradingControllerConfigBase,
|
||||
)
|
||||
|
||||
|
||||
class SuperTrendConfig(DirectionalTradingControllerConfigBase):
|
||||
strategy_name: str = "supertrend"
|
||||
length: int = Field(default=20, ge=5, le=200)
|
||||
multiplier: float = Field(default=4.0, ge=2.0, le=7.0)
|
||||
percentage_threshold: float = Field(default=0.01, ge=0.005, le=0.05)
|
||||
|
||||
|
||||
class SuperTrend(DirectionalTradingControllerBase):
|
||||
def __init__(self, config: SuperTrendConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
def early_stop_condition(self, executor: PositionExecutor, order_level: OrderLevel) -> bool:
|
||||
# If an executor has an active position, should we close it based on a condition. This feature is not available
|
||||
# for the backtesting yet
|
||||
return False
|
||||
|
||||
def cooldown_condition(self, executor: PositionExecutor, order_level: OrderLevel) -> bool:
|
||||
# After finishing an order, the executor will be in cooldown for a certain amount of time.
|
||||
# This prevents the executor from creating a new order immediately after finishing one and execute a lot
|
||||
# of orders in a short period of time from the same side.
|
||||
if executor.close_timestamp and executor.close_timestamp + order_level.cooldown_time > time.time():
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_processed_data(self) -> pd.DataFrame:
|
||||
df = self.candles[0].candles_df
|
||||
df.ta.supertrend(length=self.config.length, multiplier=self.config.multiplier, append=True)
|
||||
df["percentage_distance"] = abs(df["close"] - df[f"SUPERT_{self.config.length}_{self.config.multiplier}"]) / df["close"]
|
||||
|
||||
# Generate long and short conditions
|
||||
long_condition = (df[f"SUPERTd_{self.config.length}_{self.config.multiplier}"] == 1) & (df["percentage_distance"] < self.config.percentage_threshold)
|
||||
short_condition = (df[f"SUPERTd_{self.config.length}_{self.config.multiplier}"] == -1) & (df["percentage_distance"] < self.config.percentage_threshold)
|
||||
|
||||
# Choose side
|
||||
df['signal'] = 0
|
||||
df.loc[long_condition, 'signal'] = 1
|
||||
df.loc[short_condition, 'signal'] = -1
|
||||
return df
|
||||
Reference in New Issue
Block a user